JPH05259492A - Thin film solar cell and manufacture thereof - Google Patents

Thin film solar cell and manufacture thereof

Info

Publication number
JPH05259492A
JPH05259492A JP4055787A JP5578792A JPH05259492A JP H05259492 A JPH05259492 A JP H05259492A JP 4055787 A JP4055787 A JP 4055787A JP 5578792 A JP5578792 A JP 5578792A JP H05259492 A JPH05259492 A JP H05259492A
Authority
JP
Japan
Prior art keywords
layer
cell
incident side
light incident
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4055787A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ota
洋充 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP4055787A priority Critical patent/JPH05259492A/en
Publication of JPH05259492A publication Critical patent/JPH05259492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To raise conversion ratio and to reduce optical degradation by constituting i layer of the cell near the light incident side with amolphous silicon oxide represented by a specific general equation. CONSTITUTION:Relating to a thin film solar battely which has a structure where multiple cells having pin junctions are laminated and where the material of i layer 41 of the cell near the light incident side has a greater optical gap than that of a-Si forming an i layer 42 away from the light incident side, the i layer 41 of the cell near the light incident side is amolphous silicon oxide which is represented by angeneral equation a-Si(1-x)Ox, 0.02<x<0.15 (referred to as a-SiO:H). This kind of thin film solar battery is manufactured by resolving a-SiO:H with a gaseous mixture containing SiH4, CO2 and H2. The ratio between H2 and SiH4 in the gaseous mixture is set to be within the range 15-30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコン (以下
a−Siと略す)系の材料よりなるpin接合のタンデム
構造を有する薄膜太陽電池およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell having a pin junction tandem structure made of an amorphous silicon (hereinafter abbreviated as a-Si) material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】原料ガスをプラズマCVD法や光CVD
法によって分解することにより形成されるa−Si太陽電
池は、薄膜化や大面積化が容易という特長をもち、低コ
スト太陽電池として期待されている。この種の太陽電池
の構造としてはa−Si薄膜のpin接合を有するものが
一般的である。a−Si太陽電池の変換効率を向上させる
一つの方法として、i層の光学ギャップの異なる複数の
pin接合構造を積重ねてタンデム構造にすることが挙
げられる。例えば文献、H.Sannomiya 、S.Moriuchi、Y.
Inoue 、K.Nomoto、A.Yokota、M.Itoh、Y.Nakata and
T.Tsuji"Proc.5thPVSEC Kyoto(1990)"387 に公知のよう
に、pin接合構造を3層構造とする試みがある。この
太陽電池は図1のように三つのpin接合セルをガラス
基板1の上の透明電極2の上に積層し、最上層に金属電
極6を設けた構造を持ち、ガラス基板1を通して光を入
射するものである。各セルのpin構造のp層3とn層
5の間にはさまれたi層41、42、43は、その光学ギャッ
プが光入射側から徐々に小さくなる材料で形成すること
で光の有効利用がはかられ、この場合はトップセルのi
層41がアモルファスシリコンカーバイド (a−SiC) 、
ミドルセルのi層42がa−Si、ボトムセルのi層43がア
モルファスシリコンゲルマニウム (a−SiGe)よりな
る。この積層化は、a−Si太陽電池特有の光劣化を抑制
するためにも非常に有効な手段である。
2. Description of the Related Art A source gas is a plasma CVD method or an optical CVD method.
The a-Si solar cell formed by decomposing by a method has a feature that it can be easily thinned and has a large area, and is expected as a low-cost solar cell. The structure of this type of solar cell generally has a pin junction of an a-Si thin film. One method for improving the conversion efficiency of an a-Si solar cell is to stack a plurality of pin junction structures having different optical gaps in the i layer to form a tandem structure. For example, literature, H. Sannomiya, S. Moriuchi, Y.
Inoue, K.Nomoto, A.Yokota, M.Itoh, Y.Nakata and
As known in T. Tsuji "Proc. 5th PVSEC Kyoto (1990)" 387, there is an attempt to make a pin junction structure a three-layer structure. As shown in FIG. 1, this solar cell has a structure in which three pin junction cells are laminated on a transparent electrode 2 on a glass substrate 1 and a metal electrode 6 is provided on the uppermost layer, and light is incident through the glass substrate 1. To do. The i layers 41, 42, and 43 sandwiched between the p layer 3 and the n layer 5 of the pin structure of each cell are made of a material whose optical gap gradually decreases from the light incident side, so that the effective light is obtained. It is not used, and in this case i
Layer 41 is amorphous silicon carbide (a-SiC),
The i layer 42 of the middle cell is made of a-Si, and the i layer 43 of the bottom cell is made of amorphous silicon germanium (a-SiGe). This lamination is a very effective means for suppressing the photodegradation peculiar to a-Si solar cells.

【0003】[0003]

【発明が解決しようとする課題】ここでp層3、i層4
1、n層5からなる光入射側のセルを一つのシングルセ
ルとしてとらえると、このi層41にa−Siよりも光学ギ
ャップの広いa−SiCを用いていることで、通常のa−
Siをi層に用いているセルと比べて高い、0.9 以上の開
放電圧が得られる。a−SiCはSiH4 、C2 2 および
2 の混合ガスを分解して成膜する。しかし、膜中の欠
陥および光誘起欠陥が増大し、このためフィルファクタ
および信頼性が著しく低下する。例えば、光学ギャップ
Eg=1.9eV 〜2.1eV のa−SiCをi層に適用したシング
ルセルについていうと、i層を100nmと薄くしても光劣
化を10%以下に抑えることはきわめて困難であった。こ
れがタンデムセルの光劣化の大きなウェートを占めてい
た。
Here, the p-layer 3 and the i-layer 4 are provided.
If the light-incident-side cell composed of the 1 and n layers 5 is regarded as one single cell, a-SiC having a wider optical gap than a-Si is used for the i-layer 41.
An open circuit voltage of 0.9 or higher, which is higher than that of a cell using Si for the i layer, can be obtained. a-SiC is formed by decomposing a mixed gas of SiH 4 , C 2 H 2 and H 2 . However, defects and photoinduced defects in the film increase, which significantly reduces the fill factor and reliability. For example, the optical gap
Regarding a single cell in which a-SiC of Eg = 1.9 eV to 2.1 eV is applied to the i layer, it was extremely difficult to suppress photodegradation to 10% or less even if the i layer was thinned to 100 nm. This accounted for the large weight of the photodegradation of the tandem cell.

【0004】本発明の目的は、タンデムセルの光入射側
のセルのi層にa−Siより光学ギャップの大きい材料を
用いて変換効率を高くし、しかも光劣化の小さい薄膜太
陽電池およびその製造方法を提供することにある。
An object of the present invention is to use a material having a larger optical gap than a-Si for the i layer of the cell on the light incident side of the tandem cell to enhance the conversion efficiency and to produce a thin film solar cell with little photodegradation and its manufacture. To provide a method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、pin接合を有するセルの複数を積層
した構造を有し、光入射側に近いセルのi層の材料が光
入射側より遠いセルのi層を形成するa−Siより光学ギ
ャップの大きい薄膜太陽電池において、光入射側に近い
セルのi層が一般式a−Si(1-x) x で表され、0.02<
x<0.15であるアモルファスシリコンオキサイド (以下
a−SiO:Hと略す) であるものとする。そして、その
ような薄膜太陽電池の製造方法が、a−SiO:HをSiH
4 、CO 2 およびH2 を含んだ混合ガスの分解により形
成するものとする。また、その混合ガス中のH2 とSiH
4 の比が15ないし30の範囲にあることが有効である。
[Means for Solving the Problems]
For the purpose of the present invention, a plurality of cells having a pin junction are stacked.
The material of the i-layer of the cell that has the structure
It is more optical than a-Si that forms the i-layer of the cell farther from the incident side.
Close to the light-incident side in thin-film solar cells with large caps
The i layer of the cell has the general formula a-Si(1-x)OxIs expressed as 0.02 <
Amorphous silicon oxide with x <0.15 (hereinafter
a-SiO: H). And that
Such a thin-film solar cell manufacturing method uses a-SiO: H as SiH
Four, CO 2And H2Formed by decomposition of mixed gas containing
Shall be achieved. In addition, H in the mixed gas2And SiH
FourIt is effective that the ratio of is in the range of 15 to 30.

【0006】[0006]

【作用】a−Si(1-x) x で表わされ、0.02<x<0.15
である薄膜は、光学ギャップは1.9eV 〜2.1eV で、非常
に良好な膜特性を有し、これをpin接合のi層に適用
したセルは光劣化が少なく、タンデムセルの初期特性お
よび信頼性のすぐれたトップセルとして用いることがで
きる。
Operation: represented by a-Si (1-x) O x , 0.02 <x <0.15
The thin film is a thin film with an optical gap of 1.9eV to 2.1eV and has very good film characteristics. A cell applying this to the i-layer of the pin junction has less photodegradation, and the initial characteristics and reliability of the tandem cell are low. It can be used as an excellent top cell.

【0007】[0007]

【実施例】図2に示すようなシングルセルを作製した。
すなわち、まず、ガラス基板1の上に、SnO2 等の透明
電極2を形成し、その上にa−SiO:Hからなるp層
3、a−SiO:Hからなるi層4およびa−Siからなる
n層をそれぞれ12nm、100nm、15nmの厚さに形成した。
このうち、本発明に基づくi層の成膜方法は以下のとお
りである。すでに透明電極2、p層3を形成したガラス
基板1を収容した成膜室に原料ガスとしてモノシラン
(SiH4 ) 、二酸化炭素 (CO2 ) 、水素 (H2) からな
る混合ガスを導入する。ガス全体の圧力を0.5 〜1Torr
にする。基板温度を150 〜200 ℃に保ち、高周波電力を
電極間に印加してグロー放電分解によりa−SiO:H膜
を形成する。a−SiO:H膜の組成はSiH4 とCO2
SiH4 とH2 のガス比を変えることにより変化させるこ
とができる。a−SiO:Hを一般式a−Si(1-x) x
表すと、例えばH2 /SiH4 =25、基板温度170 ℃のと
きのCO2 /SiH4 ガス比とxの値の間には、図3に示
すような直線関係がある。そして、xの値が大きくなる
につれて光学ギャップは大きくなり、例えばx=0.03の
ときは光学ギャップは1.95eV、x=0.15のときには光学
ギャップは2.1eV になる。図4はシングルセルのi層の
光学ギャップと開放電圧VOCおよびフィルファクタFF
の関係を示す。開放電圧に着目すると、2.05eV以下の領
域では光学ギャップの増加とともに緩やかに増加してい
る。一方、フィルファクタについていえば、光学ギャッ
プ2.0eV 以上で急激に低下していることがわかる。これ
ら二つをあわせて、光学ギャップ2.0eV 以下であればフ
ィルファクタが0.6 以上の比較的良好な特性が得られる
ことがわかる。
Example A single cell as shown in FIG. 2 was produced.
That is, first, a transparent electrode 2 such as SnO 2 is formed on a glass substrate 1, and a p-layer 3 made of a-SiO: H, an i-layer 4 made of a-SiO: H and an a-Si are formed on the transparent electrode 2. And n layers having a thickness of 12 nm, 100 nm, and 15 nm, respectively.
Among these, the method for forming the i-layer based on the present invention is as follows. Monosilane was used as a raw material gas in a film forming chamber containing the glass substrate 1 on which the transparent electrode 2 and the p layer 3 had already been formed.
A mixed gas of (SiH 4 ), carbon dioxide (CO 2 ) and hydrogen (H 2 ) is introduced. The gas pressure is 0.5 to 1 Torr
To The substrate temperature is maintained at 150 to 200 ° C., high frequency power is applied between the electrodes, and a-SiO: H film is formed by glow discharge decomposition. The composition of the a-SiO: H film is SiH 4 and CO 2 ,
It can be changed by changing the gas ratio of SiH 4 and H 2 . a-SiO: H a is represented by the general formula a-Si (1-x) O x, for example, H 2 / SiH 4 = 25, the values of CO 2 / SiH 4 gas ratio and x when the substrate temperature 170 ° C. There is a linear relationship between them as shown in FIG. The optical gap increases as the value of x increases. For example, when x = 0.03, the optical gap becomes 1.95 eV, and when x = 0.15, the optical gap becomes 2.1 eV. FIG. 4 shows the optical gap of the i layer of a single cell, the open circuit voltage V OC, and the fill factor FF.
Shows the relationship. Focusing on the open-circuit voltage, it gradually increases with an increase in the optical gap in the region of 2.05 eV or less. On the other hand, regarding the fill factor, it can be seen that the optical gap sharply decreases at an optical gap of 2.0 eV or more. By combining these two, it can be seen that if the optical gap is 2.0 eV or less, a relatively good characteristic with a fill factor of 0.6 or more can be obtained.

【0008】図5はH2 /SiH4 =25、CO2 /SiH4
=0.13、基板温度170 ℃、光学ギャップ1.95eVのa−Si
O:H膜をi層に適用したシングルセルを1000時間の光
照射試験にかけたときの各特性の経時変化を示す。図中
のJSCは1cm2 あたりの短絡電流密度、EFFは変換効
率を表す。この試験に用いた擬似太陽光はAM1.5 、100m
W /cm2 である。この図をみると、光照射後10時間頃ま
でVOCの顕著な上昇がみられる。また、その後の光劣化
はとてもゆるやかである。初期値と1000時間後の値を比
べると、VOCは約5%上昇しており、JSCは約4%の劣
化、FFは約6%の劣化をしているものの、変換効率の
劣化率としては約5%と、非常に小さいものとなってい
る。またVOCの値をみると、初期で0.873 V、1000時間
後で0.916 Vとシングルセルとしては大きな値である。
以上のことからも、このセルが多層タンデムセル、特に
三層タンデムセルのトップセルとして非常に有効に作用
することがわかる。
FIG. 5 shows that H 2 / SiH 4 = 25, CO 2 / SiH 4
= 0.13, substrate temperature 170 ° C, a-Si with optical gap 1.95 eV
The time-dependent change of each characteristic when a single cell in which an O: H film is applied to the i layer is subjected to a light irradiation test for 1000 hours is shown. In the figure, J SC represents the short-circuit current density per cm 2 , and EFF represents the conversion efficiency. The artificial sunlight used in this test is AM1.5, 100m
W / cm 2 . Looking at this figure, a remarkable increase in V OC is seen until about 10 hours after the light irradiation. Also, the light deterioration after that is very gradual. Comparing the initial value and the value after 1000 hours, V OC increased by about 5%, J SC deteriorated by about 4%, and FF deteriorated by about 6%, but the deterioration rate of conversion efficiency Is as small as about 5%. The value of V OC is 0.873 V in the initial stage and 0.916 V after 1000 hours, which is a large value for a single cell.
From the above, it can be seen that this cell acts very effectively as a top cell of a multi-layer tandem cell, especially a three-layer tandem cell.

【0009】そこで、本発明の一実施例として、図1の
構造を有し、トップセルのi層41には光学ギャップ1.9e
V のa−SiO:H、ミドルセルのi層42には光学ギャッ
プ1.75eVのa−Si、ボトムセルのi層43には光学ギャッ
プ1.5eV のa−SiGeを適用して長波長感度の向上をはか
ったタンデムセルを製造した。そして現在までのとこ
ろ、VOC=2.51V、JSC=6.87mA/cm2 、FF=0.720
、EFF=12.4%で、1000時間の光照射試験にかけて
も経時変化の少ない薄膜太陽電池が得られている。
Therefore, as an embodiment of the present invention, the top layer i layer 41 has the structure shown in FIG.
V a-SiO: H, a-Si with an optical gap of 1.75 eV is applied to the i-layer 42 of the middle cell, and a-SiGe with an optical gap of 1.5 eV is applied to the i-layer 43 of the bottom cell to improve the long wavelength sensitivity. Manufactured tandem cells. And so far, V OC = 2.51V, J SC = 6.87mA / cm 2 , FF = 0.720
, EFF = 12.4%, and a thin film solar cell with little change with time even after a light irradiation test for 1000 hours is obtained.

【0010】[0010]

【発明の効果】本発明によれば、SiH4 、H2 のほかに
CO2 ガスを混合した原料ガスのCO 2 /SiH4 ガス比
を変えることにより容易に膜中酸素比を変えることので
きるa−SiO:H膜をトップセルのi層に用いることに
より、3層タンデムの場合で12.4%という高い変換効率
をもち、劣化の少ない薄膜太陽電池を製造することがで
きた。
According to the present invention, SiHFour, H2In addition to the
CO2CO of raw material gas mixed with gas 2/ SiHFourGas ratio
Since the oxygen ratio in the film can be easily changed by changing
A-SiO: H film for i-layer of top cell
Higher conversion efficiency of 12.4% in case of 3-layer tandem
It is possible to manufacture thin film solar cells with
Came.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の3層タンデムセルの構造を
示す断面図
FIG. 1 is a sectional view showing the structure of a three-layer tandem cell according to one embodiment of the present invention.

【図2】本発明の効果を調べるために製作されたシング
ルセルの断面図
FIG. 2 is a cross-sectional view of a single cell manufactured to investigate the effect of the present invention.

【図3】CO2 /SiH4 ガス比と膜中酸素比率との関係
線図
FIG. 3 is a relationship diagram of the CO 2 / SiH 4 gas ratio and the oxygen ratio in the film.

【図4】図2に示したシングルセルの光学ギャップと開
放電圧の関係線図
FIG. 4 is a relationship diagram of the optical gap and open circuit voltage of the single cell shown in FIG.

【図5】図2に示したシングルセルの各特性の経時変化
線図
FIG. 5 is a time-dependent change diagram of each characteristic of the single cell shown in FIG.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 p層 4 i質a−SiO:H膜 41 トップセルi層 42 ミドルセルi層 43 ボトムセルi層 5 n層 6 金属電極 1 glass substrate 2 transparent electrode 3 p layer 4 i-type a-SiO: H film 41 top cell i layer 42 middle cell i layer 43 bottom cell i layer 5 n layer 6 metal electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】pin接合を有するセルの複数を積層した
構造を有し、光入射側に近いセルのi層の材料が光入射
側より遠いセルのi層を形成する非晶質シリコンより光
学ギャップの大きいものにおいて、光入射側に近いセル
のi層が一般式a−Si(1-x) Ox で表され、0.02<x<
0.15であるアモルファスシリコンオキサイドであること
を特徴とする薄膜太陽電池。
1. A structure in which a plurality of cells having a pin junction are stacked, and the material of the i layer of the cell closer to the light incident side is optical than amorphous silicon forming the i layer of the cell farther from the light incident side. In the case of a large gap, the i layer of the cell near the light incident side is represented by the general formula a-Si (1-x) Ox, and 0.02 <x <
A thin-film solar cell characterized by being 0.15 amorphous silicon oxide.
【請求項2】アモルファスシリコンオキサイドをSi
4 、CO2 およびH2を含んだ混合ガスの分解により
形成することを特徴とする請求項1記載の薄膜太陽電池
の製造方法。
2. Amorphous silicon oxide is Si
The method for producing a thin film solar cell according to claim 1, which is formed by decomposing a mixed gas containing H 4 , CO 2, and H 2 .
【請求項3】混合ガス中のH2 とSiH4 の比が15ないし
30の範囲にある請求項2記載の薄膜太陽電池の製造方
法。
3. The ratio of H 2 to SiH 4 in the mixed gas is 15 to.
The method for producing a thin-film solar cell according to claim 2, wherein the range is 30.
JP4055787A 1992-03-16 1992-03-16 Thin film solar cell and manufacture thereof Pending JPH05259492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055787A JPH05259492A (en) 1992-03-16 1992-03-16 Thin film solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055787A JPH05259492A (en) 1992-03-16 1992-03-16 Thin film solar cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05259492A true JPH05259492A (en) 1993-10-08

Family

ID=13008620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055787A Pending JPH05259492A (en) 1992-03-16 1992-03-16 Thin film solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05259492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507881A (en) * 1991-09-30 1996-04-16 Fuji Electric Co., Ltd. Thin-film solar cell and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507881A (en) * 1991-09-30 1996-04-16 Fuji Electric Co., Ltd. Thin-film solar cell and method of manufacturing same

Similar Documents

Publication Publication Date Title
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US7030413B2 (en) Photovoltaic device with intrinsic amorphous film at junction, having varied optical band gap through thickness thereof
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JPS6249672A (en) Amorphous photovoltaic element
JPS60100485A (en) Semiconductor device
US4479028A (en) Amorphous solar cell
US8704326B2 (en) Thin-film photoelectric conversion device and method for production thereof
CN101237000A (en) Nano crystal silicon and non crystal germanium mixed absorption layer for multi-node light voltage part based on film silicon
JPS63122283A (en) Amorphous solar cell
JP2001267598A (en) Laminated solar cell
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPH05299677A (en) Solar battery and its manufacture
KR101106480B1 (en) Method for Manufacturing Photovoltaic Device
JPS6235680A (en) Amorphous silicon solar battery and manufacture of the same
JPH0125235B2 (en)
JPH11274527A (en) Photovoltaic device
JPH05259492A (en) Thin film solar cell and manufacture thereof
JPS6225275B2 (en)
JPS6074685A (en) Photovoltaic device
JP2946214B2 (en) Thin film solar cell
RU2648341C2 (en) Construction of thin-film solar module and method of its manufacture
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPS58116779A (en) Photovoltaic device