JPH0525640A - Formation of metallic nitride thin film - Google Patents

Formation of metallic nitride thin film

Info

Publication number
JPH0525640A
JPH0525640A JP18266691A JP18266691A JPH0525640A JP H0525640 A JPH0525640 A JP H0525640A JP 18266691 A JP18266691 A JP 18266691A JP 18266691 A JP18266691 A JP 18266691A JP H0525640 A JPH0525640 A JP H0525640A
Authority
JP
Japan
Prior art keywords
chamber
base material
thin film
source
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18266691A
Other languages
Japanese (ja)
Inventor
Hidehiko Otsu
英彦 大津
Yoshiro Ishii
芳朗 石井
Kuniaki Kobayashi
邦明 小林
Yoshikazu Yaginuma
良和 柳沼
Yoshiyuki Funaki
義行 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIMES KK
NDK Inc
Original Assignee
LIMES KK
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIMES KK, Nihon Denshi Kogyo KK filed Critical LIMES KK
Priority to JP18266691A priority Critical patent/JPH0525640A/en
Publication of JPH0525640A publication Critical patent/JPH0525640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the method for forming the metallic nitride thin film of desired compsn. ratios over the entire surface of a large-sized base material having intricate three-dimensional shapes installed in a vacuum chamber. CONSTITUTION:Ammonia is used as a gaseous raw material which is a nitrogen source and while the large-sized base material 12 having the intricate three- dimensional shapes and installed in the vacuum chamber 1 is uniformly heated at a prescribed temp. by a heating source 9, a low DC voltage is impressed between the chamber 1 and the base material 12 and the film is formed by the low DC plasma power at the time of supplying at least the gaseous raw material as the nitrogen source and the gaseous raw material as a metal source into the above-mentioned chamber 1, generating plasma in the chamber 1 to bring the respective gaseous raw materials mentioned above into reaction in the chamber 1 and forming the metallic nitride thin film on the surface of the base material 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属窒化物薄膜の形成
方法に関し、特に圧延ロール、スクリュー等の大型複雑
立体形状基材にプラズマCVDにより金属窒化物薄膜を
形成する方法の改良に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal nitride thin film, and more particularly to an improvement in a method for forming a metal nitride thin film on a large-scale complex three-dimensional base material such as a rolling roll or a screw by plasma CVD.

【0002】[0002]

【従来の技術および課題】従来、立体形状基材に金属窒
化物薄膜、例えばTiN薄膜を形成する方法としては熱
CVD法が採用されてきた。この方法は、原料ガスを真
空チャンバ内で熱エネルギ―により化学反応を起こさせ
て該チャンバ内に配置した前記基材上に薄膜を形成する
方法である。かかる熱CVD法は、前記立体形状基材上
に強靭な薄膜を密着性よく、かつ付き回り性よく形成で
きる特徴を有する。しかしながら、薄膜形成に必要な化
学反応は通常1000℃以上の高温で行われることが多
いため、前記基材を構成する材料が制約される。例え
ば、熱的損傷が生じ易い材料や熱膨張による寸法変化が
生じ易い材料からなる基材には前記熱CVD法を適用す
ることは困難となる。
2. Description of the Related Art Conventionally, a thermal CVD method has been adopted as a method for forming a metal nitride thin film, for example, a TiN thin film on a three-dimensional base material. This method is a method in which a raw material gas is caused to undergo a chemical reaction by heat energy in a vacuum chamber to form a thin film on the base material placed in the chamber. The thermal CVD method is characterized in that a tough thin film can be formed on the three-dimensional base material with good adhesion and throwing power. However, since the chemical reaction required for forming a thin film is usually performed at a high temperature of 1000 ° C. or higher, the material constituting the base material is restricted. For example, it is difficult to apply the thermal CVD method to a base material made of a material that is easily damaged by heat or a material that is easily changed in size by thermal expansion.

【0003】このようなことから、近年、スパッタ法や
イオンプレ―ティング法等の物理蒸着法(PVD法)が
開発され、低温での金属窒化物薄膜の形成が可能となっ
た。しかしながら、PVD法では立体形状基材に対する
蒸着物質の付き回り性が低いという問題があった。特
に、大型複雑立体形状基材では前記付き回り性の低下が
顕著となるため、実質的にPVD法を適用することは困
難であった。
Under these circumstances, a physical vapor deposition method (PVD method) such as a sputtering method or an ion plating method has been developed in recent years, and it has become possible to form a metal nitride thin film at a low temperature. However, the PVD method has a problem that the deposition property of the vapor deposition substance on the three-dimensional substrate is low. Particularly, in the case of a large-sized complex three-dimensionally shaped substrate, the throwing power is remarkably deteriorated, so that it is practically difficult to apply the PVD method.

【0004】そこで、CVD法の良好な付き回り性とP
VD法の低温での薄膜形成という両者の長所を兼ね備え
たプラズマCVD法が開発された。このプラズマCVD
法は、原料ガスの化学反応に必要な熱エネルギ―の一部
又は全部をプラズマによる電気エネルギ―で代替するこ
とによって低温での薄膜形成を可能としたものである。
かかるプラズマCVD法では、従来よりの熱CVD法と
同様に真空チャンバ内の原料ガスをノズルを通して供給
し、前記チャンバ内に配置した立体形状基材に直流また
は高周波を印加してグロー放電を起こさせてプラズマを
発生させる。この時、前記チャンバ内に供給された原料
ガスはプラズマ中を通過する際にイオン、ラジカル、原
子、分子などの活性な励起種となる。これらの励起種
は、低温で反応が進行するため、前記立体形状基材上に
低温で薄膜を形成することが可能となると考えられる。
従って、プラズマCVD法では立体基体上に付き回り性
が良好な薄膜を低温で形成することが可能となる。
Therefore, the good throwing power of the CVD method and P
A plasma CVD method has been developed which has both advantages of forming a thin film at a low temperature in the VD method. This plasma CVD
The method makes it possible to form a thin film at a low temperature by substituting a part or all of the thermal energy required for the chemical reaction of the raw material gas with electric energy by plasma.
In the plasma CVD method, as in the conventional thermal CVD method, the source gas in the vacuum chamber is supplied through a nozzle, and direct current or high frequency is applied to the three-dimensional base material arranged in the chamber to cause glow discharge. To generate plasma. At this time, the source gas supplied into the chamber becomes active excited species such as ions, radicals, atoms and molecules when passing through the plasma. It is considered that these excited species are capable of forming a thin film on the three-dimensionally shaped substrate at a low temperature because the reaction proceeds at a low temperature.
Therefore, the plasma CVD method can form a thin film having good throwing power on a three-dimensional substrate at a low temperature.

【0005】ところで、上述した従来のプラズマCVD
法により大型の立体形状基材に金属窒化物薄膜を形成す
る場合には、加熱ヒータを具備する真空チャンバ内に前
記基材を設置して少なくとも窒素源としての原料ガスと
金属源としての原料ガスを前記チャンバ内に供給し、D
Cプラズマを印加する。この場合、良好な膜質の金属窒
化物薄膜を成膜しようとすると、高いDC電圧を印加す
る必要性が生じる。しかしながら、凹凸の著しい大型複
雑立体形状基材に成膜する場合には前記基材表面に局部
的な強グロー放電が発生し、基材温度が不均一となるた
め、良質かつ均一厚さの金属窒化物薄膜を形成すること
が困難となる。
By the way, the above-mentioned conventional plasma CVD
In the case of forming a metal nitride thin film on a large-sized three-dimensional base material by the method, the base material is installed in a vacuum chamber equipped with a heater and at least a raw material gas as a nitrogen source and a raw material gas as a metal source. Is supplied to the chamber, and D
C plasma is applied. In this case, in order to form a metal nitride thin film having good film quality, it becomes necessary to apply a high DC voltage. However, when a film is formed on a large-scale complex three-dimensional base material having remarkable irregularities, a strong glow discharge is locally generated on the surface of the base material, and the base material temperature becomes non-uniform. It becomes difficult to form a nitride thin film.

【0006】本発明は、上記従来の問題点を解決するた
めになされたもので、加熱源を有する真空チャンバ内に
設置される大型複雑立体形状基材の全面にプラズマCV
Dにより目的とする組成比率の金属窒化物薄膜を均一厚
さで形成し得る方法を提供しようとするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and plasma CV is formed on the entire surface of a large-scale complex three-dimensional base material installed in a vacuum chamber having a heating source.
An object of the present invention is to provide a method capable of forming a metal nitride thin film having a desired composition ratio by D with a uniform thickness.

【0007】[0007]

【課題を解決するための手段】本発明は、真空チャンバ
内に少なくとも窒素源としての原料ガスと金属源として
の原料ガスを供給すると共に前記チャンバ内にプラズマ
を発生させて前記チャンバ内で前記各原料ガスを反応さ
せて前記チャンバ内に設置された大型複雑立体形状基材
表面に金属窒化物薄膜を形成するに際し、窒素源である
原料ガスとしてアンモニアを用い、前記基材を加熱源に
より所定温度で均一に加熱しながら前記チャンバと前記
基材間に低DC電圧を印加してDC低プラズマパワーで
成膜することを特徴とする金属窒化物薄膜の形成方法で
ある。前記金属源としての原料ガスとしては、例えばT
iCl4 等を用いることができる。
According to the present invention, at least a raw material gas as a nitrogen source and a raw material gas as a metal source are supplied into a vacuum chamber, and plasma is generated in the chamber so that the plasma is generated in each of the chambers. When forming a metal nitride thin film on the surface of a large-scale complex three-dimensional base material installed in the chamber by reacting the raw material gas, ammonia is used as a raw material gas as a nitrogen source, and the base material is heated to a predetermined temperature by a heating source. The method for forming a metal nitride thin film is characterized in that a low DC voltage is applied between the chamber and the base material while being uniformly heated to form a film with a DC low plasma power. Examples of the source gas as the metal source include T
iCl 4 or the like can be used.

【0008】前記各原料ガスは、キャリアガスと共に前
記チャンバ内に供給することが望ましい。かかるキャリ
アガスとしては、例えば水素またはHe、Arなどの不
活性ガスを用いることができる。
It is desirable that each source gas be supplied into the chamber together with a carrier gas. As such a carrier gas, for example, hydrogen or an inert gas such as He or Ar can be used.

【0009】前記成膜に際してのDCプラズマ印加電圧
は、600〜1400Vの範囲に、前記加熱源による基
材温度は480〜600℃の範囲することが望ましい。
これは、次のような理由によるものである。前記DCプ
ラズマ印加電圧を600V未満にすると、成膜速度が低
下し、一方前記DCプラズマ印加電圧が1400Vを越
えると大型複雑立体形状基材表面に局部的な強グローが
発生して基材が過熱され、均一な成膜が困難となる恐れ
がある。前記基材温度が前記範囲を逸脱すると均一厚さ
で均一組成比率の金属窒化物薄膜を形成することが困難
となる。
It is desirable that the DC plasma applied voltage during the film formation is in the range of 600 to 1400V, and the substrate temperature by the heating source is in the range of 480 to 600 ° C.
This is due to the following reasons. When the voltage applied to the DC plasma is less than 600V, the film forming rate is lowered, while when the voltage applied to the DC plasma exceeds 1400V, a strong strong glow is locally generated on the surface of the large-scale complex three-dimensionally shaped substrate and the substrate is overheated. Therefore, uniform film formation may be difficult. If the substrate temperature deviates from the above range, it becomes difficult to form a metal nitride thin film having a uniform thickness and a uniform composition ratio.

【0010】[0010]

【作用】本発明者等は、以下に説明する知見により大型
複雑立体形状基材の全面に低温にて付き回り性が良好で
目的とする組成比率の金属窒化物薄膜を均一厚さで形成
し得る方法を見出した。
The present inventors have found from the knowledge described below that a metal nitride thin film having a desired composition ratio and a uniform thickness is formed on the entire surface of a large-scale complex three-dimensional base material at a low temperature with good throwing power. I found a way to get it.

【0011】すなわち、前述した従来法のように2種以
上の原料ガスをノズルを通して前記基材が設置された加
熱源を有する真空チャンバ内に供給し、前記チャンバ内
に生成されたDCプラズマにより前記基材表面に薄膜を
形成すると、前記薄膜の特性(例えば成膜速度、硬さ
等)が前記基材の中心部と端部とでは一定にならず、変
化することを究明した。かかる原因については、現時点
では明らかではないが、印加されたDCプラズマにより
大型複雑立体形状基材に局所的に強グローが発生し、前
記基材が局所的に過熱されて均一な成膜が妨げられるこ
とによるものと推定される。
That is, as in the above-mentioned conventional method, two or more kinds of source gases are supplied through a nozzle into a vacuum chamber having a heating source in which the substrate is installed, and the DC plasma generated in the chamber causes It has been clarified that when a thin film is formed on the surface of a base material, the characteristics of the thin film (for example, film forming rate, hardness, etc.) are not constant between the central portion and the end portion of the base material, but change. The reason for this is not clear at this time, but strong glow is locally generated on the large-scale complex three-dimensional base material by the applied DC plasma, and the base material is locally overheated to prevent uniform film formation. It is estimated that this is due to

【0012】このようなことから、本発明者等は真空チ
ャンバ内に少なくとも窒素源としての原料ガスと金属源
としての原料ガスを供給すると共に前記チャンバ内にプ
ラズマを発生させて前記チャンバ内で前記各原料ガスを
反応させて前記チャンバ内に設置された大型複雑立体形
状基材表面に金属窒化物薄膜を形成するに際し、窒素源
である原料ガスとして反応性の高いアンモニアを用い、
前記基材を加熱源により所定温度で均一に加熱しながら
前記チャンバと前記基材間に低DC電圧を印加してDC
低プラズマパワーで成膜することによって、前記基材に
局所的に強グローが発生することなく前記基材全面に亘
って均一な組成比率の金属窒化物薄膜を再現性よく形成
し得る方法を見出した。
From the above, the inventors of the present invention have supplied at least the source gas as the nitrogen source and the source gas as the metal source into the vacuum chamber, and at the same time generate the plasma in the chamber so that the plasma is generated in the chamber. When forming a metal nitride thin film on the surface of a large-scale complex three-dimensional base material installed in the chamber by reacting each raw material gas, highly reactive ammonia is used as the raw material gas that is a nitrogen source,
DC is applied by applying a low DC voltage between the chamber and the substrate while uniformly heating the substrate at a predetermined temperature with a heating source.
A method for forming a metal nitride thin film having a uniform composition ratio over the entire surface of the base material with good reproducibility without forming strong glow locally on the base material by forming a film with low plasma power was found. It was

【0013】[0013]

【実施例】以下、本発明の実施例を図1を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to FIG.

【0014】図1は、本実施例で使用したプラズマCV
D装置を示す概略図である。図中の1は、例えば直径1
200mmの真空チャンバである。このチャンバ1の下
部には、回転式の平板状電極2が設置されている。前記
電極2には、DC電源3が接続されている。前記チャン
バ1の底部には、排気管4が設けられており、かつ該排
気管4の他端には真空ポンプ5が連結されている。
FIG. 1 shows the plasma CV used in this embodiment.
It is a schematic diagram showing a D device. 1 in the figure is, for example, a diameter of 1.
200 mm vacuum chamber. A rotary flat plate-shaped electrode 2 is installed below the chamber 1. A DC power supply 3 is connected to the electrode 2. An exhaust pipe 4 is provided at the bottom of the chamber 1, and a vacuum pump 5 is connected to the other end of the exhaust pipe 4.

【0015】前記チャンバ1内には、内周面に多数のガ
ス噴出口を開口した例えば直径900mm、直径700
mmの環状ノズル6、7が前記電極2上に設置される大
型複雑立体形状基材を囲むように上下にずらして配置さ
れている。前記環状ノズル6、7には、二重管構造の複
合ガス導入管8の一端が連結されている。なお、前記環
状ノズル6は前記複合ガス導入管8の内管8aに、前記
管状ノズル7は前記複合ガス導入管8の内管8aと外管
8bの間に、それぞれ連通されている。前記導入管8の
他端は、前記チャンバ1の側壁を貫通して前記チャンバ
1の外周に配置されたヒータ9の外部に延出されている
と共に、内管8aと外管8bに分岐されている。前記ヒ
ータ9の外部に位置する前記内管8aと外管8b部分に
は、バルブ10a、10bおよびマスフローコントロー
ラ11a、11bがそれぞれ順次介装されている。 実施例 前述したプラズマCVD装置を用いて薄膜形成方法を説
明する。
Inside the chamber 1, a large number of gas ejection ports are opened on the inner peripheral surface, for example, a diameter of 900 mm and a diameter of 700.
Annular nozzles 6 and 7 of mm are arranged so as to be vertically shifted so as to surround a large-sized complex three-dimensional base material installed on the electrode 2. One end of a composite gas introducing pipe 8 having a double pipe structure is connected to the annular nozzles 6 and 7. The annular nozzle 6 is connected to the inner pipe 8a of the composite gas introduction pipe 8, and the tubular nozzle 7 is connected to the inner pipe 8a and the outer pipe 8b of the composite gas introduction pipe 8, respectively. The other end of the introduction pipe 8 extends through the sidewall of the chamber 1 to the outside of the heater 9 arranged on the outer periphery of the chamber 1, and is branched into an inner pipe 8a and an outer pipe 8b. There is. Valves 10a and 10b and mass flow controllers 11a and 11b are sequentially inserted in the inner pipe 8a and the outer pipe 8b located outside the heater 9, respectively. Example A thin film forming method using the plasma CVD apparatus described above will be described.

【0016】まず、真空チャンバ1内の回転電極2上に
水平方向への膨出部の径が400mm、窪み部の径が1
00mm、高さ600mmのSKH51製の大型複雑立
体形状基材12を前記環状ノズル6、7内に挿入される
ように設置した。つづいて、真空ポンプ5を作動して排
気管4を通して前記チャンバ1内のガスを排気し、マス
フローコントローラ11およびバルブ10で流量調節さ
れたNH3 とH2 の混合ガス(NH3 ;150scc
m、H2 ;2000sccm)を二重管構造の複合ガス
導入管8(内管8a、外管8bの間)を通して大径(9
00mm)の環状ノズル6から前記チャンバ1内に供給
した。その後、ヒータ9により前記基材12を500℃
に加熱した状態で前記電極2を回転しながら、DC電源
3から−800Vの直流電圧を印加し、前記チャンバ1
内にプラズマを発生させて前記基材12表面を清浄化し
た。
First, the diameter of the bulging portion in the horizontal direction on the rotating electrode 2 in the vacuum chamber 1 is 400 mm, and the diameter of the hollow portion is 1.
A large complex three-dimensional substrate 12 made of SKH51 having a size of 00 mm and a height of 600 mm was installed so as to be inserted into the annular nozzles 6 and 7. Subsequently, the vacuum pump 5 is operated to exhaust the gas in the chamber 1 through the exhaust pipe 4, and the mixed gas of NH 3 and H 2 (NH 3 ; 150 scc) whose flow rate is adjusted by the mass flow controller 11 and the valve 10.
m, H 2 ; 2000 sccm) through a composite gas introducing pipe 8 (between the inner pipe 8a and the outer pipe 8b) having a double pipe structure,
It was supplied into the chamber 1 from an annular nozzle 6 (00 mm). Then, the base material 12 is heated to 500 ° C. by the heater 9.
While the electrode 2 is rotated in a state of being heated to a high temperature, a DC voltage of −800 V is applied from the DC power source 3 to the chamber 1
Plasma was generated inside to clean the surface of the substrate 12.

【0017】次いで、前記混合ガスの供給を続行した状
態でマスフローコントローラ11bおよびバルブ10b
で流量調節されたTiCl4 とH2 の混合ガス(TiC
4;50sccm、H2 ;2000sccm)を複合
ガス導入管8の内管8aを通して小径(700mm)の
環状ノズル7から前記チャンバ1内に供給し、前記基材
12の温度が500℃、前記チャンバ1内の圧力が1t
orrの条件にて2時間プラズマCVDを行なって前記
大型複雑立体形状基材12表面にTiN薄膜が形成し
た。 比較例
Then, the mass flow controller 11b and the valve 10b are continuously supplied with the mixed gas.
Mixed gas of TiCl 4 and H 2 (TiC
l 4 ; 50 sccm, H 2 ; 2000 sccm) is supplied into the chamber 1 from the annular nozzle 7 having a small diameter (700 mm) through the inner pipe 8 a of the composite gas introduction pipe 8, and the temperature of the substrate 12 is 500 ° C. Pressure in 1 is 1t
Plasma TiN was performed for 2 hours under the condition of orr to form a TiN thin film on the surface of the large-sized complex three-dimensional substrate 12. Comparative example

【0018】まず、真空チャンバ1内の回転電極2上
に、水平方向への膨出部の径が400mm、窪み部の径
が100mm、高さ600mmのSKH51製の大型複
雑立体形状基材12を前記環状ノズル6、7内に挿入さ
れるように設置した。つづいて、真空ポンプ5を作動し
て排気管4を通して前記チャンバ1内のガスを排気し、
マスフローコントローラ11およびバルブ10で流量調
節されたN2 とH2 の混合ガス(N2 ;100scc
m、H2 ;2000sccm)を二重管構造の複合ガス
導入管8(内管8a、外管8bの間)を通して大径(9
00mm)の環状ノズル6から前記チャンバ1内に供給
した。その後、ヒータ9により前記基材12を500℃
に加熱した状態で前記電極2を回転しながら、DC電源
3から−1500Vの直流電圧を印加し、前記チャンバ
1内にプラズマを発生させて前記基材12表面を清浄化
した。
First, on the rotary electrode 2 in the vacuum chamber 1, a large complex three-dimensional base material 12 made of SKH51 having a horizontal bulging portion having a diameter of 400 mm, a hollow portion having a diameter of 100 mm, and a height of 600 mm is prepared. It was installed so as to be inserted into the annular nozzles 6 and 7. Subsequently, the vacuum pump 5 is operated to exhaust the gas in the chamber 1 through the exhaust pipe 4,
A mixed gas of N 2 and H 2 (N 2 ; 100 scc) whose flow rate is adjusted by the mass flow controller 11 and the valve 10.
m, H 2 ; 2000 sccm) through a composite gas introducing pipe 8 (between the inner pipe 8a and the outer pipe 8b) having a double pipe structure,
It was supplied into the chamber 1 from an annular nozzle 6 (00 mm). Then, the base material 12 is heated to 500 ° C. by the heater 9.
While the electrode 2 was rotated in a state of being heated to 1, a DC voltage of -1500V was applied from the DC power source 3 to generate plasma in the chamber 1 to clean the surface of the substrate 12.

【0019】次いで、前記混合ガスの供給を続行した状
態でマスフローコントローラ11bおよびバルブ10b
で流量調節されたTiCl4 とH2 の混合ガス(TiC
4;50sccm、H2 ;2000sccm)を複合
ガス導入管8の内管8aを通して小径(700mm)の
環状ノズル7から前記チャンバ1内に供給し、前記基材
12の温度が500℃、前記チャンバ1内の圧力が1t
orrの条件にて2時間プラズマCVDを行なって前記
大型複雑立体形状基材12表面にTiN薄膜が形成し
た。
Then, the mass flow controller 11b and the valve 10b are continuously supplied with the mixed gas being supplied.
Mixed gas of TiCl 4 and H 2 (TiC
l 4 ; 50 sccm, H 2 ; 2000 sccm) is supplied into the chamber 1 from the annular nozzle 7 having a small diameter (700 mm) through the inner pipe 8 a of the composite gas introduction pipe 8, and the temperature of the substrate 12 is 500 ° C. Pressure in 1 is 1t
Plasma TiN was performed for 2 hours under the condition of orr to form a TiN thin film on the surface of the large-sized complex three-dimensional substrate 12.

【0020】本実施例及び比較例により大型複雑立体形
状基材に形成されたTiN薄膜について、蛍光X線膜厚
計、マイクロビッカース硬度計を用いて10mm間隔で
多点の膜厚及び硬さを測定した。その結果、実施例では
膜厚が3.1±0.2μm、荷重10gでのビッカース
硬さが1900±300であり、均一厚さでかつ均質な
TiN薄膜が形成されていることが確認された。これに
対し、比較例では膜厚が1.6±1.5μm、同ビッカ
ース硬さが1400±800であり、均一厚さでかつ均
質なTiN薄膜の形成が困難であった。
With respect to the TiN thin film formed on the large-sized complex three-dimensional base material according to this example and the comparative example, the film thickness and hardness at multiple points at 10 mm intervals were measured using a fluorescent X-ray film thickness meter and a micro Vickers hardness meter. It was measured. As a result, in the example, it was confirmed that the film thickness was 3.1 ± 0.2 μm, the Vickers hardness at a load of 10 g was 1900 ± 300, and that a TiN thin film having a uniform thickness and a uniform thickness was formed. . On the other hand, in the comparative example, the film thickness was 1.6 ± 1.5 μm and the Vickers hardness was 1400 ± 800, and it was difficult to form a TiN thin film having a uniform thickness and a uniform thickness.

【0021】また、本実施例において10個の大型複雑
立体形状基材に形成されたTiN薄膜は、いずれも黄金
色を呈し、それぞれについてX線分析を行ったところ、
すべてTiN組成を有していた。これに対し、比較例で
は10個の大型複雑立体形状基材に形成されたTiN薄
膜は膨出部が黄金色を呈していたが、窪み部では黒褐色
を呈し、前記黒褐色部のX線分析の結果はTiN組成を
示すものの、多量の塩素が検出された。
Further, in the present embodiment, the TiN thin films formed on the 10 large-sized complex three-dimensional substrates all had a golden color, and X-ray analysis was performed on each of them.
All had a TiN composition. On the other hand, in the comparative example, the TiN thin film formed on the 10 large-sized complex three-dimensional base materials had a golden color at the bulging portion, but had a dark brown color at the hollow portion, which was obtained by X-ray analysis of the dark brown color portion. Although the result shows the TiN composition, a large amount of chlorine was detected.

【0022】[0022]

【発明の効果】以上詳述した如く、本発明によれば真空
チャンバ内に設置される大型複雑立体形状基材の全面に
亘って低温で目的とする組成比率の金属窒化物薄膜形成
し得る方法を提供できる。
As described above in detail, according to the present invention, a method for forming a metal nitride thin film having a desired composition ratio at a low temperature over the entire surface of a large-scale complex three-dimensional base material installed in a vacuum chamber. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用したプラズマCVD装置
を示す概略図。
FIG. 1 is a schematic view showing a plasma CVD apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…真空チャンバ、2…回転電極、3…DC電源、4…
排気管、6、7…環状ノズル、8…複合ガス導入管、1
2…大型複雑立体形状基材。
1 ... Vacuum chamber, 2 ... Rotating electrode, 3 ... DC power supply, 4 ...
Exhaust pipe, 6, 7 ... Annular nozzle, 8 ... Composite gas introduction pipe, 1
2 ... Large complex three-dimensional base material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 芳朗 東京都港区西新橋1−7−2 株式会社ラ イムズ内 (72)発明者 小林 邦明 東京都港区西新橋1−7−2 株式会社ラ イムズ内 (72)発明者 柳沼 良和 東京都府中市住吉町3−4−6 日本電子 工業株式会社府中工場内 (72)発明者 舟木 義行 東京都府中市住吉町3−4−6 日本電子 工業株式会社府中工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshiro Ishii             1-7-2 Nishishimbashi, Minato-ku, Tokyo LA Inc.             Within IMS (72) Inventor Kuniaki Kobayashi             1-7-2 Nishishimbashi, Minato-ku, Tokyo LA Inc.             Within IMS (72) Inventor Yoshikazu Yaginuma             3-4-6 Sumiyoshi-cho, Fuchu-shi, Tokyo JEOL             Fuchu Factory, Industrial Co., Ltd. (72) Inventor Yoshiyuki Funaki             3-4-6 Sumiyoshi-cho, Fuchu-shi, Tokyo JEOL             Fuchu Factory, Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバ内に少なくとも窒素源とし
ての原料ガスと金属源としての原料ガスを供給すると共
に前記チャンバ内にプラズマを発生させて前記チャンバ
内で前記各原料ガスを反応させて前記チャンバ内に設置
された大型複雑立体形状基材表面に金属窒化物薄膜を形
成するに際し、窒素源である原料ガスとしてアンモニア
を用い、前記基材を加熱源により所定温度で均一に加熱
しながら前記チャンバと前記基材間に低DC電圧を印加
してDC低プラズマパワーで成膜することを特徴とする
金属窒化物薄膜の形成方法。
1. A chamber in which at least a source gas as a nitrogen source and a source gas as a metal source are supplied into a vacuum chamber, and plasma is generated in the chamber to cause the source gases to react in the chamber. When forming a metal nitride thin film on the surface of a large-scale complex three-dimensional base material installed in the chamber, ammonia is used as a source gas as a nitrogen source, and the base material is uniformly heated by a heating source at a predetermined temperature in the chamber. A method for forming a metal nitride thin film, characterized in that a low DC voltage is applied between the base material and the base material to form a film with a low DC plasma power.
【請求項2】 成膜をDCプラズマ印加電圧600〜1
400V、加熱源による基材温度480〜600℃の条
件にて行なうことを特徴とする請求項1記載の金属窒化
物薄膜の形成方法。
2. A DC plasma applied voltage of 600 to 1 for film formation.
The method for forming a metal nitride thin film according to claim 1, wherein the method is carried out under the conditions of a substrate temperature of 480 to 600 ° C. by a heating source of 400V.
JP18266691A 1991-07-23 1991-07-23 Formation of metallic nitride thin film Pending JPH0525640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18266691A JPH0525640A (en) 1991-07-23 1991-07-23 Formation of metallic nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18266691A JPH0525640A (en) 1991-07-23 1991-07-23 Formation of metallic nitride thin film

Publications (1)

Publication Number Publication Date
JPH0525640A true JPH0525640A (en) 1993-02-02

Family

ID=16122314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18266691A Pending JPH0525640A (en) 1991-07-23 1991-07-23 Formation of metallic nitride thin film

Country Status (1)

Country Link
JP (1) JPH0525640A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224501A (en) * 1985-07-24 1987-02-02 小糸工業株式会社 Illumination for roofed ball park
JPS63317676A (en) * 1987-06-19 1988-12-26 Sharp Corp Production of thin metallic compound film having non-grained structure
JPS6419469A (en) * 1987-07-15 1989-01-23 Nec Corp Wiring delay time calculation processing system for integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224501A (en) * 1985-07-24 1987-02-02 小糸工業株式会社 Illumination for roofed ball park
JPS63317676A (en) * 1987-06-19 1988-12-26 Sharp Corp Production of thin metallic compound film having non-grained structure
JPS6419469A (en) * 1987-07-15 1989-01-23 Nec Corp Wiring delay time calculation processing system for integrated circuit

Similar Documents

Publication Publication Date Title
EP0936284A3 (en) Method and apparatus for producing thin films
JP2008532255A (en) Method and system for coating portions of an inner surface
EP1424405A3 (en) Method and apparatus for fabricating coated substrates
EP1044458B1 (en) Dual face shower head magnetron, plasma generating apparatus and method of coating a substrate
JPH0456770A (en) Method for cleaning plasma cvd device
JPH0525640A (en) Formation of metallic nitride thin film
EP1598442B1 (en) Amorphous carbon film forming method
JPH05255857A (en) Formation of thin film by plasma cvd film
JPH04180566A (en) Thin film forming device
JPH04289172A (en) Thin film forming method
JPH04210479A (en) Formation of thin film by plasma cvd
JP2001073146A (en) Thin film deposition system and method
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JPH0411628B2 (en)
JPH06128747A (en) Method and device for forming hard carbonaceous thin film by chemical vapor phase synthesis
JPH05156454A (en) Film forming device
JPH02194179A (en) Film forming device
JPS6326374A (en) Method and device for plasma chemical vapor deposition
JPH0527707B2 (en)
JPH03138370A (en) Thin film forming device
JPH0280556A (en) Manufacture of film of composite material
JPH02190467A (en) Production of composite material film
JPH02115371A (en) Formation of thin film by plasma cvd
JPS60215766A (en) Decomposing device by glow discharge
JPS6124466B2 (en)