JPH05255765A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH05255765A
JPH05255765A JP8796892A JP8796892A JPH05255765A JP H05255765 A JPH05255765 A JP H05255765A JP 8796892 A JP8796892 A JP 8796892A JP 8796892 A JP8796892 A JP 8796892A JP H05255765 A JPH05255765 A JP H05255765A
Authority
JP
Japan
Prior art keywords
ore
sintering
coarse
dolomite
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8796892A
Other languages
Japanese (ja)
Inventor
Choichi Aritomi
暢一 有冨
Yutaka Sasa
豊 佐々
Katsuhiro Tanaka
勝博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8796892A priority Critical patent/JPH05255765A/en
Publication of JPH05255765A publication Critical patent/JPH05255765A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To ameliorate the degradation in air permeability in a sintering bed arising from an increase in coarse grained ore contg. many gangue components and to produce the sintered ore having improved cold strength with high yield by adequately adjusting the amts. of powdery CaO and MgO sources to be added at the time of pelletizing and the sintered ore. CONSTITUTION:The coarse grained ore contg. >=50wt.% particles of over 1mm grain sizes and having >=3wt.% SiO2 content and fine powder ore contg. >=80wt.% particles of <=1mum grain sizes are compounded at such ratios at which (the coarse grained ore)/(the fine powder ore) attain 10/10 to 30/10 by weight. Further, powdery quicklime and powdery dolomite are so compounded that the compounding ratio of the dolomite with 100 parts (the coarse grained ore + the fine ore) attains 2 to 23 pts. wt. The mixture is then pelletized. The resulted pellets are mixed with other main raw materials for sintering and auxiliary raw materials for sintering or are mixed therewith and are pelletized; thereafter, the pellets are charged into a sintering machine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脈石成分が多い粗粒鉱
石を使用した焼結鉱製造時の通気性を改善し、高い生産
性で焼結鉱を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered ore with high productivity by improving the air permeability during the production of the sintered ore using a coarse-grained ore containing a large amount of gangue components.

【0002】[0002]

【従来の技術】製鉄用鉄鉱石原料として、微粉鉱石,脈
石成分が多い粗粒鉱石等の使用量が増加する傾向にあ
る。微粉鉱石,脈石成分が多い粗粒鉱石等は、従来の高
品位粗粒鉱石に比較し安価であり、これら原料を多量に
配合するとき焼結鉱の製造コストが低減する。
2. Description of the Related Art As a raw material for iron ore for iron making, the amount of fine ore or coarse ore containing many gangue components tends to increase. Fine-grained ores and coarse-grained ores containing a large amount of gangue components are less expensive than conventional high-grade coarse-grained ores, and when a large amount of these raw materials are compounded, the production cost of the sintered ore is reduced.

【0003】しかし、脈石成分を多量に含む粗粒鉱石
は、焼結過程で融液を多量に生成し、微粉鉱石と共に焼
結時の通気性を招き,焼結鉱の歩留りを低下させる。そ
こで、通気性悪化を改善するため、微粉鉱石と一部粗粒
鉱石とを予め造粒して擬似粒子化した後、他の主原料及
び副原料と混合又は混合造粒して焼結機に装入すること
に関し、これまで種々の提案が行われている。たとえ
ば、特公昭60−17811号公報では粒度区分が特定
された焼結用ミニペレットを使用し、特公平2−374
10号公報では粗粒鉱石の配合割合を特定して焼結原料
を事前処理している。
However, a coarse-grained ore containing a large amount of gangue components produces a large amount of melt during the sintering process, which causes air permeability during sintering together with the fine ore and reduces the yield of the sintered ore. Therefore, in order to improve the deterioration of air permeability, after finely granulated ore and partially coarse-grained ore are granulated in advance to form pseudo particles, they are mixed or granulated with other main raw materials and auxiliary raw materials to a sintering machine. Various proposals have been made so far regarding charging. For example, in Japanese Examined Patent Publication No. 60-17811, use is made of sintering mini pellets whose particle size classification is specified.
In Japanese Patent No. 10, the sintering raw material is pretreated by specifying the mixing ratio of coarse-grained ore.

【0004】脈石成分の多い粗粒鉱石の溶融に伴う通気
性悪化を改善するため、固体燃料と造粒した粗粒鉱石を
他の焼結主・副原料と床敷きとの間に装入して焼結する
ことが特開平3−130326号公報で提案されてい
る。この方法においては、高ゲーサイト鉱石等の脈石成
分が多い粗粒鉱石は、偏析挿入によって燃焼制御された
条件下で焼結されて焼結鉱となる。また、特開平4−1
3818号公報では、予めMgO−SiO2 系原料と造
粒した粗粒鉱石を他の焼結主・副原料と混合造粒してい
る。
[0004] In order to improve the deterioration of air permeability due to melting of coarse ore having many gangue components, solid fuel and granulated coarse ore are charged between other sintering main / auxiliary materials and bedding. Japanese Unexamined Patent Publication (Kokai) No. 3-130326 proposes sintering. In this method, a coarse ore such as a high goethite ore containing a large amount of gangue components is sintered into a sinter under the condition that combustion is controlled by segregation insertion. In addition, Japanese Patent Laid-Open No. 4-1
In Japanese Patent No. 3818, coarse ores that have been granulated with MgO—SiO 2 -based raw material in advance are mixed and granulated with other sintering main and auxiliary raw materials.

【0005】[0005]

【発明が解決しようとする課題】高ゲーサイト鉱石等の
粗粒鉱石を使用する特開平3−130326号公報の方
法では、全焼結原料に対する粗粒鉱石の配合割合に制約
があり、粗粒鉱石を大量に使用して焼結鉱を製造するこ
とはできない。他方、特開平4−13818号公報記載
の方法では、MgO−SiO2 系原料を粗粒鉱石と予め
造粒することにより粗粒鉱石の過溶融が抑制される。し
かし、MgO−SiO2 系原料の使用は、焼結鉱のSi
2 含有量を多くすることから高スラグ化の原因とな
る。
In the method of Japanese Patent Laid-Open No. 3-130326, which uses coarse-grained ores such as high goethite ores, there is a restriction on the compounding ratio of the coarse-grained ores to all the sintering raw materials, and the coarse-grained ores are included. It is not possible to produce sinter using a large amount of. On the other hand, in the method described in JP-A-4-13818, overmelting of the coarse-grained ore is suppressed by preliminarily granulating the MgO—SiO 2 -based raw material with the coarse-grained ore. However, the use of MgO-SiO 2 -based raw material is
Increasing the O 2 content causes high slag.

【0006】脈石成分の多い粗粒鉱石を製鉄原料として
使用する場合、高スラグ化の原因である焼結鉱のSiO
2 含有量の増加を招くことなく、脈石成分の多い粗粒鉱
石の通気性悪化を改善することが必要である。これによ
って、低品位の粗粒鉱石の大量使用が可能となり、焼結
鉱製造コストを低減させることができる。
When coarse-grained ore containing a large amount of gangue components is used as a raw material for iron making, the SiO content of the sintered ore, which causes high slag
2 It is necessary to improve the deterioration of air permeability of coarse-grained ores with many gangue components without increasing the content. As a result, a large amount of low-grade coarse-grained ore can be used, and the sinter production cost can be reduced.

【0007】本発明は、このような要求に応えるべく案
出されたものであり、焼結鉱及び造粒時に添加する粉状
CaO,MgO源の量を適切に調節することにより、脈
石成分の多い粗粒鉱石の増加に伴った焼結ベッドにおけ
る通気性低下を改善すると共に、冷間強度を向上させた
焼結鉱を高い歩留りで製造することを目的とする。
The present invention has been devised in order to meet such a demand, and by appropriately adjusting the amounts of the powdered CaO and MgO sources added at the time of sinter and granulation, the gangue component can be obtained. It is an object of the present invention to improve the decrease in air permeability in a sintered bed due to the increase in the amount of coarse-grained ore, and to produce a sintered ore with improved cold strength at a high yield.

【0008】[0008]

【課題を解決するための手段】本発明の焼結鉱製造方法
は、その目的を達成するため、粒径が1mmを超える粒
子を50重量%以上含有しSiO2 含有量が3重量%以
上の粗粒鉱石と粒径が1mm以下の粒子を80重量%以
上含有する微粉鉱石とを、(粗粒鉱石)/(微粉鉱石)
が重量比で10/10〜30/10となる割合で配合
し、更に粉状生石灰及び粉状ドロマイトを、(粗粒鉱石
+微粉鉱石)100部に対するドロマイトの配合割合が
2〜23重量部となるように配合して造粒し、得られた
造粒物を他の焼結主原料及び焼結副原料と混合又は混合
造粒した後、焼結機に装入することを特徴とする。
In order to achieve the object, the method for producing a sinter according to the present invention contains 50 wt% or more of particles having a particle size of more than 1 mm and SiO 2 content of 3 wt% or more. Coarse-grained ore and fine-grained ore containing 80% by weight or more of particles having a particle diameter of 1 mm or less are (coarse-grained ore) / (fine-grained ore)
Is mixed at a ratio of 10/10 to 30/10 by weight, and further, powdered quick lime and powdered dolomite are mixed in a proportion of 2 to 23 parts by weight with respect to 100 parts of (coarse ore + fine ore). It is characterized in that it is mixed and granulated as described below, and the obtained granulated product is mixed or mixed with other main sintering raw materials and auxiliary sintering raw materials, and then charged into a sintering machine.

【0009】[0009]

【作 用】SiO2 含有量が3重量%以上の脈石成分が
多い粗粒鉱石の過溶融を抑えるためには、MgO源を焼
結原料に添加することが有効である。添加されるMgO
源としては、蛇紋岩及びドロマイトが考えられる。この
点、特開平4−13818号公報では、MgO−SiO
2 源として蛇紋岩を添加し、焼結原料を造粒している。
しかし、焼結鉱を高品質化する上では、必要とするMg
O以外の脈石成分が少ないことが必要である。
[Operation] In order to suppress overmelting of coarse-grained ore containing a large amount of gangue components having a SiO 2 content of 3% by weight or more, it is effective to add a MgO source to the sintering raw material. MgO added
Sources include serpentinite and dolomite. In this regard, in JP-A-4-13818, MgO-SiO
Serpentinite added as 2 source, and granulating the sintered material.
However, in order to improve the quality of the sintered ore, the required Mg
It is necessary that the gangue component other than O is small.

【0010】蛇紋岩は、その平均的組成を表1に示すよ
うに、SiO2 成分が40重量%程度と多く含有されて
いる。これに対し、ドロマイトは、SiO2 成分が0.
2重量%と低い。したがって、焼結鉱の低スラグ化を図
るために、ドロマイトを使用すべきである。
As shown in Table 1 of the average composition of serpentinite, the SiO 2 component is abundant at about 40% by weight. On the other hand, dolomite has a SiO 2 component of 0.
It is as low as 2% by weight. Therefore, dolomite should be used to reduce the slag of the sinter.

【0011】[0011]

【表1】 [Table 1]

【0012】本発明者等は、このドロマイトをMgO源
として低品位鉱石に添加し焼結鉱を製造する過程で、焼
結鉱の低SiO2 組成を維持しつつ、粗粒鉱石の融液生
成を抑制し、通気性を改善し、且つ焼結鉱の歩留り及び
冷間強度を向上させるためには、粗粒鉱石,微粉鉱石及
び粉状フラックス[生石灰(CaO),ドロマイト(C
aCO3・MgCO3 ]とを適切な造粒状態にし、且つ造
粒して得られた造粒物(以下、これを予備造粒物とい
う)の焼成後の強度を十分な高さにする必要があること
を見い出した。
The inventors of the present invention added the dolomite as a MgO source to a low-grade ore to produce a sinter, while maintaining a low SiO 2 composition of the sinter and producing a melt of coarse-grained ore. In order to suppress the above, improve the air permeability, and improve the yield and the cold strength of the sintered ore, coarse ore, fine ore and powdery flux [quick lime (CaO), dolomite (C
and a aCO 3 · MgCO 3] to the appropriate granulation conditions and granules obtained by granulating (hereinafter, preliminary called granules) to be the strength of the sintered high enough I found out that there is.

【0013】そこで、粗粒鉱石と微粉鉱石の造粒実験を
行い、適切な造粒条件を検討した。その結果、(粗粒鉱
石)/(微粉鉱石)の重量比が0〜10/10の範囲で
は、核となる鉱石の量が少ないことから、造粒は進行し
なかった。また、(粗粒鉱石)/(微粉鉱石)の重量比
が30/10を超える範囲でも、核鉱石に付着する粉末
の量が不足し、造粒の進行がみられなかった。そして、
適切な粗粒鉱石と微粉鉱石との配合割合は、(粗粒鉱
石)/(微粉鉱石)の重量比が10/10〜30/10
の範囲にあることが判明した。
Therefore, granulation experiments were carried out on coarse-grained ores and fine-grained ores, and appropriate granulation conditions were examined. As a result, when the (rough-grained ore) / (fine-grained ore) weight ratio was in the range of 0 to 10/10, the amount of the ore serving as the core was small, and thus the granulation did not proceed. Further, even in the range where the weight ratio of (coarse ore) / (fine ore) exceeds 30/10, the amount of powder adhering to the nuclear ore was insufficient, and no progress of granulation was observed. And
The proper mixing ratio of coarse ore and fine ore is such that the weight ratio of (coarse ore) / (fine ore) is 10/10 to 30/10.
It was found to be in the range of.

【0014】造粒の際、粗粒鉱石の銘柄によっては粒度
分布が異なり、造粒性が悪化することがある。このよう
な場合、生石灰を添加して造粒性を向上させることによ
り、(粗粒鉱石)/(微粉鉱石)=10/10〜30/
10の範囲で適切な造粒物を得ることができる。ただ
し、生石灰は、全造粒原料100部に対し7部以下の割
合で添加することが好ましい。生石灰の添加割合が7部
を超えるとき、焼結の際に付着粉層が過溶融を起こし、
通気性を悪化させる現象が発生し易くなる。
During granulation, the grain size distribution may vary depending on the brand of coarse-grained ore, and the granulation property may deteriorate. In such a case, by adding quick lime to improve the granulation property, (coarse ore) / (fine ore) = 10/10 to 30 /
Appropriate granules can be obtained in the range of 10. However, it is preferable to add quick lime at a ratio of 7 parts or less with respect to 100 parts of the entire granulation raw material. When the addition ratio of quick lime exceeds 7 parts, the adhered powder layer causes over-melting during sintering,
A phenomenon that deteriorates air permeability is likely to occur.

【0015】次いで、粗粒鉱石,微粉鉱石及びドロマイ
トからなる予備造粒物を焼成した後で強度試験を行い、
適切な強度が得られるドロマイトの添加量を検討した。
結果を、予備造粒物に対するドロマイトの添加量と予備
造粒物の焼成後強度との関係として図1に示す。図1か
ら明らかなように、所望の強度が得られるドロマイト添
加量は、(粗粒鉱石)/(微粉鉱石)=10/10〜3
0/10の範囲において、(粗粒鉱石+微粉鉱石)10
0重量部に対しドロマイト2〜23部であった。
Next, a strength test is conducted after firing a preliminary granulated product consisting of coarse ore, fine ore and dolomite.
The amount of dolomite added to obtain appropriate strength was examined.
The results are shown in FIG. 1 as the relationship between the amount of dolomite added to the pre-granulated product and the strength of the pre-granulated product after firing. As is clear from FIG. 1, the amount of dolomite added to obtain desired strength is (coarse ore) / (fine ore) = 10/10 to 3
In the range of 0/10, (coarse ore + fine ore) 10
It was 2 to 23 parts by weight for 0 part by weight.

【0016】このようにして、粗粒鉱石と微粉鉱石との
配合割合及び微粉鉱石に対するドロマイト添加量を適正
に維持するとき、低品位の粗粒鉱石や微粉鉱石を多量に
使用してもSiO2 含有量の増加を招くことなく、強度
的に優れた焼結鉱が得られる。
In this way, when the proportion of the coarse ore and the fine ore and the addition amount of dolomite to the fine ore are properly maintained, even if a large amount of low-grade coarse or fine ore is used, SiO 2 A sintered ore having excellent strength can be obtained without increasing the content.

【0017】[0017]

【実施例】低品位の粗粒鉱石としてSiO2 成分が3重
量%以上の豪州産褐鉄鉱系鉱石(以下、これを単に褐鉄
鉱という)を、微粉鉱石として南米産微粉鉱石を使用し
た。褐鉄鉱及び微粉鉱石を、表2に示す配合割合で粉状
生石灰及びドロマイトと混合し、予備造粒物を成形し
た。なお、使用した褐鉄鉱及び微粉鉱石の粒度構成及び
化学成分を、表3及び表4にそれぞれ示す。予備造粒物
において、褐鉄鉱は擬似粒子の核となり、その上に微粉
鉱石及び他の原料が付着していた。
Example A limonite-based ore from Australia (hereinafter simply referred to as limonite) having a SiO 2 component of 3% by weight or more was used as a low-grade coarse ore, and a fine-grained ore from South America was used as a fine ore. Limonite and fine ore were mixed with powdered quick lime and dolomite in the mixing ratios shown in Table 2 to form a preliminary granulated product. The particle size composition and chemical components of the used limonite and fine ore are shown in Tables 3 and 4, respectively. In the pre-granulated product, limonite became nuclei of pseudo particles, on which fine ore and other raw materials were attached.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】実施例は、本発明に従って褐鉄鉱及び微粉
鉱石100重量部に対してドロマイト12重量部及び生
石灰2部を配合した例である。比較例1はドロマイトを
配合しない場合、比較例2は適性範囲以上のドロマイト
を配合した場合、比較例3はMgO源として蛇紋岩を使
用した場合である。何れの場合においても、焼結時の最
高到達温度が約1250℃となるように、コークス添加
量を調整した。また、予備造粒原料以外の焼結主原料と
して豪州産微粉鉱石及び南米産粉鉱石を使用し、副原料
として蛇紋岩,珪石粉及び石灰石粉を使用した。
The example is an example in which 12 parts by weight of dolomite and 2 parts of quick lime were mixed with 100 parts by weight of limonite and fine ore according to the present invention. Comparative Example 1 is a case in which dolomite is not mixed, Comparative Example 2 is a case in which dolomite in an appropriate range or more is mixed, and Comparative Example 3 is a case in which serpentine is used as a MgO source. In any case, the amount of coke added was adjusted so that the maximum temperature reached during sintering was about 1250 ° C. Also, fine ore from Australia and fine ore from South America were used as main sintering materials other than the preliminary granulation material, and serpentine, silica stone powder and limestone powder were used as auxiliary materials.

【0022】予備造粒工程では、褐鉄鉱,微粉鉱石,生
石灰,ドロマイト等をドラム型造粒機に装入し、予備造
粒水分9.0重量%で所定時間造粒した。その後、得ら
れた予備造粒物を他の焼結原料と共にドラム型造粒機に
装入し、造粒水分6.5重量%で所定時間混合・造粒し
た。
In the preliminary granulation step, limonite, finely powdered ore, quick lime, dolomite, etc. were charged into a drum type granulator and granulated for a predetermined time with a preliminary granulation water content of 9.0% by weight. Then, the obtained pre-granulated product was charged into a drum type granulator together with other sintering raw materials, and was mixed and granulated at a granulation water content of 6.5% by weight for a predetermined time.

【0023】造粒した焼結原料を、日本鉄鋼協会製銑部
会法に準拠して焼成最高温度1250℃,吸引負圧11
00mm水柱の一定条件下で焼結鍋試験に供した。焼結
鉱は、焼結時間,歩留り(粒径5mm以上の焼結鉱が得
られる割合),JIS還元率及び還元粉化指数で評価し
た。焼結鍋試験の結果を、表5に示す。
The granulated sintering raw material is fired at a maximum temperature of 1250 ° C. and a suction negative pressure of 11 in accordance with the Iron and Steel Institute's pig iron section method.
It was subjected to a sintering pot test under a constant condition of a water column of 00 mm. The sintered ore was evaluated by the sintering time, the yield (the rate at which a sintered ore having a particle size of 5 mm or more is obtained), the JIS reduction rate and the reduction powdering index. The results of the sintering pot test are shown in Table 5.

【0024】[0024]

【表5】 [Table 5]

【0025】表5から明らかなように、本発明が適用さ
れた配合割合の実施例は、比較例1及び2に比べて焼結
時間が短く、通気性が向上していることが判る。また、
歩留りも良好であり、焼結時間の短縮を合わせて生産性
が向上される結果が得られた。他方、比較例3は、実施
例の焼結鉱と比べたとき、生産率等に差がみられないも
のの、焼結鉱のSiO2 含有量が高くなり、高スラグ化
した炉況を呈した。なお、還元性状は、何れの条件にお
いても大差はみられなかった。
As is clear from Table 5, it is understood that the examples of the compounding ratio to which the present invention is applied have shorter sintering time and improved air permeability as compared with Comparative Examples 1 and 2. Also,
The yield was good, and the result was that the productivity was improved by shortening the sintering time. On the other hand, in Comparative Example 3, when compared with the sintered ore of the Example, there was no difference in the production rate, etc., but the SiO 2 content of the sintered ore was high, and a furnace condition with high slag was exhibited. .. The reducing properties did not differ greatly under any of the conditions.

【0026】[0026]

【発明の効果】以上に説明したように、本発明において
は、焼結原料を予備造粒して焼結鉱を製造する際、予備
造粒時に添加するドロマイト及び生石灰の添加量を調整
することにより、溶融して通気性を阻害する脈石成分を
多量に含む粗粒鉱石の融液生成を抑制し、焼結ベッドの
通気性を確保し、円滑な焼結反応の進行を図っている。
これにより、高スラグ化の原因となるSiO2 含有量の
増加を招くことなく、安価な低品位の粗粒鉱石を多量に
使用して強度の大きな焼結鉱を高い歩留りで製造するこ
とが可能となる。また、得られた焼結鉱は、冷間強度が
大きく、ハンドリング時に粉化することも抑制される。
As described above, in the present invention, when the sintering raw material is pre-granulated to produce a sintered ore, the addition amount of dolomite and quick lime added during the pre-granulation is adjusted. Thus, the melt generation of coarse-grained ore containing a large amount of gangue component that melts and hinders air permeability is suppressed, air permeability of the sintering bed is ensured, and smooth sintering reaction is promoted.
As a result, it is possible to produce a high-strength sintered ore with a high yield by using a large amount of inexpensive low-grade coarse-grained ore without inviting an increase in the SiO 2 content that causes high slag. Becomes Further, the obtained sintered ore has a large cold strength, and it is suppressed that it is pulverized during handling.

【図面の簡単な説明】[Brief description of drawings]

【図1】 予備造粒物に対するドロマイト添加量と強度
との関係を表したグラフ
FIG. 1 is a graph showing the relationship between the amount of dolomite added and the strength of a preliminary granulated product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径が1mmを超える粒子を50重量%
以上含有しSiO2含有量が3重量%以上の粗粒鉱石と
粒径が1mm以下の粒子を80重量%以上含有する微粉
鉱石とを、(粗粒鉱石)/(微粉鉱石)が重量比で10
/10〜30/10となる割合で配合し、更に粉状生石
灰及び粉状ドロマイトを、(粗粒鉱石+微粉鉱石)10
0部に対するドロマイトの配合割合が2〜23部となる
ように配合して造粒し、得られた造粒物を他の焼結主原
料及び焼結副原料と混合又は混合造粒した後、焼結機に
装入することを特徴とする焼結鉱の製造方法。
1. 50% by weight of particles having a particle size of more than 1 mm
The coarse ore containing 3% by weight or more of SiO 2 and the fine ore containing 80% by weight or more of particles having a particle diameter of 1 mm or less are contained in the following manner: (Coarse ore) / (Fine ore) 10
/ 10 to 30/10, and powdered quicklime and powdered dolomite were added (coarse ore + fine ore) 10
After blending and granulating so that the blending ratio of dolomite to 0 part is 2 to 23 parts, the obtained granulated product is mixed or granulated with other sintering main raw materials and sintering auxiliary raw materials, A method for producing a sintered ore, which comprises charging into a sintering machine.
JP8796892A 1992-03-12 1992-03-12 Production of sintered ore Withdrawn JPH05255765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8796892A JPH05255765A (en) 1992-03-12 1992-03-12 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8796892A JPH05255765A (en) 1992-03-12 1992-03-12 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH05255765A true JPH05255765A (en) 1993-10-05

Family

ID=13929658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8796892A Withdrawn JPH05255765A (en) 1992-03-12 1992-03-12 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH05255765A (en)

Similar Documents

Publication Publication Date Title
UA74905C2 (en) A method for producing a granular metal
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JPH05255765A (en) Production of sintered ore
JP2001294945A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JPH06220549A (en) Pretreatment of raw material to be sintered
JPS60248827A (en) Preliminary treatment of sintered raw material
JPH02225627A (en) Production of sintered ore
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JPH1121634A (en) Production of sintered ore
JP2008088533A (en) Method for manufacturing sintered ore
JP4412313B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP2001262241A (en) Method for producing sintered ore containing carbon
JPH10330850A (en) Production of sintered ore
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4661077B2 (en) Method for producing sintered ore
JP4816119B2 (en) Method for producing sintered ore
JPH03111521A (en) Production of sintered ore
JPH07166248A (en) Production of burnt agglomerated ore
JP2008196027A (en) Method for manufacturing sintered ore
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPH05311255A (en) Production of sintered ore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518