JPH05262562A - Production of forsterite porcelain - Google Patents

Production of forsterite porcelain

Info

Publication number
JPH05262562A
JPH05262562A JP9220992A JP9220992A JPH05262562A JP H05262562 A JPH05262562 A JP H05262562A JP 9220992 A JP9220992 A JP 9220992A JP 9220992 A JP9220992 A JP 9220992A JP H05262562 A JPH05262562 A JP H05262562A
Authority
JP
Japan
Prior art keywords
forsterite
powder
porcelain
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9220992A
Other languages
Japanese (ja)
Other versions
JP3083638B2 (en
Inventor
Hirotane Sugiura
裕胤 杉浦
Takehisa Fukui
武久 福井
Yutaka Higashida
豊 東田
Tsutomu Kadooka
勉 角岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Original Assignee
FINE CERAMICS CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER filed Critical FINE CERAMICS CENTER
Priority to JP04092209A priority Critical patent/JP3083638B2/en
Publication of JPH05262562A publication Critical patent/JPH05262562A/en
Application granted granted Critical
Publication of JP3083638B2 publication Critical patent/JP3083638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a process for producing a forsterite porcelain having low dielectric loss in microwave range. CONSTITUTION:A powdery raw material produced by mixing MgO with SiO2 at a molar ratio of 2:1 is calcined and crushed to obtain forsterite powder. The powder is mixed with a binder and compressionmolded and the obtained molded material is degreased and sintered to obtain a forsterite porcelain. In the above process, the amounts of impurities in the sintered forsterite porcelain are controlled to <=0.10% of Al2O3, <=0.05% of CaO, <=0.05% of Fe2O3, <=0.40% of ZrO2 and <=0.01% of the other impurities and the particle size distribution of the forsterite powder is adjusted to have an average particle diameter of <=3mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はフォルステライト磁器
の作製方法に関し、詳しくはマイクロ波に対して低誘電
損失のフォルステライト磁器を得る方法に係わるもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing forsterite porcelain, and more particularly to a method for obtaining forsterite porcelain having a low dielectric loss with respect to microwaves.

【0002】[0002]

【従来の技術】一般に、マイクロ波領域で使用される誘
電体セラミックスに要求される特性のひとつに、当該領
域での誘電損失が小さいことがあげられる。誘電損失は
誘電体に交流電場を加えたときに熱として失われるエネ
ルギーの量を表し、高周波においてはその値が小さいこ
とが特に重要となる。フォルステライトは、MgOとS
iO2 の反応生成物よりなり、元来比較的優れた高周波
特性を持っている。
2. Description of the Related Art Generally, one of the characteristics required for dielectric ceramics used in the microwave region is that the dielectric loss in the region is small. The dielectric loss represents the amount of energy lost as heat when an AC electric field is applied to the dielectric, and it is particularly important that the value is small at high frequencies. Forsterite is MgO and S
It is composed of a reaction product of iO 2 , and originally has relatively excellent high frequency characteristics.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フォル
ステライトの磁器を作製する場合は原料のMgOやSi
2 に混入している不純物や種々の目的で添加される元
素によって、最終的な生成物の磁器焼結体中にフォルス
テライト以外の相が形成され、電気特性に影響を与える
問題がある。
However, when manufacturing forsterite porcelain, the raw materials MgO and Si are used.
Due to impurities mixed in O 2 and elements added for various purposes, a phase other than forsterite is formed in the final product porcelain sinter, which has a problem of affecting electrical characteristics.

【0004】そこで、本発明者はフォルステライトに関
する研究において、原料(粉末)及びフォルステライト
磁器を得る各工程において混入する不純物を制御し、か
つフォルステライト粉末の粒度を制御することにより、
フォルステライト磁器の電気特性、とくにマイクロ波領
域での誘電損失を小さくし得る知見を得た。そして、本
発明はこの知見に基づいてなされたものである。
Therefore, the present inventor, in his research on forsterite, controls the impurities mixed in each step of obtaining the raw material (powder) and the forsterite porcelain and controlling the particle size of the forsterite powder.
We have found that the electrical characteristics of forsterite porcelain, especially the dielectric loss in the microwave region, can be reduced. The present invention is based on this finding.

【0005】すなわち、本発明の課題は、マイクロ波領
域での誘電損失の小さいフォルステライト磁器を作製す
る方法を提供することにある。
That is, an object of the present invention is to provide a method for producing a forsterite porcelain having a small dielectric loss in the microwave region.

【0006】[0006]

【課題を解決するための手段】上記した課題を達成する
ために、本発明はMgOとSiO2 を2対1のモル比で
混合した原料粉末を、仮焼きし、粉砕してフォルステラ
イトの粉末とし、該粉末にバインダを混合し加圧成形し
て成形品となし、該成形品を脱脂及び焼結してフォルス
テライト磁器を作製する方法であって、前記原料粉末、
及び該原料粉末から前記フォルステライト磁器を得る各
工程において、フォルステライト磁器の磁器焼結体に含
まれる不純物をAl2 3 0.10%以下、CaO
0.05%以下、Fe2 3 0.05%以下、ZrO
2 0.40%以下、その他 0.01%以下、に制御
すること、及び、前記フォルステライトの粉末の粒度分
布を平均粒径3μm以下にすること、を特徴とする。
In order to achieve the above-mentioned object, the present invention provides a forsterite powder by calcining and pulverizing a raw material powder prepared by mixing MgO and SiO 2 in a molar ratio of 2: 1. A method of producing a forsterite porcelain by mixing the powder with a binder and press-molding to form a molded article, and degreasing and sintering the molded article,
In each step of obtaining the forsterite porcelain from the raw material powder, impurities contained in the porcelain sintered body of the forsterite porcelain are Al 2 O 3 0.10% or less, CaO.
0.05% or less, Fe 2 O 3 0.05% or less, ZrO
2 0.40% or less, other 0.01% or less, and the particle size distribution of the forsterite powder is set to an average particle size of 3 μm or less.

【0007】前記仮焼きは、たとえば1000〜120
0℃で2〜4時間行なわれる。仮焼きによってほぼフォ
ルステライトの良好な単一相が合成される。1000℃
より低温及び1200より高温はフォルステライトを良
好に合成しない。仮焼きしたフォルステライトの粉砕
は、たとえばジルコニアボールを用いたボールミルにて
行なうことができる。この粉砕はフォルステライト粉末
の粒度分布を平均粒径3μm以下にすることを要する。
フォルステライト粉末の粒径が大きいと、フォルステラ
イト粉末による成形品の焼結性が悪くなり高密度の焼結
体が得られない。
The calcination is, for example, 1000 to 120.
It is carried out at 0 ° C. for 2 to 4 hours. By calcination, a good single phase of almost forsterite is synthesized. 1000 ° C
Lower temperatures and higher than 1200 do not synthesize forsterite well. The calcination of the forsterite that has been calcined can be carried out, for example, with a ball mill using zirconia balls. This pulverization requires that the particle size distribution of the forsterite powder be 3 μm or less in average particle size.
If the particle size of the forsterite powder is large, the sinterability of the molded product of the forsterite powder deteriorates, and a high density sintered body cannot be obtained.

【0008】成形品となすためのバインダはポリビニル
アルコール,メチルセルロースなどの有機質の糊料が用
いられる。前記成形品は適宜な加圧成形手段により、用
途に応じた所定形状にされる。成形品は脱脂処理におい
てバインダ等の有機質の配合物が焼結除去される。脱脂
温度は有機質の配合物を徐々に焼失させる程度とされ、
たとえば、300〜500℃で4〜7時間である。脱脂
後は続いて焼結される。焼結は1300〜1600℃で
1〜3時間程度、望ましくは1400℃,2時間,であ
り、この焼結条件を外れると磁器の良好な電気特性、と
くにマイクロ波に対しての低誘電損失、が得られない。
なお、ここでいうマイクロ波は周波数数百MHZ 〜数百
GHZ 、およそ300MHZ 〜300GHZ の範囲を指
す。
As a binder for forming a molded product, an organic paste such as polyvinyl alcohol or methyl cellulose is used. The molded product is formed into a predetermined shape according to the application by an appropriate pressure molding means. In the molded product, the organic compound such as the binder is sintered and removed in the degreasing process. The degreasing temperature is considered to be such that organic compounds are gradually burned out,
For example, it is 4 to 7 hours at 300 to 500 ° C. After degreasing, it is subsequently sintered. Sintering is performed at 1300 to 1600 ° C. for about 1 to 3 hours, preferably 1400 ° C. for 2 hours. If the sintering conditions are not satisfied, good porcelain electrical characteristics, particularly low dielectric loss against microwaves Can't get
The frequency number microwaves here hundred MH Z ~ several hundred GH Z, refers to the range of approximately 300MH Z ~300GH Z.

【0009】本発明においては、原料粉末、及び該原料
粉末からフォルステライト磁器を得るための各諸工程に
おいて、フォルステライト磁器の磁器焼結体に極力、不
純物が入らないように配慮される。原料粉末の調整はも
ちろん、混合,粉砕,成形等の各処理工程は、不純物の
混入しない材質及び手段が用いられる。
In the present invention, in the raw material powder, and in each step for obtaining the forsterite porcelain from the raw material powder, consideration is given so as to prevent impurities from entering the porcelain sintered body of the forsterite porcelain as much as possible. In addition to the adjustment of the raw material powder, materials and means in which impurities are not mixed are used in each processing step such as mixing, crushing and molding.

【0010】[0010]

【作用】原料粉末は仮焼きによりフォルステライトに合
成され、合成されたフォルステライトは粉砕することに
より粉末とされる。フォルステライト磁器を作製する
際、原料粉末等から混入する不純物の混入を制御するこ
とより、高純度のフォルステライトが合成され、さらに
フォルステライト磁器を得る各工程において、不純物の
混入量を制御することより、高純度の磁器焼結体を得
る。
The raw material powder is synthesized into forsterite by calcination, and the synthesized forsterite is pulverized into powder. When forsterite porcelain is manufactured, high-purity forsterite is synthesized by controlling the mixture of impurities that are mixed from raw material powder, etc., and the amount of impurities is controlled in each process of obtaining forsterite porcelain. As a result, a highly purified porcelain sintered body is obtained.

【0011】また、フォルステライト粉末を平均粒径3
μm以下の粒度分布を持つ粉末にすることより、ガラス
相の排除による焼結性の低下を防ぎ、従来とほぼ同等の
焼結温度で緻密化させ高密度の磁器焼結体となし得る。
このため本発明にて得られるフォルステライト磁器の結
晶は、フォルステライト相以外の相が排除され、かつ粒
界におけるガラス相が排除された高純度のものとなる。
Further, forsterite powder has an average particle size of 3
By using a powder having a particle size distribution of μm or less, deterioration of sinterability due to elimination of a glass phase can be prevented, and densification can be performed at a sintering temperature almost equal to that in the past, to obtain a high-density porcelain sintered body.
Therefore, the crystal of the forsterite porcelain obtained in the present invention has a high purity in which the phases other than the forsterite phase are excluded and the glass phase at the grain boundaries is excluded.

【0012】[0012]

【実施例】次に、本発明の一実施例を、図1及び図2を
参照して説明する。まず、原料粉末とするための高純度
のMgO粉末とSiO2 粉末を用意する。MgO粉末及
びSiO2 粉末の粒度は細かい方が望ましいが、本例で
は(平均粒径0.09μm、(比表面積26.03m2
/g)のMgO粉末、及び平均粒径0.82、(比較面
積1.78m2 /g)のSiO2 粉末を用いた。なお、
両粉末の粒度は仮焼きにおいて充分反応する程度のもの
でよい。本例に用いたMgO粉末及びSiO2 粉末のI
CP分析による含有不純物の分析結果は表1に示す通り
である。
Next, an embodiment of the present invention will be described with reference to FIGS. First, high-purity MgO powder and SiO 2 powder to be used as raw material powders are prepared. It is desirable that the particle size of the MgO powder and the SiO 2 powder is small, but in this example, (average particle size 0.09 μm, (specific surface area 26.03 m 2
/ G) of MgO powder and a SiO 2 powder having an average particle size of 0.82 and a (comparative area of 1.78 m 2 / g). In addition,
The particle size of both powders may be such that they react sufficiently during calcination. I of MgO powder and SiO 2 powder used in this example
The results of the contained impurities analyzed by CP analysis are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】なお、表1において、成分量の数値単位は
%であり、−印は0.001%以下量含有することを表
わす。
In Table 1, the numerical unit of the component amount is%, and the-mark indicates that the content is 0.001% or less.

【0015】次いで、MgOとSiO2 がモル比2:1
となる様にMgO粉末とSiO2 粉末を秤量し、蒸留水
を加え、ウレタンボールを用いてボールミルで20時間
混合し混合物とした。混合物は約100℃で24時間乾
燥し原料粉末とする。次いで原料粉末は1200℃で3
時間仮焼きしてフォルステライトが合成された仮焼き品
を得た。この仮焼き品はジルコニアボールを用いて蒸留
水中24時間粉砕し、しかる後、100℃で24時間乾
燥してフォルステライト粉末(仮焼き粉末)とした。
Then, the molar ratio of MgO and SiO 2 is 2: 1.
The MgO powder and the SiO 2 powder were weighed so that the following was obtained, distilled water was added, and the mixture was mixed for 20 hours in a ball mill using urethane balls to obtain a mixture. The mixture is dried at about 100 ° C. for 24 hours to obtain a raw material powder. Next, the raw material powder is 1200 ° C for 3
It was calcined for a time to obtain a calcined product in which forsterite was synthesized. This calcined product was crushed for 24 hours in distilled water using zirconia balls and then dried at 100 ° C. for 24 hours to obtain forsterite powder (calcined powder).

【0016】このフォルステライト粉末の粒度分布は図
2に示す通りである。なお、図2において、右のたて目
盛は棒グラフの尺度を示し、左の縦目盛(%)は線グラ
フの尺度を示す。図2のグラフに示されるように、この
フォルステライト粉末は粉末の50%が粒径1μm以下
のものであった。
The particle size distribution of this forsterite powder is as shown in FIG. In FIG. 2, the vertical scale on the right shows the scale of the bar graph, and the vertical scale (%) on the left shows the scale of the line graph. As shown in the graph of FIG. 2, 50% of this forsterite powder had a particle size of 1 μm or less.

【0017】かくして、作ったフォルステライト粉末に
はバインダとしてポリビニルアルコールを1%添加し、
混合した後、円柱形に成形した。成形は、まず300k
g/cm2 の一軸成形(仮成形)し、次いで3000k
g/cm2 でCIP成形(本成形)して成形品とした。
次いで、成形品は加熱炉に入れ、400℃で6時間加熱
して脱脂した後、昇温し、1400℃で2時間焼成し
て、円柱形のフォルステライト磁器を得た。上記の工程
で作製した本例のフォルステライト磁器は焼結性良好な
ものであった。
Thus, 1% of polyvinyl alcohol was added as a binder to the forsterite powder thus prepared,
After mixing, it was formed into a cylindrical shape. Molding is first 300k
Uniaxial molding (temporary molding) of g / cm 2 and then 3000 k
CIP molding (main molding) was performed at g / cm 2 to obtain a molded product.
Next, the molded product was placed in a heating furnace, heated at 400 ° C. for 6 hours to degrease, then heated and fired at 1400 ° C. for 2 hours to obtain a cylindrical forsterite porcelain. The forsterite porcelain of this example produced in the above steps had good sinterability.

【0018】本例において作製したフォルステライト磁
器イ及びロのかさ密度及び誘電特性(誘電率ε及び誘電
損失tanδ)は表2に示す通りである。
The bulk density and dielectric properties (dielectric constant ε and dielectric loss tan δ) of the forsterite porcelains a and b produced in this example are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】なお、従来フォルステライト磁器ハ,ニ,
ホは、その作製工程においてフォルステライト粉末の粒
度分布が考慮されず、かつ磁器焼結体中の不純物含有量
が、Al2 3 0.10%,CaO 0.05%,F
2 3 0.05%,ZrO2 0.04%,の少く
とも1つを超えるものである。そして、表2における誘
電率ε及び誘電損失tanδは、両端短絡型誘電体円柱
共振器法にて測定した値であり、本例フォルステライト
磁器イ,ロは15.8〜18.7GHZ で測定し、従来
フォルステライト磁器ハ〜ホは9.3〜10.0GHZ
で測定した場合のものである。表2より本例のフォルス
テライト磁器イ,ロは従来のハ,ニ,ホより、誘電損失
が1オーダー小さいことが認められた。
Conventional forsterite porcelain c
In the production process, the grain size distribution of the forsterite powder is not taken into consideration in the production process, and the content of impurities in the porcelain sintered body is Al 2 O 3 0.10%, CaO 0.05%, F
e 2 O 3 0.05%, ZrO 2 0.04%, at least one. Then, the dielectric constant ε and the dielectric loss tanδ at Table 2 is a value measured at both short-circuited dielectric rod resonator method, the present embodiment forsterite porcelain Lee, b is measured at 15.8~18.7GH Z and, conventional forsterite porcelain Ha ~ ho 9.3~10.0GH Z
It is when measured in. From Table 2, it was confirmed that the forsterite porcelains a and b of this example had a dielectric loss one order smaller than those of the conventional c, d, and e.

【0021】また、本例フォルステライト磁器の抵抗率
(3端子法による測定)を表3に示し、熱膨張率及び膨
張係数(昇温10℃/min.最高温度800℃,標準
試料アルミナを用いて測定)を表4に示した。抵抗率は
3端子法により測定し、熱膨張率及び膨張係数は昇温1
0℃/min.最高温度800℃,標準試料アルミナを
用いて測定した。表3,及び表4の本例の各数値はフォ
ルステライト磁器イ,ロの平均値であり、従来の数値は
従来磁器ハ,ニ,ホの平均値である。
The resistivity (measured by the three-terminal method) of the forsterite porcelain of this example is shown in Table 3, and the coefficient of thermal expansion and the coefficient of expansion (temperature rise 10 ° C./min. Maximum temperature 800 ° C., standard alumina sample was used). Are shown in Table 4. The resistivity is measured by the three-terminal method, and the coefficient of thermal expansion and the coefficient of expansion are elevated by 1
0 ° C./min. The maximum temperature was 800 ° C., and measurement was performed using standard sample alumina. Each numerical value of this example in Tables 3 and 4 is the average value of the forsterite porcelains a and b, and the conventional value is the average value of the conventional porcelain c, d and e.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 表3及び表4における各値より、本例のフォルステライ
ト磁器の抵抗率,熱膨張率及び膨張係数は従来市販のフ
ォルステライト磁器とほぼ同等と認められる。したがっ
て、本例により得たフォルステライト磁器はマイクロ波
用の絶縁材として好ましいものといえる。
[Table 4] From the values in Tables 3 and 4, it is recognized that the forsterite porcelain of this example has a resistivity, a coefficient of thermal expansion, and a coefficient of expansion that are substantially the same as those of conventional forsterite porcelain. Therefore, it can be said that the forsterite porcelain obtained by this example is preferable as an insulating material for microwaves.

【0024】[0024]

【発明の効果】本発明は、原料粉末,及び該原料粉末か
ら前記フォルステライト磁器を得る各工程において、フ
ォルステライト磁器の磁器焼結体に含まれる不純物をA
2 3 0.10%以下、CaO 0.05%以下、
Fe2 3 0.05%以下、ZrO2 0.40%以
下、その他 0.01%以下、に制御すること、及び、
フォルステライトの粉末の粒度分布を平均粒径3μm以
下にすること、としたので、マイクロ波領域での誘電損
失が小さく、マイクロ波用の絶縁材として好ましいフォ
ルステライト磁器を得ることができる。すなわち、本発
明によれば高純度のフォルステライト粉末を得る一方、
磁器を製作する各工程から不純物の混入を制御するので
不純物の少い磁器を得ることができ、また、フォルステ
ライト粉末の粒度分布を平均粒径3μm以下とするの
で、緻密化した高密度の物性をすることができ、これら
によって誘電損失の小さいフォルステライト磁器となし
得る。
According to the present invention, the impurities contained in the porcelain sintered body of the forsterite porcelain in the raw powder and the steps of obtaining the forsterite porcelain from the raw powder are
l 2 O 3 0.10% or less, CaO 0.05% or less,
Fe 2 O 3 0.05% or less, ZrO 2 0.40% or less, and other 0.01% or less, and
Since the particle size distribution of the powder of forsterite is set to have an average particle size of 3 μm or less, the dielectric loss in the microwave region is small, and a forsterite porcelain preferable as an insulating material for microwaves can be obtained. That is, according to the present invention, while highly pure forsterite powder is obtained,
Since the mixing of impurities is controlled from each step of manufacturing porcelain, it is possible to obtain porcelain with few impurities, and because the particle size distribution of forsterite powder is set to an average particle size of 3 μm or less, densified and high-density physical properties are obtained. It is possible to obtain a forsterite porcelain with a low dielectric loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のフォルステライト磁器を得る工
程図。
FIG. 1 is a process diagram for obtaining a forsterite porcelain according to an embodiment of the present invention.

【図2】本例フォルステライト粉末の粒度分布を示すグ
ラフ。
FIG. 2 is a graph showing the particle size distribution of the forsterite powder of this example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 MgOとSiO2 を2対1のモル比で混
合した原料粉末を、仮焼きし、粉砕してフォルステライ
トの粉末とし、該粉末にバインダを混合し加圧成形して
成形品となし、該成形品を脱脂及び焼結してフォルステ
ライト磁器を作製する方法であって、 前記原料粉末、及び該原料粉末から前記フォルステライ
ト磁器を得る各工程において、フォルステライト磁器の
磁器焼結体に含まれる不純物をAl2 3 0.10%
以下、CaO 0.05%以下、Fe2 3 0.05
%以下、ZrO2 0.40%以下、その他 0.01
%以下、に制御すること、及び、 前記フォルステライトの粉末の粒度分布を平均粒径3μ
m以下にすること、を特徴としたフォルステライト磁器
の作製方法。
1. A molded product obtained by calcining a raw material powder in which MgO and SiO 2 are mixed at a molar ratio of 2: 1 and pulverizing the powder into forsterite powder, mixing the powder with a binder and pressurizing the powder. A method for producing a forsterite porcelain by degreasing and sintering the molded product, comprising the step of obtaining the raw material powder and the step of obtaining the forsterite porcelain from the raw material powder. Impurity contained in the body is Al 2 O 3 0.10%
Below, CaO 0.05% or less, Fe 2 O 3 0.05
% Or less, ZrO 2 0.40% or less, other 0.01
% Or less, and the particle size distribution of the forsterite powder is 3 μm in average particle size.
A method for producing a forsterite porcelain, characterized by:
JP04092209A 1992-03-17 1992-03-17 How to make forsterite porcelain Expired - Lifetime JP3083638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04092209A JP3083638B2 (en) 1992-03-17 1992-03-17 How to make forsterite porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04092209A JP3083638B2 (en) 1992-03-17 1992-03-17 How to make forsterite porcelain

Publications (2)

Publication Number Publication Date
JPH05262562A true JPH05262562A (en) 1993-10-12
JP3083638B2 JP3083638B2 (en) 2000-09-04

Family

ID=14048059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04092209A Expired - Lifetime JP3083638B2 (en) 1992-03-17 1992-03-17 How to make forsterite porcelain

Country Status (1)

Country Link
JP (1) JP3083638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089357A (en) * 2004-09-27 2006-04-06 Nippon Carbide Ind Co Inc Method of manufacturing ceramic substrate
JP2016015679A (en) * 2014-07-03 2016-01-28 Tdk株式会社 Dielectric antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089357A (en) * 2004-09-27 2006-04-06 Nippon Carbide Ind Co Inc Method of manufacturing ceramic substrate
JP2016015679A (en) * 2014-07-03 2016-01-28 Tdk株式会社 Dielectric antenna

Also Published As

Publication number Publication date
JP3083638B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
JPH0687367B2 (en) Dielectric porcelain composition
JPH05345662A (en) Production of forsterite ceramic
JP4524411B2 (en) Dielectric porcelain composition
JPH02199052A (en) Dielectric ceramic composition for high frequency
JP3083638B2 (en) How to make forsterite porcelain
JPH0542762B2 (en)
KR100404815B1 (en) Ceramic material substrate
JP3083681B2 (en) MgO-SiO2-based porcelain and method of manufacturing the same
SE459494B (en) SEATED IN PREPARATION OF CERAMIC COMPOSITES CONTAINING SILICON OXYNITRIDE AND Zirconia Oxide
JPH0570222A (en) Bao-xtio2-based dielectric ceramics
JP5134819B2 (en) High frequency dielectric ceramics
JP3243874B2 (en) Dielectric porcelain composition
JPH11130544A (en) Dielectric ceramic composition and its production
JPH08198664A (en) Alumina-base sintered body and its production
KR20030090081A (en) A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior
JPH0261762B2 (en)
Bruce et al. Microwave sintering of pure and doped nanocrystalline alumina compacts
JP3696947B2 (en) Dielectric porcelain composition
JP2005239446A (en) Porcelain composition and its manufacturing method
JP3291780B2 (en) Dielectric porcelain composition
JP3243832B2 (en) Manufacturing method of oxide dielectric porcelain
JPH04303512A (en) Manufacture of calcined body for dielectric porcelain
JPH05109316A (en) Manufacture of dielectric porcelain for microwave
JP3243890B2 (en) Dielectric porcelain composition
EP0388541A1 (en) Production of a sintered reaction bonded silicon nitride insulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

EXPY Cancellation because of completion of term
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120630

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120630