JPH05261393A - Treatment of organic drainage - Google Patents

Treatment of organic drainage

Info

Publication number
JPH05261393A
JPH05261393A JP4089319A JP8931992A JPH05261393A JP H05261393 A JPH05261393 A JP H05261393A JP 4089319 A JP4089319 A JP 4089319A JP 8931992 A JP8931992 A JP 8931992A JP H05261393 A JPH05261393 A JP H05261393A
Authority
JP
Japan
Prior art keywords
carrier
nitrification
denitrification
sludge
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4089319A
Other languages
Japanese (ja)
Other versions
JP2556413B2 (en
Inventor
Koji Mishima
浩二 三島
Masami Kitagawa
政美 北川
Tatsuo Shimomura
達夫 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP4089319A priority Critical patent/JP2556413B2/en
Publication of JPH05261393A publication Critical patent/JPH05261393A/en
Application granted granted Critical
Publication of JP2556413B2 publication Critical patent/JP2556413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To provide a method for treating organic drainage which is capable of recovering an immobilization carrier easy in maintenance and of performing rational nitrification and denitrification in a biologically nitrifying and denitrifying method wherein the immobilization carrier is used. CONSTITUTION:In a method for treating organic drainage constituting of the biologically nitrifying and denitrifying method wherein organic drainage is successively treated in the respective stages of a denitrification stage 2, a nitrification stage 3 for using a microorganism immobilization carrier and a sludge separation stage 7, the carrier 4 in the nitrification stage 3 is settled, separated 12 and to a carrier separation stage 15. Separation liquid 16 separated in the carrier separation stage 15 is circulated to the denitrification stage 2. Moreover the carrier 17 recovered in the carrier separation stage 15 is returned to the nitrification stage 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機性排水の処理方法
に係り、特に、下水、し尿、産業排水などの窒素を含む
有機性排水の生物学的硝化脱窒方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic wastewater, and more particularly to a method for biological nitrification and denitrification of organic wastewater containing nitrogen such as sewage, night soil and industrial wastewater.

【0002】[0002]

【従来の技術】近年、硝化液循環型脱窒素活性汚泥法の
発展により、生物処理プロセスで窒素を除去することが
可能になっている。しかし、硝化反応を担う硝化細菌の
増殖速度が他の細菌(例えばBOD酸化菌、脱窒菌な
ど)と比較して小さいために、硝化細菌のウオッシュア
ウトを防ぐには汚泥滞留時間(SRT)を長くする必要
があった。その結果、水理学的滞留時間(HRT)の大
きなエアレーションタンクを必要とした。例えば、都市
下水を脱窒素処理する場合には、HRTが14〜16時
間のエアレーションタンクが必要であった。標準活性汚
泥法のHRTが6〜8時間であることと比べれば、その
大きさが膨大であることが理解できる。
2. Description of the Related Art In recent years, it has become possible to remove nitrogen in a biological treatment process by the development of a nitrification solution circulation type denitrification activated sludge method. However, since the growth rate of nitrifying bacteria responsible for nitrification reaction is smaller than that of other bacteria (eg, BOD-oxidizing bacteria, denitrifying bacteria, etc.), the sludge retention time (SRT) must be long to prevent washout of nitrifying bacteria. Had to do. As a result, an aeration tank with a large hydraulic retention time (HRT) was required. For example, when denitrifying urban sewage, an aeration tank with an HRT of 14 to 16 hours was required. It can be understood that the size is enormous compared with the HRT of the standard activated sludge method being 6 to 8 hours.

【0003】そこで最近では、硝化細菌を固定化担体に
固定化することで硝化細菌の実質的なSRTを増加させ
て硝化細菌のウォッシュアウトを阻止し、HRT8〜1
2時間程度の運転条件で脱窒素を可能にする方法が開発
されつつある。ここではその方法を固定化担体併用型循
環式脱窒素活性汚泥法と称する。この方法がHRTを短
くできる最大の要因は、好気槽HRT:2〜4時間で硝
化を完了させることができることによる。図4に、従来
の固定化担体併用型循環式脱窒素活性汚泥法のフローを
示す。図4では、流入排水1は、硝化液循環水6と合流
して、脱窒工程2に導入され、次いで硝化工程で担体4
に担持された硝化菌によって硝化され、分離工程7で分
離され浄化された処理水8として排出される。
Therefore, recently, by immobilizing nitrifying bacteria on an immobilizing carrier, the substantial SRT of nitrifying bacteria is increased to prevent washout of nitrifying bacteria, and HRT8-1
A method that enables denitrification under an operating condition of about 2 hours is being developed. Here, the method is referred to as a circulation type denitrification activated sludge method in combination with an immobilized carrier. The main reason why this method can shorten the HRT is that the nitrification can be completed in the aerobic tank HRT: 2 to 4 hours. FIG. 4 shows a flow of a conventional circulation type denitrification activated sludge method in combination with an immobilized carrier. In FIG. 4, the inflowing wastewater 1 merges with the nitrification solution circulating water 6 and is introduced into the denitrification step 2, and then the carrier 4 is introduced in the nitrification step.
The treated water 8 is nitrified by the nitrifying bacteria carried on and is discharged as treated water 8 separated and purified in the separation step 7.

【0004】[0004]

【発明が解決しようとする課題】上記方法によれば、窒
素、及び有機物の除去が概ね可能であるが、下記に示す
ような問題を有している。 (a)固定化担体の分離にスクリーンを用い、そのスク
リーンが好気槽内部に付設されることが多いため、排水
に含まれる比較的大きくて軽い夾雑物が好気槽の中に残
留、蓄積する傾向がある。 (b)好気槽が複数に仕切られている場合には、各槽の
入出口にスクリーンを設ける必要があるために、スクリ
ーン設備が多くなりそれらの維持管理が大変である。 本発明は、上記問題点を克服するため、固定化担体併用
型循環式脱窒素活性汚泥法において、維持管理が容易な
固定化担体の回収を可能とし、合理的な硝化脱窒素の行
える有機性排水の処理方法を提供することを課題とする
ものである。
According to the above method, nitrogen and organic substances can be removed in general, but it has the following problems. (A) Since a screen is used to separate the immobilized carrier, and the screen is often attached inside the aerobic tank, relatively large and light impurities contained in the wastewater remain and accumulate in the aerobic tank. Tend to do. (B) When the aerobic tank is divided into a plurality of compartments, it is necessary to provide a screen at the entrance and exit of each tank, which requires a lot of screen equipment and makes maintenance of them difficult. In order to overcome the above-mentioned problems, the present invention enables recovery of an immobilized carrier that can be easily maintained and managed in a circulation type denitrification activated sludge method using an immobilized carrier, and an organic solvent capable of rational nitrification denitrification. It is an object to provide a method for treating wastewater.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、脱窒工程、微生物固定化担体を用いる
硝化工程及び汚泥分離工程の各工程で順次処理されてな
る生物学的硝化脱窒方法による有機性排水の処理方法に
おいて、前記硝化工程での担体を沈降分離して担体分離
工程に導き、該担体分離工程で分離された分離液を前記
脱窒工程へ循環させると共に、該担体分離工程で回収し
た担体を前記硝化工程へ返送することとしたものであ
る。また、本発明では、嫌気工程、脱窒工程、微生物固
定化担体を用いる硝化工程及び汚泥分離工程の各工程で
順次処理されてなる生物学的脱窒素脱リン方法による有
機性排水の処理方法において、前記硝化工程での担体を
沈降分離して担体分離工程へ導き、該担体分離工程で分
離された分離液を前記脱窒工程へ循環させると共に、該
担体分離工程で回収した担体を前記硝化工程へ返送し、
前記汚泥分離工程で分離した汚泥を前記嫌気工程へ返送
汚泥として返送することとしたものである。
In order to solve the above problems, according to the present invention, biological nitrification is carried out in each step of denitrification step, nitrification step using a microorganism-immobilized carrier, and sludge separation step. In the method for treating organic wastewater by the denitrification method, the carrier in the nitrification step is separated by sedimentation and guided to the carrier separation step, and the separated liquid separated in the carrier separation step is circulated to the denitrification step, The carrier recovered in the carrier separation step is returned to the nitrification step. Further, in the present invention, in a method for treating organic wastewater by a biological denitrification dephosphorization method, which is sequentially treated in each step of an anaerobic step, a denitrification step, a nitrification step using a microorganism-immobilized carrier, and a sludge separation step. , The carrier in the nitrification step is separated by sedimentation and guided to the carrier separation step, the separated liquid separated in the carrier separation step is circulated to the denitrification step, and the carrier recovered in the carrier separation step is subjected to the nitrification step. Sent back to
The sludge separated in the sludge separation step is returned to the anaerobic step as return sludge.

【0006】次に、本発明を詳細に説明する。本発明の
脱窒工程は浮遊活性汚泥法でも微生物固定化担体を用い
た活性汚泥法のいずれの方法も適宜用いることができ
る。微生物固定化担体を用いる場合脱窒素菌を十分保持
できるようにする。また担体の材質は硝化工程用担体と
同じでも異っても良い。硝化工程に用いる固定化担体と
しては、担体沈降工程で沈降分離が可能な活性炭、プラ
スチック、スポンジ、親水性ゲルなどの粒状担体が適当
であるが、これらに限定されるものではない。固定化担
体の充填率としては、硝化槽の5〜25容量%が適切で
ある。微生物を固定化担体へ固定化する方法としては、
担体表面に自然付着させる付着固定化法を採用しても良
く、ゲル包括固定化法の適用も可能である。
Next, the present invention will be described in detail. In the denitrification step of the present invention, either the floating activated sludge method or the activated sludge method using a microorganism-immobilized carrier can be appropriately used. When a microorganism-immobilized carrier is used, it should be able to sufficiently hold denitrifying bacteria. The material of the carrier may be the same as or different from the carrier for the nitrification process. As the immobilized carrier used in the nitrification process, granular carriers such as activated carbon, plastic, sponge, and hydrophilic gel that can be separated by sedimentation in the carrier sedimentation process are suitable, but are not limited thereto. As a filling rate of the immobilization carrier, 5 to 25% by volume of the nitrification tank is suitable. As a method of immobilizing the microorganism on the immobilization carrier,
An adhesion immobilization method of spontaneously adhering to the surface of the carrier may be adopted, or a gel entrapping immobilization method may be applied.

【0007】また、前記好気工程での担体を沈降分離す
る担体沈降工程としては、重力式沈殿槽を採用するのが
一般的であり、沈殿槽は好気工程と独立した槽であるの
が理想的である。しかし好気工程の末端部に隔壁を設け
て仕切る形式の簡易型沈殿槽としても良い。担体沈降工
程の水面積負荷は用いられる担体により適宜選択される
が、担体の分離が安定して行われ、かつ浮遊活性汚泥や
夾雑物が沈殿槽に濃縮しない程度の水面積負荷として、
通常300〜1000mm/分程度が好ましい。また担
体沈降部の底部構造は、担体が四隅に堆積しないように
適度な傾斜を設け、必要によっては担体かき寄せ機を設
けることが望ましい。
[0007] Further, as a carrier settling step for settling and separating the carrier in the aerobic step, a gravity type settling tank is generally adopted, and the settling tank is a tank independent of the aerobic step. Ideal. However, a simple settling tank of a type in which a partition is provided at the end of the aerobic process to partition it may be used. The water area load of the carrier settling step is appropriately selected depending on the carrier used, but the separation of the carrier is performed stably, and as a water area load to the extent that floating activated sludge and contaminants are not concentrated in the settling tank,
Usually, about 300 to 1000 mm / min is preferable. In addition, it is desirable that the bottom structure of the carrier settling portion is provided with an appropriate inclination so that the carrier does not accumulate at the four corners, and if necessary, a carrier scraper is provided.

【0008】本発明で用いる担体沈降工程からの沈殿物
(担体と活性汚泥の混合液)から担体を分離する担体分
離工程は、液体サイクロン又はスクリーンとすることが
望ましい。そして、前記沈殿物を担体分離工程に輸送す
る手段としてポンプを用いる場合は、担体が閉塞するこ
とがなく、またポンプ羽根車と担体が直接接触しにくい
形式のポンプが望ましい。羽根車と担体が直接接触しや
すいポンプの場合には、担体の物理的破壊が発生する危
険が高くなるので注意が必要である。また、スクリーン
へ輸送する手段としては、エアリフトポンプの採用も可
能である。
The carrier separating step for separating the carrier from the precipitate (mixture of carrier and activated sludge) from the carrier settling step used in the present invention is preferably a liquid cyclone or a screen. When a pump is used as a means for transporting the precipitate to the carrier separation step, it is desirable that the carrier is not blocked and that the pump impeller and the carrier are less likely to come into direct contact with each other. In the case of a pump in which the impeller and the carrier are likely to come into direct contact with each other, care must be taken because the risk of physical destruction of the carrier increases. An air lift pump can also be used as a means for transporting to the screen.

【0009】液体サイクロンを使用する場合は、担体に
よるアンダーフロー部の閉塞が起こらないように、(ア
ンダーフロー/オーバーフロー)の流量分配を適切に調
整する必要がある。通常は(アンダーフロー/オーバー
フロー)=0.2〜0.7が好ましい。またアンダーフ
ロー部の口径は、担体直径に比べて十分に大きなもので
なければならない。また液体サイクロンの運転条件によ
っては、オーバーフローに多量の気泡が含まれる場合が
ある。これは脱窒槽の嫌気度を低下させ、脱窒素を不良
にする可能性があるので回避する必要がある。その方法
としては、特に限定しないがオーバーフロー吐出液を一
旦小さいマス(脱気槽)に受けて気泡を逃がす、あるい
はアンダーフローを水中に没して、サイクロン内部への
空気の侵入を防止するなどの工夫がある。本発明で使用
するスクリーンとしては、トロンメル篩やウェッジワイ
ヤースクリーンが適切である。スクリーンの目開きは、
回収すべき担体の粒径によって適宜選択するが、通常
1.5〜7.5mm程度である。また担体や夾雑物がス
クリーンを閉塞させることがないように、スクリーン洗
浄機構を設ける必要がある。その洗浄機構としては、ス
クリーンに圧力水を吹きかける方法が好ましい。
When a liquid cyclone is used, it is necessary to properly adjust the flow distribution of (underflow / overflow) so that the carrier does not block the underflow portion. Usually, (underflow / overflow) = 0.2 to 0.7 is preferable. The diameter of the underflow portion must be sufficiently larger than the diameter of the carrier. Also, depending on the operating conditions of the hydrocyclone, the overflow may contain a large amount of bubbles. This lowers the anaerobic degree of the denitrification tank and may make the denitrification defective, so it is necessary to avoid it. The method is not particularly limited, but once the overflow discharge liquid is once received in a small mass (deaeration tank) to escape bubbles, or the underflow is submerged in water to prevent air from entering the cyclone. There is a device. Trommel sieve and wedge wire screen are suitable as the screen used in the present invention. The screen opening is
Although it is appropriately selected depending on the particle size of the carrier to be recovered, it is usually about 1.5 to 7.5 mm. Further, it is necessary to provide a screen cleaning mechanism so that the carrier and foreign matters do not block the screen. As the cleaning mechanism, a method of spraying pressurized water on the screen is preferable.

【0010】循環式脱窒素活性汚泥法においては、硝化
槽から脱窒槽への硝化液の循環が必要であり、通常の下
水処理では流入下水の1〜2倍の硝化液が循環される。
本発明は、液体サイクロンオーバーフローやスクリーン
通過液の循環により、合理的硝化液循環を行わせるとこ
ろに特徴がある。ただし、これらの循環量で必要な循環
比率をまかなえない場合には、担体沈降工程又は汚泥分
離工程の上澄液を別途ラインで脱窒工程へ循環してもよ
い。本発明では担体の返送は、サイクロンアンダーフロ
ーあるいはスクリーン回収物の返送により行われる。担
体の返送先は、硝化工程の先端部であることが一般的で
あるが、硝化工程が複数槽で構成される場合は担体濃度
の片寄りが生ずるので、返送配管を各槽に連結し、バル
ブ切り換えが可能な方式を採用することが望ましい。
In the circulation type denitrification activated sludge method, it is necessary to circulate the nitrification liquid from the nitrification tank to the denitrification tank, and in normal sewage treatment, 1 to 2 times the nitrification liquid of the inflowing sewage is circulated.
The present invention is characterized in that a rational nitrification liquid circulation is performed by a liquid cyclone overflow or a liquid passing through a screen. However, when the required circulation ratio cannot be covered by these circulation amounts, the supernatant of the carrier sedimentation step or sludge separation step may be circulated to the denitrification step in a separate line. In the present invention, the carrier is returned by a cyclone underflow or a screen collected product. The return destination of the carrier is generally the tip of the nitrification process, but when the nitrification process is composed of multiple tanks, deviation of the carrier concentration occurs, so connect return piping to each tank, It is desirable to adopt a system that allows valve switching.

【0011】汚泥分離工程における分離汚泥の一部もま
た返送汚泥として脱窒工程へと返送されるが、その分離
手段としては沈殿分離、遠心分離、膜分離等の公知の手
段を適宜選択できる。なお、脱窒工程に、微生物固定化
担体を用いた場合には、脱窒工程へ返送汚泥として汚泥
を返送しても良く、しなくとも良い。また本発明は、循
環式脱窒素活性汚泥法と生物学的脱リン法を組み合わせ
た方法においても有効に利用することができる。その場
合には、本発明の脱窒工程の前段に嫌気工程を設け、液
体サイクロンオーバーフローあるいはスクリーン通過液
は脱窒工程へ循環し、アンダーフローあるいはスクリー
ン回収物は硝化工程へ返送し、汚泥分離工程の汚泥を嫌
気工程へ返送すればよい。なお、この場合も脱窒工程
は、浮遊活性汚泥法でも微生物固定化担体を用いた活性
汚泥法でもいずれの方法も適用できる。これら工程に微
生物固定化担体を用いた場合は、脱窒工程にも汚泥返送
を返送しても良く、しなくてもかまわない。
A part of the separated sludge in the sludge separation step is also returned to the denitrification step as return sludge, and known means such as precipitation separation, centrifugal separation and membrane separation can be appropriately selected as the separation means. When a microorganism-immobilized carrier is used in the denitrification step, the sludge may or may not be returned to the denitrification step as return sludge. Further, the present invention can be effectively used in a method in which a circulating denitrification activated sludge method and a biological dephosphorization method are combined. In that case, an anaerobic step is provided in the preceding stage of the denitrification step of the present invention, the liquid cyclone overflow or the screen passing liquid is circulated to the denitrification step, the underflow or the screen recovered product is returned to the nitrification step, and the sludge separation step. The sludge should be returned to the anaerobic process. In this case as well, in the denitrification step, either a floating activated sludge method or an activated sludge method using a microorganism-immobilized carrier can be applied. When the microorganism-immobilized carrier is used in these steps, the sludge may be returned to the denitrification step or may not be returned.

【0012】[0012]

【作用】本発明により、従来の固定化担体併用型循環式
脱窒素活性汚泥法に必要であった多数のスクリーン設備
が不要になり、また硝化液循環ラインに液体サイクロン
やスクリーンを組み合わせることで、合理的な硝化液循
環と担体回収が可能となった。
The present invention eliminates the need for a large number of screen facilities required for the conventional circulation type denitrification activated sludge method using a fixed carrier, and by combining a liquid cyclone or a screen with the nitrification liquid circulation line, It became possible to rationalize nitrification solution circulation and carrier recovery.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。 実施例1 この実施例で用いた装置の工程図を図1に示す。図1に
おいて、流入排水1は、硝化工程3からの分離液16と
合流して脱窒工程2に導入されて処理され、次いで硝化
工程3に導入される。硝化工程3では、空気11により
曝気されており、担体4に担持された硝化菌により硝化
処理された後、担体沈降工程12に導入される。担体沈
降工程12で沈降した担体は、ポンプ13により、担体
分離工程この例では液体サイクロン15に導入されて担
体が分離され、分離された担体は17から硝化工程3に
返送され、分離液16は流入排水1と合流して脱窒工程
2に導入される。一方、担体沈降工程での上澄液は汚泥
分離工程7に導入され、上澄液は8から処理水として排
出され、沈降汚泥は一部が管10から脱窒工程2に循環
され、残りは管9から廃棄される。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto. Example 1 A process diagram of the apparatus used in this example is shown in FIG. In FIG. 1, the inflow drainage 1 merges with the separated liquid 16 from the nitrification process 3, is introduced into the denitrification process 2, is treated, and is then introduced into the nitrification process 3. In the nitrification step 3, the air is aerated by the air 11, and the nitrification treatment is carried out by the nitrifying bacteria carried on the carrier 4, and then the nitrification step is introduced into the carrier sedimentation step 12. The carrier settled in the carrier settling step 12 is introduced into a liquid cyclone 15 by the pump 13 in the carrier separating step in this example to separate the carrier, and the separated carrier is returned from 17 to the nitrification step 3 and the separated liquid 16 is It is introduced into the denitrification process 2 by confluent with the inflow drainage 1. On the other hand, the supernatant in the carrier settling step is introduced into the sludge separation step 7, the supernatant is discharged from 8 as treated water, part of the settled sludge is circulated from the pipe 10 to the denitrification step 2, and the rest is Discarded from pipe 9.

【0014】上記の装置を用いて次の条件で排水を処理
した。 ・処理水量:2.4m3 /日 ・水質:BOD=150mg/リットル、ケルダール窒
素=30mg/リットル、酸化態窒素=0、SS=10
0mg/リットル ・処理水温:14〜17℃ ・槽容積:脱窒槽 ・・・550リットル(HRT=5.5時間) 硝化槽 ・・・250リットル(HRT=2.0時間) 担体沈降槽・・・ 50リットル(HRT=0.5時間) ──────────────────────────── 計 800リットル(HRT=8.0時間) ・返送汚泥量:1.2m3 /日
Wastewater was treated under the following conditions using the above apparatus. -Amount of treated water: 2.4 m 3 / day-Water quality: BOD = 150 mg / liter, Kjeldahl nitrogen = 30 mg / liter, oxidized nitrogen = 0, SS = 10
0 mg / liter ・ Treatment water temperature: 14 to 17 ° C. ・ Tank volume: Denitrification tank ・ ・ ・ 550 liters (HRT = 5.5 hours) Nitrification tank ・ ・ ・ 250 liters (HRT = 2.0 hours) Carrier sedimentation tank ・ ・・ 50 liters (HRT = 0.5 hours) ──────────────────────────── Total 800 liters (HRT = 8.0 hours)・ Amount of returned sludge: 1.2 m 3 / day

【0015】・液体サイクロン圧送量:5.0m3 /日 オーバーフロー流量:3.6m3 /日 アンダーフロー流量:1.4m3 /日 ・通気量:40Nl/分 ・硝化槽固定化担体 親水性ゲル(主鎖ポリビニルアルコール、粒径5mm)
を40リットル投入。 ・浮遊活性汚泥濃度(MLSS):2500mg/リッ
トル ・汚泥滞留時間(SRT):6日 運転結果 図3に、処理水全窒素の経日変化を示す。本発明の処理
水アンモニアは常に0.1〜1mg/リットルであり、
T−Nは10mg/リットル以下であった。このよう
に、本発明は滞留時間8時間で低水温時の窒素除去が安
定して行われた。
Liquid cyclone pumping amount: 5.0 m 3 / day Overflow flow rate: 3.6 m 3 / day Underflow flow rate: 1.4 m 3 / day ・ Aeration rate: 40 Nl / min ・ Nitrification tank immobilization carrier Hydrophilic gel (Main chain polyvinyl alcohol, particle size 5 mm)
Add 40 liters of. -Floating activated sludge concentration (MLSS): 2500 mg / liter-Sludge retention time (SRT): 6 days Operation results Fig. 3 shows the daily change of total nitrogen in the treated water. The treated water ammonia of the present invention is always 0.1 to 1 mg / liter,
T-N was 10 mg / liter or less. Thus, in the present invention, nitrogen removal was stably performed at a low water temperature with a residence time of 8 hours.

【0016】実施例2 この実施例で用いた装置の工程図を図2に示す。図2と
図1の相違点は、図2においては、硝化工程を2段に分
けた点及び、担体分離工程を液体サイクロンに代えて、
スクリーン(トロンメル篩)を用いた点であり、上記の
相違により、スクリーンで分離された担体は両方の硝化
工程に分けて返送され、また、スクリーンの分離液は脱
窒素工程の排水の流入口側に導入され、さらにスクリー
ンを洗浄するため処理水8から洗浄配管が設けられてい
る。その他の処理は図1と同じである。この図2の装置
を用いた処理例を次に示す。
Example 2 A process diagram of the apparatus used in this example is shown in FIG. The difference between FIG. 2 and FIG. 1 is that in FIG. 2, the nitrification process is divided into two stages, and the carrier separation process is replaced with a liquid cyclone,
A screen (Trommel sieve) was used.Due to the above difference, the carrier separated by the screen is returned to both nitrification processes separately, and the screen separation liquid is the inlet side of the wastewater of the denitrification process. In order to wash the screen, a washing pipe from the treated water 8 is provided. Other processes are the same as those in FIG. An example of processing using the apparatus of FIG. 2 will be shown below.

【0017】・処理水量:2.4m3 /日 ・水質:BOD=150mg/リットル、ケルダール窒
素=30mg/リットル、酸化態窒素=0、SS=10
0mg/リットル ・処理水温:14〜17℃ ・槽容積:脱窒槽 ・・・550リットル(HRT=5.5時間) 硝化槽 ・・・250リットル(HRT=2.0時間) 担体沈降槽・・・ 50リットル(HRT=0.5時間) ──────────────────────────── 計 800リットル(HRT=8.0時間) ・返送汚泥量:1.2m3 /日
Amount of treated water: 2.4 m 3 / day Water quality: BOD = 150 mg / liter, Kjeldahl nitrogen = 30 mg / liter, oxidized nitrogen = 0, SS = 10
0 mg / liter ・ Treatment water temperature: 14 to 17 ° C. ・ Tank volume: Denitrification tank ・ ・ ・ 550 liters (HRT = 5.5 hours) Nitrification tank ・ ・ ・ 250 liters (HRT = 2.0 hours) Carrier sedimentation tank ・ ・・ 50 liters (HRT = 0.5 hours) ──────────────────────────── Total 800 liters (HRT = 8.0 hours)・ Amount of returned sludge: 1.2 m 3 / day

【0018】・トロンメル篩送液量:4.0m3 /日 オーバーフロー流量:3.6m3 /日 アンダーフロー流量:0.4m3 /日 (注) ・篩いの目開きは、4mm。 ・篩は、1日二回の頻度で二次処理水により水洗浄し
た。 ・通気量:40Nl/分 ・硝化槽固定化担体 親水性ゲル(主鎖ポリビニルアルコール、粒径5mm)
を40リットル投入。 ・浮遊活性汚泥濃度(MLSS):2500mg/リッ
トル ・汚泥滞留時間(SRT):6日 運転結果 図3とほぼ等々な良好な結果を得た。
Trommel sieving liquid amount: 4.0 m 3 / day Overflow flow rate: 3.6 m 3 / day Underflow flow rate: 0.4 m 3 / day (Note) ・ The opening of the sieve is 4 mm. The sieve was washed with secondary treated water twice a day.・ Aeration rate: 40 Nl / min ・ Nitrification tank immobilization carrier Hydrophilic gel (main chain polyvinyl alcohol, particle size 5 mm)
Add 40 liters of. -Floating activated sludge concentration (MLSS): 2500 mg / liter-Sludge retention time (SRT): 6 days Operation results Good results, almost the same as those in Fig. 3, were obtained.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば窒
素、リン含有有機性排水の処理において、安定した脱窒
素が可能である。本発明は、今後の有機性排水の生物学
的処理法に広く採用されていくものと確信する。
As described above, according to the present invention, stable denitrification is possible in the treatment of nitrogen- and phosphorus-containing organic wastewater. We believe that the present invention will be widely adopted in the biological treatment method of organic wastewater in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示す装置の工程図。FIG. 1 is a process drawing of an apparatus showing an example of the present invention.

【図2】本発明の他の例を示す装置の工程図。FIG. 2 is a process drawing of an apparatus showing another example of the present invention.

【図3】窒素濃度の経日変化を示すグラフ。FIG. 3 is a graph showing changes in nitrogen concentration with time.

【図4】従来の脱窒素活性汚泥法の工程図。FIG. 4 is a process diagram of a conventional denitrification activated sludge method.

【符号の説明】[Explanation of symbols]

1:流入排水管、2:脱窒工程、3:硝化工程、4:担
体、5:好気槽一体型スクリーン、6:硝化液循環ライ
ン、7:分離工程、8:処理水配管、9:余剰汚泥引き
抜き管、10:返送汚泥管、11:空気配管、12:担
体沈降工程、13:輸送ポンプ、14:サイクロン流入
配管、15:液体サイクロン、16:サイクロンオーバ
ーフロー配管、17:サイクロンアンダーフロー配管、
18:スクリーン流入配管、19:スクリーン(トロン
メル篩)、20:スクリーン通過液配管、21:スクリ
ーン回収物配管、22:スクリーン洗浄配管
1: Inflow drainage pipe, 2: Denitrification process, 3: Nitrification process, 4: Carrier, 5: Aerobic tank integrated screen, 6: Nitrification solution circulation line, 7: Separation process, 8: Treated water pipe, 9: Excess sludge extraction pipe, 10: return sludge pipe, 11: air pipe, 12: carrier settling process, 13: transport pump, 14: cyclone inflow pipe, 15: liquid cyclone, 16: cyclone overflow pipe, 17: cyclone underflow pipe ,
18: Screen inflow piping, 19: Screen (Trommel sieve), 20: Screen passing liquid piping, 21: Screen collected material piping, 22: Screen cleaning piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 達夫 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Shimomura 4-2-1 Motofujisawa, Fujisawa City, Kanagawa Prefecture EBARA Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脱窒工程、微生物固定化担体を用いる硝
化工程及び汚泥分離工程の各工程で順次処理されてなる
生物学的硝化脱窒方法による有機性排水の処理方法にお
いて、前記硝化工程での担体を沈降分離して担体分離工
程に導き、該担体分離工程で分離された分離液を前記脱
窒工程へ循環させると共に、該担体分離工程で回収した
担体を前記硝化工程へ返送することを特徴とする有機性
排水の処理方法。
1. A method for treating organic wastewater by a biological nitrification denitrification method, which is sequentially performed in each of a denitrification step, a nitrification step using a microorganism-immobilized carrier, and a sludge separation step. The carrier of No. 1 is introduced into the carrier separation step by sedimentation, the separated liquid separated in the carrier separation step is circulated to the denitrification step, and the carrier recovered in the carrier separation step is returned to the nitrification step. A characteristic method for treating organic wastewater.
【請求項2】 嫌気工程、脱窒工程、微生物固定化担体
を用いる硝化工程及び汚泥分離工程の各工程で順次処理
されてなる生物学的脱窒素脱リン方法による有機性排水
の処理方法において、前記硝化工程での担体を沈降分離
して担体分離工程へ導き、該担体分離工程で分離された
分離液を前記脱窒工程へ循環させると共に、該担体分離
工程で回収した担体を前記硝化工程へ返送し、前記汚泥
分離工程で分離した汚泥を前記嫌気工程へ返送汚泥とし
て返送することを特徴とする有機性排水の処理方法。
2. A method for treating organic wastewater by a biological denitrification and dephosphorization method, which is sequentially performed in each step of an anaerobic step, a denitrification step, a nitrification step using a microorganism-immobilized carrier, and a sludge separation step, The carrier in the nitrification step is separated by sedimentation and guided to the carrier separation step, the separated liquid separated in the carrier separation step is circulated to the denitrification step, and the carrier recovered in the carrier separation step is transferred to the nitrification step. A method for treating organic wastewater, which comprises returning the sludge returned in the sludge separation step to the anaerobic step as return sludge.
JP4089319A 1992-03-16 1992-03-16 Organic wastewater treatment method Expired - Fee Related JP2556413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4089319A JP2556413B2 (en) 1992-03-16 1992-03-16 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089319A JP2556413B2 (en) 1992-03-16 1992-03-16 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH05261393A true JPH05261393A (en) 1993-10-12
JP2556413B2 JP2556413B2 (en) 1996-11-20

Family

ID=13967351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089319A Expired - Fee Related JP2556413B2 (en) 1992-03-16 1992-03-16 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2556413B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080284A (en) * 2001-09-14 2003-03-18 Sumitomo Heavy Ind Ltd Wastewater treatment equipment
CN100336744C (en) * 2005-09-14 2007-09-12 哈尔滨工业大学 Water influent allocation optimization method in segmental influent and biological denitrification process
JP2011183393A (en) * 2011-05-23 2011-09-22 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus for post-treatment of methane fermentation, system for post-treatment of methane fermentation, and method thereof
JP2017521234A (en) * 2014-05-21 2017-08-03 リニューアブル ファイバース エルエルシー ディービーエー アールエフ ウェイストウォーター Biofilm material, processing system, and processing method
CN108249570A (en) * 2018-03-20 2018-07-06 青岛思普润水处理股份有限公司 A kind of integrated MBBR integrated sewage treating apparatus and method
US11685675B2 (en) 2013-10-22 2023-06-27 Nuvoda Llc Reduction of substances in contaminated fluids using a naturally occurring biological growth media

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028887A (en) * 1983-07-27 1985-02-14 Kyoritsu Yuki Kogyo Kenkyusho:Kk Process for treating waste water in biological treating apparatus using fluidized carrier provided with cyclone for separating carrier particle
JPS6125697A (en) * 1984-07-13 1986-02-04 Hitachi Plant Eng & Constr Co Ltd Denitrification apparatus for waste water
JPH03245897A (en) * 1990-02-22 1991-11-01 Tokyo Metropolis Method and apparatus for removing nitrogen from sewage
JPH03288596A (en) * 1990-04-06 1991-12-18 Toyota Motor Corp Method for controlling injection amount of methanol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028887A (en) * 1983-07-27 1985-02-14 Kyoritsu Yuki Kogyo Kenkyusho:Kk Process for treating waste water in biological treating apparatus using fluidized carrier provided with cyclone for separating carrier particle
JPS6125697A (en) * 1984-07-13 1986-02-04 Hitachi Plant Eng & Constr Co Ltd Denitrification apparatus for waste water
JPH03245897A (en) * 1990-02-22 1991-11-01 Tokyo Metropolis Method and apparatus for removing nitrogen from sewage
JPH03288596A (en) * 1990-04-06 1991-12-18 Toyota Motor Corp Method for controlling injection amount of methanol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080284A (en) * 2001-09-14 2003-03-18 Sumitomo Heavy Ind Ltd Wastewater treatment equipment
CN100336744C (en) * 2005-09-14 2007-09-12 哈尔滨工业大学 Water influent allocation optimization method in segmental influent and biological denitrification process
JP2011183393A (en) * 2011-05-23 2011-09-22 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus for post-treatment of methane fermentation, system for post-treatment of methane fermentation, and method thereof
US11685675B2 (en) 2013-10-22 2023-06-27 Nuvoda Llc Reduction of substances in contaminated fluids using a naturally occurring biological growth media
JP2017521234A (en) * 2014-05-21 2017-08-03 リニューアブル ファイバース エルエルシー ディービーエー アールエフ ウェイストウォーター Biofilm material, processing system, and processing method
CN108249570A (en) * 2018-03-20 2018-07-06 青岛思普润水处理股份有限公司 A kind of integrated MBBR integrated sewage treating apparatus and method

Also Published As

Publication number Publication date
JP2556413B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JP2003126890A (en) Wastewater treatment apparatus and wastewater treatment method using the same
JPH07171594A (en) Method and apparatus for denitrifying and dephosphorizing sewage
JP2556413B2 (en) Organic wastewater treatment method
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
JPWO2003043941A1 (en) Organic wastewater treatment apparatus and method
JP3391057B2 (en) Biological nitrogen removal equipment
JP3221168B2 (en) Wastewater nitrogen removal method and apparatus
JPH07163995A (en) Biological treatment of organic sewage and device therefor
JP3677783B2 (en) Nitrification method
KR100685411B1 (en) Apparatus for treating wastewater using membrane
JP2000093992A (en) Wastewater treatment system
JP2003010871A (en) Sewage treatment apparatus and its operating method
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
JP2006055849A (en) Apparatus and method for treating organic waste water
RU2170710C1 (en) Method for biological cleaning of domestic and compositionally analogous industrial waste waters from organic and suspended substances
JPH04244297A (en) Treatment of sewage
JP2905072B2 (en) Sewage treatment system
JP3155457B2 (en) Wastewater treatment equipment
JPH07171587A (en) Method and apparatus for treating organic sewage
KR100426660B1 (en) Device for water treatment improved the removal efficiency of t-n and t-p
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
KR100473710B1 (en) Apparatus and method for disposing sewage with high accuracy
KR100330923B1 (en) anaerobic and aerobic contact circulation method, adhesive filtering method used waste water treatment system and its method
JPH0639837Y2 (en) Organic wastewater biological treatment equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees