JPH05259010A - Method for discrimination of semiconductor wafer - Google Patents

Method for discrimination of semiconductor wafer

Info

Publication number
JPH05259010A
JPH05259010A JP2407100A JP40710090A JPH05259010A JP H05259010 A JPH05259010 A JP H05259010A JP 2407100 A JP2407100 A JP 2407100A JP 40710090 A JP40710090 A JP 40710090A JP H05259010 A JPH05259010 A JP H05259010A
Authority
JP
Japan
Prior art keywords
wafer
markings
markers
wafers
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2407100A
Other languages
Japanese (ja)
Other versions
JP2789818B2 (en
Inventor
Akio Inagaki
明夫 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2407100A priority Critical patent/JP2789818B2/en
Publication of JPH05259010A publication Critical patent/JPH05259010A/en
Application granted granted Critical
Publication of JP2789818B2 publication Critical patent/JP2789818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the distance between linear patterns of a plurality of markings in each wafer using an optical means by providing for each identifiable wafer and at different intervals, the markings of the linear patterns which are in parallel with each other in the prescribed ranges distributed on the wafer surface, and the wafers are discriminated automatically. CONSTITUTION:The pattern of markings 20 is printed on an accurate position while the position of a reticle 30 is being ascertained by an attached laser length-measuring device. A wafer is discriminated by the mutual distance D of the marking 20. In order to discriminate the wafer 1 on which the markings 20 are provided, the reflected light coming from the markings 20 is detected by a photo-sensor while the spot of laser beam scans the wafer 1, the wafer is discriminated by correctly computing the time difference, generated by two detected pulses, corresponding to the two markings 20, by a high frequency clock pulse. The laser beam spot can be scanned at a fixed high speed using the means such as reflection and the like of a rotary mirror, and the mutual distance D of the markings 20 can be measured with a high precision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体シリコン等のウエ
ハを多数個取り扱うウエハプロセスにおける工程管理の
ためウエハを個別にあるいはロットごとに相互に識別す
るための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying wafers individually or by lot for process control in a wafer process for handling a large number of wafers such as semiconductor silicon.

【0002】[0002]

【従来の技術】半導体装置を製造するウエハプロセスの
現場では、クリーンルーム内に多数個のウエハが流れて
おり、かつウエハごとに施すべきプロセス数が多いの
で、工程が錯綜してウエハの混同による仕損じが発生す
ることがある。
2. Description of the Related Art At a wafer processing site for manufacturing semiconductor devices, a large number of wafers are flowing in a clean room, and the number of processes to be performed for each wafer is large. Damage may occur.

【0003】この原因はすべてのウエハがほぼ同形かつ
同サイズで、目で見ただけでは何用のものなのか,ない
しはどのプロセスが済んだものかを容易に識別できない
ことにある。従ってウエハの混同防止には、製品の種類
や型番,ロット番号,ウエハ番号等の表示をして置くの
が望ましく、かなり前からウエハの処理が施されない裏
面側にダイアモンド等の硬質ペンを用いる罫書き作業に
より文字や符号を記入する手段が取られて来た。また、
この罫書き作業にはかなりの手間が掛かることから、レ
ーザ刻印法を利用する表示も広く行なわれるに至ってい
る。より簡便な手段としては、数十枚のウエハを単位と
してキャリアに収納した状態で工程間を移動させるのが
ふつうなので、表示をこのキャリアに行なう場合も多
い。
The reason for this is that all wafers have almost the same shape and size, and it is not possible to easily identify what they are for or what process has been completed by visual inspection. Therefore, it is desirable to display the product type, model number, lot number, wafer number, etc. in order to prevent the confusion of wafers. A rule using a hard pen such as diamond on the back side where the wafer is not processed for a long time. The means of writing characters and codes has been taken by the writing work. Also,
Since this scoring work requires a great deal of work, display using the laser engraving method has been widely performed. As a simpler means, it is common to move several steps in a state where several tens of wafers are accommodated in a carrier and the display is often performed on this carrier.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の文字や
符号による表示は人間が目で読み取りないし目視により
確認する必要があり、この際に作業者のエラーが発生し
得るので実際にはウエハの混同を完全には防止できな
い。かかる人間によるエラーの発生原因は、ウエハが混
同される確率が元々低くて大抵の場合に確認結果が良に
なるので、作業者にどうしても油断が出やすく肝心な時
に見落としが発生してしまう点にあるものと考えられ、
この問題の根絶には作業者に掛かる日常の負担をできる
だけ軽減することが大切である。
However, it is necessary for a human to read or visually confirm the above-mentioned display by characters or codes, and an error of the operator may occur at this time, so that the wafer is actually printed. Confusion cannot be completely prevented. The cause of such human error is that the probability that the wafers are confused is originally low and the confirmation result is good in most cases, so it is easy for the operator to be alert and the oversight occurs when it is important. Thought to be
To eradicate this problem, it is important to reduce the daily burden on workers as much as possible.

【0005】また、表示の罫書き法やレーザ刻印法のい
ずれもウエハを浅く掘り込むことになるので、その際に
シリコンの微片や微粉が発生してクリーンルーム内の清
浄な環境が汚染されるおそれなしとしない。また、ウエ
ハのキャリアに表示を付けるだけでは、キャリア間でウ
エハの混同や取り違えが発生する危険を防止できないの
はもちろんである。
In addition, since the wafer is dug into shallowly by both the marking method of the display and the laser engraving method, fine particles of silicon or fine powder are generated at that time, and the clean environment in the clean room is contaminated. Don't be afraid. In addition, it is not possible to prevent the risk of confusing or confusing the wafers between the carriers simply by providing the labels on the wafer carriers.

【0006】かかる現状に立脚して本発明の目的は、各
ウエハに表示を付す際にとくに手間を掛ける必要がな
く、かつ確実な手段でウエハを自動的に識別できるよう
にすることにある。
On the basis of the present situation, an object of the present invention is to make it possible to automatically identify a wafer by a reliable means without requiring special labor when marking each wafer.

【0007】[0007]

【課題を解決するための手段】本発明によればこの目的
は、ウエハプロセスの初期工程中にウエハ表面に分布し
た複数個の所定範囲内に互いに平行な線状パターンの標
識を相互に識別すべきウエハごとにそれぞれ異なる相互
間距離で設け、光学的手段により各ウエハ内の複数個の
標識の線状パターン間の距離を測定することによりウエ
ハを相互に識別することによって達成される。
SUMMARY OF THE INVENTION According to the present invention, an object of the present invention is to identify mutually parallel linear pattern markers within a plurality of predetermined areas distributed on the wafer surface during the initial steps of the wafer process. This is accomplished by providing different wafer-to-wafer distances from each other, and by using optical means to measure the distances between the linear patterns of a plurality of markers in each wafer to distinguish the wafers from each other.

【0008】なお、標識はウエハプロセスによりウエハ
の表面に付ける膜,例えばいわゆる初期酸化膜により形
成するのがよい。その標識としてのパターンニングには
線状パターンをもつ専用のレチクルを用い、このレチク
ルによりパターンニングする位置をずらせることによっ
て複数個の標識の線状パターンの相互間距離を相互に識
別すべきウエハごとに異ならせるようにすれば、工程を
追加することなく標識をウエハプロセスの初期工程中に
設けることができる。
The mark is preferably formed by a film attached to the surface of the wafer by a wafer process, for example, a so-called initial oxide film. A dedicated reticle with a linear pattern is used for patterning as a marker, and the distance between the patterning patterns of a plurality of markers should be mutually distinguished by shifting the patterning position with this reticle. By making them different from each other, the marker can be provided during the initial step of the wafer process without adding steps.

【0009】複数個の標識の相互間距離を光学的に測定
するには、ウエハの表面をレーザ光のスボットで走査し
ながら標識からの反射光を検出するのが最も有利である
が、ウエハプロセスの進行に伴いウエハ内の標識以外の
個所からの反射光が増加して標識からの反射光との区別
が困難になるので、標識間の距離測定の際にウエハ内の
指標が設けられた範囲に対応する窓パターンをもつマス
クを掛けることにより余分な反射光を除去して、標識か
らの反射光を容易に検出し得るようにするのが有利であ
る。もちろんこのマスクとしては、光学的なマスクのほ
か反射光の検出回路に対する電子的なマスクを用いるこ
とができる。
In order to optically measure the mutual distance between a plurality of marks, it is most advantageous to detect the reflected light from the marks while scanning the surface of the wafer with a sbot of a laser beam. As the process progresses, the reflected light from parts other than the mark on the wafer increases and it becomes difficult to distinguish it from the reflected light from the mark.Therefore, the range within which the index on the wafer is provided when measuring the distance between the marks It is advantageous to remove the extra reflected light by applying a mask having a window pattern corresponding to, so that the reflected light from the sign can be easily detected. As the mask, of course, an optical mask as well as an electronic mask for the reflected light detection circuit can be used.

【0010】本発明方法に用いる標識の線状パターンの
幅はその光学的な検出の際に用いる光のスポットの大き
さより若干大きいめに設定するのがよく、ふつうレーザ
光のスポットが1〜2μmであるから線状パターン幅を
2μm程度とするのが有利である。また、かかる標識の
相互間距離をウエハごとに異ならせる程度もこの線状パ
ターン幅と同程度に設定するのが有利である。
The width of the linear pattern of the marker used in the method of the present invention is preferably set to be slightly larger than the size of the light spot used for the optical detection, and the spot of the laser light is usually 1 to 2 μm. Therefore, it is advantageous to set the linear pattern width to about 2 μm. Further, it is advantageous to set the distance between the markers to be different for each wafer to the same extent as the linear pattern width.

【0011】標識の線状パターンの幅が数μm以下で各
標識を設ける範囲の広さが数mm程度の場合、本発明方法
により識別可能なウエハの数は標識が2個の場合1000個
以上になるが、標識の個数を増すことによりそれらの相
互間距離の組み合わせで識別可能なウエハ数を増加させ
るのが有利である。例えば、3個ないしは2対の標識を
用いるだけで百万個以上のウエハの識別が可能になる。
When the width of the linear pattern of the mark is several μm or less and the width of the range where each mark is provided is about several mm, the number of wafers that can be identified by the method of the present invention is 1000 or more in the case of two marks. However, it is advantageous to increase the number of wafers that can be identified by the combination of their mutual distances by increasing the number of markers. For example, it is possible to identify over one million wafers using only three or two pairs of labels.

【0012】[0012]

【作用】前項中の構成にいうように本発明方法は、識別
用の標識を従来と逆にウエハの表面側に配設することに
よりウエハプロセスを利用してこれを容易に作り込める
ようにし、この標識をウエハプロセスの初期工程中に設
けることによりそれ以降のウエハプロセスを通じてウエ
ハの識別を可能にし、ウエハの複数個の所定範囲内にそ
れぞれ標識を互いに平行な線状パターンで設けることに
より相互間距離を光学的に簡単に測定して確実にウエハ
を識別できるようにし、かつウエハごとに異なる相互間
距離で設けるべき標識のパターンを細い線状にすること
により識別可能なウエハ数を増加させて前述の課題を解
決するものである。
In the method of the present invention, as described in the constitution in the preceding paragraph, the identification mark is arranged on the front surface side of the wafer contrary to the conventional method, so that the wafer can be easily manufactured by utilizing the wafer process. By providing this mark during the initial step of the wafer process, the wafer can be identified through the subsequent wafer processes, and by providing the marks in a plurality of predetermined ranges of the wafer in a linear pattern parallel to each other, It is possible to increase the number of identifiable wafers by measuring the distance optically easily so that the wafers can be identified with certainty, and by making the pattern of markers that should be provided at different distances for each wafer into a thin line. This is to solve the above-mentioned problems.

【0013】[0013]

【実施例】以下、図を参照して本発明によるウエハの識
別方法の実施例を説明する。図1に標識をウエハに設け
る際の要領を, 図2にこの標識を検出する要領を, 図3
にウエハ上の標識の若干の態様をそれぞれ例示する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a wafer identification method according to the present invention will be described below with reference to the drawings. Figure 1 shows the procedure for providing a marker on a wafer, and Figure 2 shows the procedure for detecting this marker.
Some examples of markings on the wafer are shown in FIG.

【0014】図1に示すウエハ1は例えば2μm以下の
ルールで製造される集積回路装置用であり、その表面内
の上下左右方向に並んだ方形の領域2はフォトプロセス
時に図の左下側に拡大して示すレチクル40を用いてパタ
ーンが焼き付けられる範囲である。周知のように、レチ
クル40は1個ないし複数個, 図示の例では9個の集積回
路3のパターンを備える一種のフォトマスクであって、
ステッパと通称される設備を用いてそのパターンが順次
位置をずらせ、かつ縮小されながらウエハ1内のふつう
は十数mm角程度の各領域2に焼き付けられる。
The wafer 1 shown in FIG. 1 is for an integrated circuit device manufactured according to a rule of, for example, 2 μm or less, and the rectangular regions 2 arranged in the vertical and horizontal directions on the surface thereof are enlarged to the lower left side of the figure during the photo process. The area where the pattern is printed using the reticle 40 shown in FIG. As is well known, the reticle 40 is a kind of photomask having a pattern of one or a plurality of, in the illustrated example, nine integrated circuits 3.
The pattern is sequentially shifted using equipment commonly referred to as a stepper, and the area inside the wafer 1 is normally printed on each region 2 of about 10 mm square while being reduced in size.

【0015】標識を設けるべき範囲10がこの実施例では
ウエハ1の図の左右の周縁部に2個設定されており、上
述のステッパを利用する場合はその大きさを領域2と同
じに設定するのが便利である。この範囲10内に設けるべ
き標識20のパターンは図の右下部に拡大して示すレチク
ル30により焼き付けられる。このレチクル30は例えば図
のように縦長な外形のもので、内部に標識20用の線状パ
ターンを備える。この線状パターンはレチクル30から範
囲10内に焼き付けた時の標識20が例えば幅Wが2μm,
高さHが10mm程度になるようにされる。
In this embodiment, two areas 10 to be provided with marks are set on the left and right peripheral portions of the wafer 1, and when the above stepper is used, the size is set to be the same as the area 2. Is convenient. The pattern of the mark 20 to be provided within this range 10 is printed by the reticle 30 shown in an enlarged manner in the lower right part of the drawing. The reticle 30 has, for example, a vertically long outer shape as shown in the drawing, and has a linear pattern for the marker 20 therein. The linear pattern has a width W of 2 μm when the marker 20 is printed in the range 10 from the reticle 30,
The height H is set to about 10 mm.

【0016】ウエハ1に標識20を設けるのはウエハプロ
セスの初期工程,例えば初期酸化膜を付ける工程がよ
く、ステッパ設備がこの初期工程用のレチクル40のパタ
ーンを領域2に順次焼き付けている中途で順番が標識用
範囲10に来た時にレチクル40をレチクル30に切り換えて
標識20のパターンを焼き付ける。かつ、この焼き付け時
のレチクル30の位置を図でそれと重ねて示された範囲10
に対するずれSがウエハごとに例えば2μm程度ずつ異
なるように指定する。
The mark 20 is provided on the wafer 1 in the initial step of the wafer process, for example, the step of applying an initial oxide film, and the stepper equipment is sequentially printing the pattern of the reticle 40 for this initial step in the region 2. When the turn comes to the marking range 10, the reticle 40 is switched to the reticle 30 and the pattern of the marking 20 is printed. In addition, the position of the reticle 30 at the time of printing is shown in the range 10 in the figure.
The deviation S with respect to each wafer is specified to differ by about 2 μm for each wafer.

【0017】なお、このためにはステッパ設備に対しレ
チクル40をレチクル30に切り換える位置と,各ウエハに
対するレチクル30の範囲10内のずれSの指定値をあらか
じめプログラムして置くことでよく、ステッパ設備はこ
のずれSの指定値に基づいてレチクル30の位置を付属の
レーザ測長器で確かめながらふつうは 0.3μm程度の誤
差範囲内で標識20のパターンを正確な位置に焼き付け
る。図1の例では標識20の数が2個で本発明では両者の
相互間距離Dによりウエハを識別するので、実際には例
えば図の左側の標識20は常に範囲10の中央に設けて、右
側の標識20の位置だけを上述のずれSの指定値に応じて
変えることでよい。
For this purpose, the position at which the reticle 40 is switched to the reticle 30 and the designated value of the deviation S within the range 10 of the reticle 30 for each wafer may be programmed in advance for the stepper equipment. While confirming the position of the reticle 30 with the attached laser length measuring device based on the designated value of this deviation S, the pattern of the marker 20 is usually printed at an accurate position within an error range of about 0.3 μm. In the example of FIG. 1, the number of the markers 20 is two, and in the present invention, the wafer is identified by the mutual distance D between the two, so in practice, for example, the marker 20 on the left side of the drawing is always provided in the center of the range 10 and the right side. It suffices to change only the position of the marker 20 in accordance with the specified value of the above-mentioned deviation S.

【0018】パターンの焼き付け終了後はエッチングに
より例えば1μm程度の膜厚の初期酸化膜をパターンニ
ングして標識20を範囲10内に作り込む。この例では15mm
角の範囲10内に標識20を2μmずつ横方向にずらせて設
けるので、これにより最大で7500個のウエハが識別可能
になる。
After the pattern is baked, the initial oxide film having a film thickness of, for example, about 1 μm is patterned by etching to form the marker 20 within the range 10. 15mm in this example
Since the markers 20 are provided laterally offset by 2 μm within the angular range 10, this allows a maximum of 7500 wafers to be identified.

【0019】図2は図1のように標識20を設けたウエハ
1を識別する要領を示す。この識別はレーザ光Lのスポ
ットによりウエハ1を図のように走査しながら、その標
識20からの反射光を光センサで検出して2個の標識20に
対応する2個の検出パルスが発生する時間差を例えば高
い周波数のクロックパルスにより正確に計数することに
より行なう。レーザ光Lのスポットの走査は例えばバー
コードリーダの場合と同様に回転ミラーによる反射等の
手段により一定の高速ですることができ、かつクロック
パルスの計数による時間差の測定も正確なので、標識20
の相互間距離Dを高精度で測定することができる。
FIG. 2 shows how to identify the wafer 1 provided with the mark 20 as shown in FIG. For this identification, while the wafer 1 is scanned by the spot of the laser light L as shown in the figure, the reflected light from the mark 20 is detected by the optical sensor and two detection pulses corresponding to the two marks 20 are generated. For example, the time difference is accurately counted by a clock pulse having a high frequency. The spot of the laser beam L can be scanned at a constant high speed by means such as reflection by a rotating mirror as in the case of a bar code reader, and the time difference is accurately measured by counting clock pulses.
The mutual distance D can be measured with high accuracy.

【0020】しかし、ウエハプロセスが進むにつれウエ
ハ1の面内には多数の小さな凹凸ができ、それによるレ
ーザ光の反射が標識20からの反射と紛らわしくなって来
るので、図2の実施例ではかかる余分な反射を減少させ
るため黒色の光学的マスク50をウエハ1の上に重ね合わ
せ、その1対の窓51内に標識20が設けられた範囲10をそ
れぞれ露出させることによりこの問題を解決する。な
お、この実施例では理解を容易にするためマスクを光学
マスクとしたが、実際にはレーザ光Lの反射光を受ける
光センサの出力検出回路に電子的なマスクないしは窓を
用いてこの実施例と同じ効果を得る方が有利である。
However, as the wafer process progresses, a large number of small irregularities are formed in the surface of the wafer 1, and the reflection of the laser light due to the small irregularities becomes confusing with the reflection from the mark 20, so that the embodiment shown in FIG. This problem is solved by overlaying a black optical mask 50 on the wafer 1 to reduce extra reflections, and exposing each of the areas 10 within the pair of windows 51 provided with the indicia 20. In this embodiment, the mask is an optical mask for easy understanding. However, in practice, an electronic mask or window is used in the output detection circuit of the optical sensor for receiving the reflected light of the laser light L. It is advantageous to obtain the same effect as.

【0021】また、レーザ光Lの走査方向が標識20の線
状パターンと直角な方向からずれると相互間距離Dの測
定結果に誤差が出るので、ウエハ1には常に図のような
切り欠き1aがあるのを利用して走査方向をこれに合わ
せ、かつ光学的マスク50もそれに合わせるのが望まし
い。さらに、レーザ光Lの走査を図のように複数回と
し、走査のつど測定した相互間距離Dが一致することを
確かめることによって測定の確実性を期するのが望まし
い。
If the scanning direction of the laser beam L deviates from the direction perpendicular to the linear pattern of the marker 20, an error will occur in the measurement result of the mutual distance D, so that the wafer 1 always has the cutout 1a as shown in the figure. Therefore, it is desirable to adjust the scanning direction to the optical mask 50, and to adjust the optical mask 50 accordingly. Further, it is desirable that the scanning of the laser beam L is performed a plurality of times as shown in the figure, and that the measured mutual distance D is matched each time the scanning is performed to ensure the certainty of the measurement.

【0022】次に、図3を参照して本発明方法のそれぞ
れ異なる若干の実施例を説明する。これらの実施例では
図1に対応するウエハ1のみが、かつ図示の便宜上その
要部のみが示されている。
Some different embodiments of the method of the invention will now be described with reference to FIG. In these embodiments, only the wafer 1 corresponding to FIG. 1 is shown, and for the sake of convenience of illustration, only the main part thereof is shown.

【0023】図3(a) の実施例はレーザ光のスポット走
査方向により標識20の相互間距離Dの測定結果が影響さ
れないようにするものである。この実施例ではウエハ1
内に図のように配置された4個の範囲10を設定して上下
方向に並ぶ2個の範囲10内の同じ位置に標識20を設けた
上で、レーザ光Lを互いにθの角度をなす2個の方向か
ら走査して各2個の標識20間のたすき掛け状の相互間距
離aとbを測定する。この角度θは例えばレーザ光Lの
走査用回転ミラーの2個の反射面により一定値に設定で
きる。容易にわかるように、求める相互間距離Dは角度
θを挟む長さがaとbの2辺をもつ三角形の頂点から対
辺に下ろした垂線長になるから、対辺の長さをcとする
とD= (ab/c)sinθとなり、長さcは簡単な三角公式に
基づいて計算機に容易に計算させることができる。この
実施例はレーザ光Lの2個の走査方向の間の角度θを一
定にさえして置けば、走査方向自体によっては測定結果
が影響されない利点を有する。
In the embodiment shown in FIG. 3A, the measurement result of the mutual distance D of the markers 20 is not influenced by the spot scanning direction of the laser light. In this embodiment, the wafer 1
The four ranges 10 arranged as shown in the figure are set, the markers 20 are provided at the same positions in the two ranges 10 arranged in the vertical direction, and the laser light L forms an angle θ with each other. Scanning from two directions is performed to measure the trapezoidal mutual distances a and b between each two markers 20. This angle θ can be set to a constant value by, for example, two reflecting surfaces of the rotary mirror for scanning the laser light L. As can be easily understood, the mutual distance D to be obtained is the perpendicular length from the apex of a triangle having two sides a and b to the opposite side sandwiching the angle θ, so if the length of the opposite side is c, then D = (Ab / c) sin θ, and the length c can be easily calculated by a computer based on a simple trigonometric formula. This embodiment has the advantage that the measurement result is not affected by the scanning direction itself, as long as the angle θ between the two scanning directions of the laser light L is kept constant.

【0024】図3(b) の実施例は識別可能なウエハ数を
増加させるためのものである。この実施例でも4個の標
識20を用いその内の左側の2個は同じ位置に設けるが、
右側の2個は互いに独立な位置に設けて置いた上で、左
右各1個ずつの標識20を対として図のように2個の相互
間距離D1とD2を測定する。ウエハはこれら2個の相互間
距離を用いて識別できるから識別可能なウエハ数は飛躍
的に増加する。なお、この実施例では常に同じ位置に設
けられる左側の2個の標識20用の範囲11は右側の範囲10
より小さく設定されている。
The embodiment of FIG. 3B is for increasing the number of identifiable wafers. Also in this embodiment, four marks 20 are used, and two marks 20 on the left side are provided at the same position.
The two right-hand units are provided at positions independent of each other, and one pair of left and right markers 20 are used as a pair to measure the mutual distances D1 and D2 as shown in the figure. Since the wafers can be identified by using the distance between these two, the number of identifiable wafers increases dramatically. In this embodiment, the range 11 for the two signs 20 on the left side, which are always provided at the same position, is the range 10 on the right side.
It is set smaller.

【0025】図3(c) に示す実施例では、左右の標識用
範囲12が広く設定され、かつそれらの中に設けられる標
識21は等間隔に並んだ複数個の線状パターンを有する。
この標識21をレーザ光Lで走査した時の反射光は線状パ
ターンの個数だけ一定の時間間隔で繰り返し発生するか
ら、その光センサによる検出パルスの発生時間と回数か
ら標識21を正確に特定できる。従って、この実施例は前
の実施例より標識21の検出精度を高め得る利点がある。
なお、2個の標識21の相互間距離Dは例えば図のように
最後の線状パターン間の距離で決めることでよい。
In the embodiment shown in FIG. 3 (c), the left and right marking areas 12 are set wide, and the markings 21 provided therein have a plurality of linear patterns arranged at equal intervals.
Since the reflected light when the marker 21 is scanned with the laser light L is repeatedly generated at a constant time interval by the number of linear patterns, the marker 21 can be accurately specified from the generation time and number of detection pulses by the optical sensor. .. Therefore, this embodiment has an advantage that the detection accuracy of the label 21 can be enhanced as compared with the previous embodiment.
The distance D between the two markers 21 may be determined by the distance between the last linear patterns as shown in the figure.

【0026】図3(d) の実施例は標識の相互間距離Dが
今までより小さく設定される。このため、図のように2
個の標識用範囲10がウエハ1のこの例では上側の周縁部
分に互いに接して設定される。もちろん、各範囲10内に
それぞれ標識20が設けられ、相互間距離Dが今までより
ずっと短くなるがウエハの識別上はなんら支障なく、却
って相互間距離Dの測定上の相対的精度を向上できる。
また、ウエハ1の利用価値の少ない周縁部分に範囲10を
設定できる利点がある。図3のこれらの実施例からわか
るように、本発明は以上説明した実施例に限定されず種
々の態様で実施が可能である。
In the embodiment of FIG. 3 (d), the distance D between the signs is set smaller than ever. Therefore, as shown in the figure, 2
The individual marking areas 10 are set in contact with each other on the upper edge of the wafer 1 in this example. Of course, since the markers 20 are provided in the respective ranges 10, the mutual distance D becomes much shorter than before, but this does not hinder the identification of the wafer, and rather the relative accuracy in measuring the mutual distance D can be improved. ..
Further, there is an advantage that the range 10 can be set in the peripheral portion of the wafer 1 where the utility value is low. As can be seen from these embodiments of FIG. 3, the present invention is not limited to the embodiments described above and can be implemented in various modes.

【0027】[0027]

【発明の効果】以上のとおり本発明によるウエハの識別
方法では、ウエハプロセスの初期工程中にウエハ表面に
分布した複数個の所定範囲内に互いに平行な線状の標識
を相互に識別すべきウエハごとにそれぞれ異なる相互間
距離で設け、光学的手段により各ウエハ内の複数個の標
識の線状パターン間の距離を測定した結果からウエハを
相互に識別することにより、次の効果を得ることができ
る。
As described above, in the wafer identification method according to the present invention, wafers for which parallel linear markers are to be mutually identified within a plurality of predetermined ranges distributed on the wafer surface during the initial step of the wafer process. Different distances are provided for each wafer, and the following effects can be obtained by mutually distinguishing the wafers from the result of measuring the distance between the linear patterns of a plurality of markers in each wafer by optical means. it can.

【0028】(a) 標識をウエハの表面側に設けることに
より、ウエハ内に半導体装置を作り込むためのウエハプ
ロセス中の工程を利用してとくに手間を掛けることなく
容易に標識を作り込むことができる。
(A) By providing the mark on the front surface side of the wafer, it is possible to easily make the mark by using the steps in the wafer process for making the semiconductor device in the wafer without any particular trouble. it can.

【0029】(b) 標識を線状パターンとしそれらをウエ
ハの複数個の所定範囲内にそれぞれ互いに平行に設けた
ので、ウエハの識別に際しては標識の相互間距離を光学
的に簡単に測定でき、かつこの測定を容易に自動化する
ことができる。
(B) Since the markers are formed in a linear pattern and are arranged in parallel with each other in a plurality of predetermined areas of the wafer, the distance between the markers can be optically easily measured when the wafers are identified. And this measurement can be easily automated.

【0030】(c) 標識のパターンが細い線状なので、そ
れを設ける位置を僅かずつずらせるだけで標識の相互間
距離をウエハごとに異ならせることができ、ごく簡単な
標識で数千個のウエハを正確に識別することができ、さ
らに標識数を僅か増すだけで識別可能なウエハ数を大幅
に増加できる。
(C) Since the marking pattern is a thin linear shape, the mutual distance between the markings can be made different for each wafer by slightly shifting the positions where the markings are provided. The wafers can be accurately identified, and the number of identifiable wafers can be greatly increased by slightly increasing the number of labels.

【0031】(d) ウエハの識別が標識の相互間距離によ
り行なわれ、従って目視では標識を読み取れず必ず専用
の装置に識別させる必要があるので、人的エラーが介入
する余地がなくなり、ウエハプロセスの管理レベルを向
上できる。
(D) Since the wafers are identified by the mutual distance between the marks, and therefore the marks cannot be visually read, it is necessary to identify them by a dedicated device, so that there is no room for human error to intervene and the wafer process is eliminated. The management level of can be improved.

【0032】このように、本発明方法はとくに手間を掛
けることなく標識をウエハに設け、ウエハの識別を人的
エラーの介入を排除しつつ正確かつ自動的に行なえる利
点があり、半導体装置の製造工程の管理水準を向上し錯
誤による製造歩留まりの低下を防止する上で顕著な貢献
をなし得るものである。
As described above, the method of the present invention has an advantage that a marker can be provided on a wafer without particular trouble and the wafer can be identified accurately and automatically while eliminating the intervention of human error. It can make a significant contribution to improving the control level of the manufacturing process and preventing the reduction of the manufacturing yield due to an error.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法によるウエハの識別用の標識の実施
例とそれをウエハに設ける要領を示すウエハの上面図で
ある。
FIG. 1 is a top view of a wafer showing an embodiment of a marker for identifying a wafer according to the method of the present invention and a procedure for providing the marker on the wafer.

【図2】図1の標識によりウエハを識別する要領を示す
ウエハとその上に重ねた光学的マスクの上面図である。
FIG. 2 is a top view of a wafer and an optical mask overlaid on the wafer, showing how to identify the wafer by the mark of FIG.

【図3】本発明のそれぞれ異なる実施例を同図(a) から
(d) に示すウエハの要部の上面図である。
FIG. 3 shows different embodiments of the present invention from FIG.
FIG. 3D is a top view of the essential part of the wafer shown in FIG.

【符号の説明】[Explanation of symbols]

1 ウエハ 10 標識用範囲 11 標識用範囲 12 標識用範囲 20 標識 21 標識 30 標識のパターンニング用レチクル 50 光学的マスク D 標識の相互間距離 D1 標識の相互間距離 D2 標識の相互間距離 H 標識の線状パターンの高さ S 標識位置のずれ W 標識の線状パターンの幅 1 Wafer 10 Marking range 11 Marking range 12 Marking range 20 Marking 21 Marking 30 Marking patterning reticle 50 Optical mask D Distance between markers D1 Distance between markers D2 Distance between markers H Marking Height of linear pattern S Deviation of marker position W Width of marker linear pattern

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ウエハプロセスの初期工程中にウエハ表面
に分布した複数個の所定範囲内に互いに平行な線状の標
識を相互に識別すべきウエハごとにそれぞれ異なる相互
間距離で設けて置き、光学的手段により各ウエハ内の複
数個の標識の線状パターン間の距離を測定することによ
ってウエハを相互に識別し得るようにしたことを特徴と
する半導体ウエハの識別方法。
1. In a plurality of predetermined ranges distributed on the surface of a wafer during an initial step of a wafer process, linear markers parallel to each other are provided at different distances for each wafer to be distinguished from each other. A method for identifying semiconductor wafers, wherein the wafers can be identified from each other by measuring the distance between a plurality of linear patterns of markers in each wafer by optical means.
【請求項2】請求項1に記載の方法において、ウエハに
対する標識のパターンニングのため線状パターンをもつ
専用のレチクルを用い、このレチクルによりパターンニ
ングする位置をずらせることによって複数個の標識の線
状パターンの相互間距離を相互に識別すべきウエハごと
に異ならせるようにしたことを特徴とする半導体ウエハ
の識別方法。
2. The method according to claim 1, wherein a dedicated reticle having a linear pattern is used for patterning the markers on the wafer, and the plurality of markers are moved by shifting the patterning position by the reticle. A method for identifying a semiconductor wafer, wherein the distance between the linear patterns is made different for each wafer to be identified.
【請求項3】請求項1に記載の方法において、光学的手
段により各ウエハ内の複数個の標識の線状パターン間の
距離を測定する際にウエハ内の指標が設けられた範囲に
対応する窓のパターンをもつマスクを掛けることによ
り、標識の線状パターンをウエハ内のそれ以外のパター
ンと識別し得るようにしたことを特徴とする半導体ウエ
ハの識別方法。
3. The method according to claim 1, wherein an index in the wafer is provided when the distance between the linear patterns of a plurality of markers in each wafer is measured by optical means. A method of identifying a semiconductor wafer, characterized in that a liner pattern of a marker can be identified from other patterns in a wafer by applying a mask having a window pattern.
JP2407100A 1990-12-27 1990-12-27 Semiconductor wafer identification method Expired - Lifetime JP2789818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2407100A JP2789818B2 (en) 1990-12-27 1990-12-27 Semiconductor wafer identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2407100A JP2789818B2 (en) 1990-12-27 1990-12-27 Semiconductor wafer identification method

Publications (2)

Publication Number Publication Date
JPH05259010A true JPH05259010A (en) 1993-10-08
JP2789818B2 JP2789818B2 (en) 1998-08-27

Family

ID=18516714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2407100A Expired - Lifetime JP2789818B2 (en) 1990-12-27 1990-12-27 Semiconductor wafer identification method

Country Status (1)

Country Link
JP (1) JP2789818B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252281A (en) * 2004-03-02 2005-09-15 Asml Netherlands Bv Lithography apparatus for obtaining imaging on surface side or rear surface side of substrate, substrate identification method, device manufacturing method, substrate, and computer program
JP2008250144A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Drawing method and drawing system
US7808613B2 (en) 2006-08-03 2010-10-05 Asml Netherlands B.V. Individual wafer history storage for overlay corrections

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252281A (en) * 2004-03-02 2005-09-15 Asml Netherlands Bv Lithography apparatus for obtaining imaging on surface side or rear surface side of substrate, substrate identification method, device manufacturing method, substrate, and computer program
US7480028B2 (en) 2004-03-02 2009-01-20 Asml Netherlands B.V. Lithographic apparatus for imaging a front side or a back side of a substrate, method of substrate identification, device manufacturing method, substrate, and computer program
US7808613B2 (en) 2006-08-03 2010-10-05 Asml Netherlands B.V. Individual wafer history storage for overlay corrections
JP2008250144A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Drawing method and drawing system

Also Published As

Publication number Publication date
JP2789818B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US20060243711A1 (en) System and method for aligning a wafer processing system in a laser marking system
JP2754609B2 (en) Method for manufacturing semiconductor device
JP2001339049A (en) Semiconductor device, photomask and manufacturing method thereof
EP0242045B1 (en) Dimension checking method
JPS63253201A (en) Test pattern for monitoring change of limit dimension of pattern in semiconductor manufacturing process
US5668042A (en) Method for aligning micro patterns of a semiconductor device
US10186489B2 (en) Process substrate with crystal orientation mark, method of detecting crystal orientation, and reading device of crystal orientation mark
JP2789818B2 (en) Semiconductor wafer identification method
US4566192A (en) Critical dimension measurement structure
US20030046821A1 (en) Reticle, and pattern positional accuracy measurement device and method
JP2666761B2 (en) Semiconductor wafer
US5929529A (en) Reticle semiconductor wafer, and semiconductor chip
CN204102865U (en) A kind of to locating tab assembly structure
JP2595962B2 (en) Semiconductor device
JP2829211B2 (en) Misalignment measurement method
JP3104802B2 (en) Reference wafer for inspection
KR0149221B1 (en) Photo mask for fabricating semiconductor
EP0220233B1 (en) Target keys for wafer probe alignment
WO2004090980A2 (en) Overlay metrology mark
KR960002287B1 (en) Stepping pitch measuring method of alignment/exposure apparatus
JP2921129B2 (en) Calibration method of imaging device
JPH03282546A (en) Reticule
CN113900351A (en) Method for detecting precision of baffle plate of photoetching machine
JPH06273131A (en) Method and apparatus for evaluating photomask pattern
JPS6111461B2 (en)