JPH05255720A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH05255720A
JPH05255720A JP7434891A JP7434891A JPH05255720A JP H05255720 A JPH05255720 A JP H05255720A JP 7434891 A JP7434891 A JP 7434891A JP 7434891 A JP7434891 A JP 7434891A JP H05255720 A JPH05255720 A JP H05255720A
Authority
JP
Japan
Prior art keywords
furnace
core
blast furnace
nitrogen
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7434891A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Morimasa Ichida
守政 一田
Hiromitsu Ueno
浩光 上野
Kenji Tamura
健二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7434891A priority Critical patent/JPH05255720A/en
Publication of JPH05255720A publication Critical patent/JPH05255720A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the reduction in productivity caused by the defective ventilation and the increase in a fuel ratio by recovering temp. without drastically increasing the fuel ratio when powders are accumulated in a coke layer (called as a furnace core) in the center at the lower part of a blast furnace and the flowing property of a molten material in the furnace center part is reduced and temp. in the furnace core is reduced and the molten material starts solidification. CONSTITUTION:A probe mounting a plasma torch is inserted from a space between tuyeres or by utilizing the opening part of one piece of the tuyere, and any one of nitrogen + gaseous carbon dioxide, nitrogen + steam, nitrogen + gaseous carbon dioxide + steam, nitrogen + oxygen oxygen at 1400-2000 deg.C is blown to heat and melt the molten material starting to solidify and also promote the consumption of the powders, and the furnace core starting the solidification is heated and melted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の羽口部から熱風
あるいは熱風および補助燃料を吹込む操業の際に、高炉
炉下部中心のコークス層(炉芯と称する)内の温度を保
持し、生産性、燃料比を維持した高炉操業法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention maintains the temperature in the coke layer (referred to as the core) in the lower center of the blast furnace during the operation of blowing hot air or hot air and auxiliary fuel from the tuyere of the blast furnace. , Blast furnace operation method that maintains productivity and fuel ratio.

【0002】[0002]

【従来の技術】高炉操業にあっては、羽口部から熱風あ
るいは熱風および補助燃料を吹込み、溶銑を吹製してい
るが、コークス代替として安価で燃焼性がよく発熱量の
高い燃料(微粉炭、石油、重油、ナフサ等)を羽口部よ
り吹込み、溶銑製造コスト低減、生産性向上をはかって
きており、特公昭40−23763号公報にその技術が
開示されている。とくに直近では価格の点から微粉炭吹
込みが主流となっており、燃料比低減(コスト低減)、
生産性向上に大きく寄与している。
2. Description of the Related Art In blast furnace operation, hot air or hot air and auxiliary fuel are blown from the tuyere to blow hot metal, but as a substitute for coke, it is inexpensive and has good flammability and high calorific value. Pulverized coal, petroleum, heavy oil, naphtha, etc.) are blown from the tuyere to reduce the hot metal production cost and improve the productivity, and the technique is disclosed in Japanese Examined Patent Publication No. 40-23763. In particular, the injection of pulverized coal has become the mainstream in recent years from the viewpoint of price, reducing the fuel ratio (cost reduction),
It greatly contributes to productivity improvement.

【0003】このようにして吹込まれた補助燃料は高炉
内で一部のコークスの代わりに燃焼し、その燃焼性の良
さと高い発熱量のために、高温で多量の還元ガスを生成
し効率的な還元反応を行なう。したがって炉頂より装入
された鉄鉱石はすばやく金属状態に還元されるととも
に、溶融して高温の溶銑となり、高炉の炉熱が高く生産
性が向上する。
The auxiliary fuel blown in this way burns in the blast furnace instead of a part of the coke, and due to its good combustibility and high calorific value, it produces a large amount of reducing gas at high temperature and is efficient. A simple reduction reaction. Therefore, the iron ore charged from the top of the furnace is quickly reduced to a metallic state, and is melted to form high-temperature hot metal, so that the furnace heat of the blast furnace is high and the productivity is improved.

【0004】[0004]

【発明が解決しようとする課題】ところで従来の高炉操
業において、炉頂から装入されるコークスの強度が低下
すると、羽口部から吹込まれる熱風によって旋回燃焼す
る際に粉が発生し、この粉が高炉炉下部中心のコークス
層(炉芯と称する)に捕捉される。捕捉量が多くなると
この部分を流下する溶融物の通液性を阻害し、ひいては
この部分のガスの通気性を阻害し、炉芯内温度が低下す
る。この状態が継続すると溶融物が固化しはじめ、ひい
ては完全に固化する。
By the way, in the conventional blast furnace operation, when the strength of the coke charged from the furnace top is lowered, powder is generated during swirl combustion by the hot air blown from the tuyere, The powder is trapped in a coke layer (referred to as a core) in the lower center of the blast furnace. When the trapped amount is large, the liquid permeability of the melt flowing down this portion is hindered, and further the gas permeability of this portion is hindered, so that the temperature inside the furnace core is lowered. If this state continues, the melt will begin to solidify and eventually solidify.

【0005】また補助燃料とくに微粉炭を多量に吹込む
と、吹込んだ微粉炭全量が燃焼せずに一部未燃チャーが
発生し、この未燃チャーが炉芯に捕捉されるため、やは
り炉芯内温度が低下し、溶融物の固化に至る。いずれの
場合も高炉の生産量は大幅に低下する。このとき高炉全
体の通気性を示す送風圧力が上昇し、炉芯内温度が低下
したと想定される。
When a large amount of auxiliary fuel, especially pulverized coal, is blown in, the entire amount of pulverized coal blown in is not burned, and some unburned char is generated, and this unburned char is trapped in the furnace core. The temperature inside the furnace core decreases, leading to solidification of the melt. In either case, the blast furnace production will drop significantly. At this time, it is assumed that the blast pressure, which shows the air permeability of the entire blast furnace, increased and the core temperature decreased.

【0006】送風圧力が上昇し、炉芯内温度が低下した
と想定される場合、炉頂より装入する鉄鉱石とコークス
の比率(O/Cと略す)の中心部の値を低下させて、代
わりに中間部から周辺部のO/Cを増加するが、中間部
から周辺部のO/C増加の余裕がないときは、全体のO
/Cを低下させる。また補助燃料とくに微粉炭を吹込ん
でいる場合は、その吹込み量を低下させるか、カット
し、代わりに全体のO/Cを低下させる。いずれの場合
も、大幅に燃料比が上昇し、生産量が低下する。
When it is assumed that the blast pressure rises and the temperature in the furnace core lowers, the value of the central portion of the ratio of iron ore and coke (abbreviated as O / C) charged from the furnace top is lowered. Instead, the O / C from the middle part to the peripheral part is increased, but when there is no margin for increasing the O / C from the middle part to the peripheral part, the total O / C is increased.
/ C is reduced. When the auxiliary fuel, especially pulverized coal, is blown, the blowing amount is reduced or cut, and instead, the overall O / C is lowered. In either case, the fuel ratio rises significantly and the production volume decreases.

【0007】そこで本発明は、炉芯内温度が低下した場
合に、大幅に燃料比を上昇させることなく、その温度を
回復し、通気不良、燃料比上昇による生産量低下を回避
することを目的とする。
In view of the above, the present invention aims to recover the temperature of the core without significantly increasing the fuel ratio when the temperature in the core decreases, and to avoid aeration failure and a decrease in production amount due to an increase in fuel ratio. And

【0008】[0008]

【課題を解決するための手段】本発明の高炉操業法は、
その目的を達成するために、炉頂から鉄鉱石とコークス
を層状に装入し、羽口部から熱風あるいは熱風および補
助燃料を吹込み溶銑を吹製する高炉操業において、炉芯
が冷えて固化しはじめたときにプラズマトーチを挿入
し、高温の窒素とともに水蒸気、炭酸ガスのいずれか又
は両方を炉芯に吹込むことを特徴とする。またガスとし
てはこれに代えて高温の窒素とともに酸素を炉芯に吹込
むことを特徴とする。さらにまたこれらガスに代えて高
温の空気または酸素を炉芯に吹込むことを特徴とする。
The blast furnace operating method of the present invention comprises:
In order to achieve that purpose, in a blast furnace operation in which iron ore and coke are charged in layers from the furnace top and hot air or hot air and auxiliary fuel are blown from the tuyere to produce hot metal, the core cools and solidifies. It is characterized in that a plasma torch is inserted at the beginning of the operation, and steam, carbon dioxide, or both of them are blown into the furnace core together with high-temperature nitrogen. Further, as a gas, oxygen is blown into the furnace core together with high-temperature nitrogen instead of this. Furthermore, it is characterized in that hot air or oxygen is blown into the furnace core in place of these gases.

【0009】[0009]

【作用】プラズマトーチを高炉に適用する例としては、
特開昭57−51207号公報に開示されているよう
に、高炉に大量の浸水が発生し、炉床(本明細書で述べ
る炉心よりも下部に存在する領域)が冷えて固化したと
きに、プラズマトーチにより炉床に熱を注入する技術が
あるが、これはあくまでも非常手段であり、挿入する領
域も異なり、本発明のように安定した高炉操業を目的と
したものではない。
[Operation] As an example of applying the plasma torch to the blast furnace,
As disclosed in JP-A-57-51207, when a large amount of water is generated in a blast furnace and a hearth (a region existing below the core described in the present specification) is cooled and solidified, There is a technique of injecting heat into the hearth with a plasma torch, but this is only an emergency means, and the insertion area is different, and is not intended for stable blast furnace operation as in the present invention.

【0010】本発明における炉芯へのプラズマトーチの
挿入方法を図1から図3に示す。図1は高炉の羽口中心
レベル近傍に遮断弁を取り付け、その遮断弁を開いて高
炉内に水冷プローブを挿入するが、そのプローブを介し
てプラズマトーチを接続した場合の立面図を示す。図1
において、1は高炉鉄皮、2はレンガ、3は羽口、4は
送風支管、5は遮断弁、6は水冷プローブ、7は炉芯、
8はプラズマトーチ、9はレースウェイを示す。図2は
平面図を示し、プラズマトーチ搭載のプローブを、羽口
と羽口の間より挿入する場合である。また図3は羽口1
本の開孔部を利用して、プラズマトーチ搭載のプローブ
を挿入する場合の平面図を示す。
The method of inserting the plasma torch into the furnace core in the present invention is shown in FIGS. 1 to 3. FIG. 1 shows an elevation view when a shutoff valve is installed near the tuyere center level of the blast furnace, the shutoff valve is opened and a water cooling probe is inserted into the blast furnace, and a plasma torch is connected through the probe. Figure 1
1, 1 is a blast furnace iron skin, 2 is a brick, 3 is a tuyere, 4 is a blast branch pipe, 5 is a shutoff valve, 6 is a water cooling probe, 7 is a furnace core,
8 is a plasma torch and 9 is a raceway. FIG. 2 is a plan view showing a case where a probe equipped with a plasma torch is inserted between tuyere and tuyere. Fig. 3 shows tuyere 1
The top view at the time of inserting a probe equipped with a plasma torch using a hole part of a book is shown.

【0011】炉芯内にコークスあるいは微粉炭由来の粉
(カーボン主体)が捕捉蓄積され、炉芯内に滴下してく
る溶融物が、羽口中心レベル近傍で固化しはじめたとき
に、プラズマトーチによって加熱された高温のガスをプ
ローブを介して炉芯内に導入し、固化しはじめた溶融物
を加熱溶解することにより、炉芯内温度を上昇できる。
それとともに、吹込まれた炭酸ガス、水蒸気が、化1、
化2のガス化反応をすることによって、カーボン主体の
粉を消費することができる。またガスが窒素+酸素、空
気、酸素の場合は、化3、化4のガス化反応によって粉
を消費することができる。
When the coke or powder derived from pulverized coal (mainly carbon) is trapped and accumulated in the furnace core and the molten material dripping into the furnace core begins to solidify near the tuyere center level, a plasma torch The temperature inside the furnace core can be raised by introducing a high-temperature gas heated by means of the probe into the furnace core and heating and melting the melt that has started to solidify.
At the same time, the injected carbon dioxide and water vapor are
The carbon-based powder can be consumed by the gasification reaction of Chemical formula 2. When the gas is nitrogen + oxygen, air, or oxygen, the powder can be consumed by the gasification reaction of Chemical formula 3 and Chemical formula 4.

【0012】[0012]

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【化4】 高温のガスを使用するため、加熱溶融、ガス化反応によ
る粉の消費が短時間で行われ、効果が非常に大きい。粉
の消費および溶融物の加熱溶融により、溶融物の通液性
を確保し炉芯内のガスの通気性も向上し、炉芯内温度を
回復することができる。
[Chemical 4] Since a high temperature gas is used, the powder is consumed in a short time by heating and melting and the gasification reaction, and the effect is very large. By consuming the powder and heating and melting the melt, the liquid permeability of the melt is secured, the gas permeability in the core is improved, and the temperature inside the core can be recovered.

【0013】図1から図3で使用するプラズマトーチに
よって加熱されるガスの種類は、窒素+炭酸ガス、窒素
+水蒸気、窒素+炭酸ガス+水蒸気、窒素+酸素、空
気、酸素を用いることができる。また、ガスの温度は溶
融物の固化が1200度Cより起こることから、120
0度C以上とする必要があり、化5、化6、の反応は吸
熱反応であるため、その熱を補償する必要のあることか
ら、高温ほど効果が大きいが通常はプローブの耐熱性の
問題を考慮して1400度Cから2000度Cを使用す
る。
The type of gas heated by the plasma torch used in FIGS. 1 to 3 can be nitrogen + carbon dioxide, nitrogen + steam, nitrogen + carbon dioxide + steam, nitrogen + oxygen, air, oxygen. .. Further, the temperature of the gas is 120 because the solidification of the melt occurs from 1200 ° C.
Since it is necessary to set the temperature to 0 ° C. or higher, and the reactions of Chemical formulas 5 and 6 are endothermic reactions, it is necessary to compensate for the heat. Considering the above, 1400 ° C to 2000 ° C is used.

【0014】[0014]

【化5】 [Chemical 5]

【化6】 ここでいう炉芯とは、図2に示すようにレースウェイ奥
行きL(レンガ稼働面より高炉中心方向に1600m
m)より高炉中心方向の円の領域を示す。本発明におけ
る炉芯へのプラズマトーチの挿入は、高炉が休風中はも
ちろん、操業中にも行うことができ、操業中のほうが任
意に実施できるため、効果が大きい。
[Chemical 6] The furnace core here means the raceway depth L (1600 m in the blast furnace center direction from the brick working surface as shown in FIG.
m) shows the area of the circle toward the center of the blast furnace. The insertion of the plasma torch into the furnace core in the present invention can be performed not only when the blast furnace is in a quiescent state, but also during operation, and can be arbitrarily performed during operation, which is highly effective.

【0015】また炉芯内温度が低下したか否かは、送風
圧力上昇で判断してもいいし、炉芯内に温度計を設置し
てその温度低下より検知できる。また羽口部より金棒を
挿入して、溶融物が固化しているか否かで判断すること
もできる。いずれにしても、従来の炉芯内温度低下の検
知方法を採用することができる。
Whether or not the temperature inside the furnace core has dropped may be judged by an increase in the blowing pressure, or it can be detected from the temperature drop by installing a thermometer inside the furnace core. It is also possible to insert a gold rod from the tuyere to determine whether or not the melt is solidified. In any case, the conventional method for detecting the temperature decrease in the core can be adopted.

【0016】[0016]

【実施例】以下実施例により本発明の特徴を具体的に説
明する。表1は各実施例における操業結果を示す。
EXAMPLES The features of the present invention will be specifically described with reference to the following examples. Table 1 shows the operation results in each example.

【表1】 実施例1 送風圧力が通常3.5±0.05kg/平方センチメー
トル程度で操業していた状態から、3.85±0.08
kg/平方センチメートルに増加したので、図2に示す
ように、高炉の羽口中心レベル近傍に取付けた羽口と羽
口の間の遮断弁を開いて、高炉炉芯内にプラズマトーチ
搭載の水冷プローブを挿入し、1400度Cから160
0度Cの窒素:炭酸ガス=7から8:3から2の混合ガ
スを、12000標準状態立方メートル/時送り、15
時間後に停止したら、送風圧力が通常の3.55±0.
04kg/平方センチメートルに戻った操業例である。
[Table 1] Example 1 From a state where the blast pressure was normally 3.5 ± 0.05 kg / square centimeter, the operation was 3.85 ± 0.08.
Since it increased to kg / square centimeter, as shown in Fig. 2, the shutoff valve between the tuyere installed near the tuyere center level of the blast furnace was opened, and the water-cooled probe equipped with the plasma torch was installed inside the blast furnace core. Insert from 1400 degrees C to 160
A mixture of 0 ° C nitrogen: carbon dioxide gas = 7 to 8: 3 to 2 was fed at 12000 standard cubic meters / hour for 15
When stopped after a lapse of time, the blast pressure is normally 3.55 ± 0.
This is an example of an operation that returned to 04 kg / square centimeter.

【0017】実施例2 送風圧力が通常3.5±0.05kg/平方センチメー
トル程度で操業していた状態から、3.95±0.07
kg/平方センチメートルに増加したので、図3に示す
ように、高炉の羽口1本の開孔部を利用して取付けた遮
断弁を開いて、高炉炉芯内にプラズマトーチ搭載の水冷
プローブを挿入し、1600度Cから1800度Cの窒
素:水蒸気=9から8:1から2の混合ガスを1000
0標準状態立方メートル/時送り、19時間後に停止し
たら、送風圧力が通常の3.45±0.05kg/平方
センチメートルに戻った操業例である。
Example 2 From a state in which the blast pressure was usually 3.5 ± 0.05 kg / square centimeter, it was 3.95 ± 0.07.
Since it increased to kg / square centimeter, as shown in Fig. 3, the shutoff valve attached using the opening of one tuyere of the blast furnace was opened, and the water-cooled probe equipped with the plasma torch was inserted into the blast furnace core. Then, a mixed gas of 1600 ° C to 1800 ° C nitrogen: steam = 9 to 8: 1 to 2 is mixed with 1000
This is an operation example in which the air pressure was returned to the normal 3.45 ± 0.05 kg / square centimeter after 0 standard state cubic meters / hour feeding and stopping after 19 hours.

【0018】実施例3 炉芯内に設置した温度計が、通常1400±50度C程
度で操業していた状態から、1200±80度Cに低下
したので、図3に示すように、高炉の羽口1本の開孔部
を利用して取付けた遮断弁を開いて、高炉炉芯内にプラ
ズマトーチ搭載の水冷プローブを挿入し、1800から
2000度Cの窒素:炭酸ガス:水蒸気=6から8:2
から1:2から1の混合ガスを16000標準状態立方
メートル/時送り、22時間後に停止したら、炉芯内の
温度が通常の1400±60度Cに戻った操業例であ
る。
Example 3 Since the thermometer installed in the core of the furnace decreased to 1200 ± 80 ° C from the state where the thermometer was normally operated at about 1400 ± 50 ° C, as shown in FIG. Open the shut-off valve installed using the opening of one tuyere, insert the water-cooled probe equipped with the plasma torch into the blast furnace core, and from 1800 to 2000 degrees C nitrogen: carbon dioxide: water vapor = 6 8: 2
This is an example of operation in which the mixed gas of 1: 2 to 1 was sent at 16000 standard state cubic meters / hour and stopped after 22 hours, the temperature inside the furnace core returned to the normal 1400 ± 60 ° C.

【0019】実施例4 送風圧力が通常3.5±0.05kg/平方センチメー
トル程度で操業していた状態から、3.9±0.08k
g/平方センチメートルに増加し、羽口部より金棒を挿
入すると、溶融物が固化していることが確認されたの
で、図2に示すように、高炉の羽口中心レベル近傍に取
付けた羽口と羽口の間の遮断弁を開いて、高炉炉芯内に
プラズマトーチ搭載の水冷プローブを挿入し、1700
から1900度Cの窒素:酸素=6から7:4から3の
混合ガスを9000標準状態立方メートル/時送り、2
0時間後に停止したら、送風圧力が通常の3.45±
0.05kg/平方センチメートルに戻り、羽口部より
金棒を挿入すると、溶融物固化が解消した操業例であ
る。
Example 4 From a state in which the blast pressure was normally 3.5 ± 0.05 kg / square centimeter, the operation was 3.9 ± 0.08 k
It was confirmed that the melt solidified when the pressure was increased to g / square centimeter and the gold rod was inserted from the tuyere, so as shown in Fig. 2, the tuyere installed near the tuyere center level of the blast furnace Open the shutoff valve between the tuyere, insert the water-cooled probe equipped with the plasma torch into the blast furnace core,
To 1900 degree C nitrogen: oxygen = 6 to 7: 4 to 3 mixed gas at 9000 standard state cubic meters / hour, 2
If stopped after 0 hours, the blast pressure will be normal 3.45 ±
This is an operation example in which the solidification of the melt is eliminated when the pressure is returned to 0.05 kg / cm 2 and the gold rod is inserted from the tuyere.

【0020】実施例5 送風圧力が通常3.5±0.05kg/平方センチメー
トル程度で操業していた状態から、3.75±0.08
kg/平方センチメートルに増加し、羽口部より金棒を
挿入すると、溶融物が固化していることが確認されたの
で、図3に示すように、高炉の羽口1本の開孔部を利用
して取付けた遮断弁を開いて、高炉炉芯内にプラズマト
ーチ搭載の水冷プローブを挿入し、1800から200
0度Cの空気を8000標準状態立方メートル/時送
り、15時間後に停止したら、送風圧力が通常の3.4
5±0.05kg/平方センチメートルに戻り、羽口部
より金棒を挿入すると、溶融物固化が解消した操業例で
ある。
Example 5 From the state in which the blast pressure was normally 3.5 ± 0.05 kg / square centimeter, the operation was 3.75 ± 0.08.
Since it was confirmed that the melt solidified when the pressure was increased to kg / square centimeter and the gold rod was inserted from the tuyere, as shown in Fig. 3, the opening of one tuyere of the blast furnace was used. Open the shut-off valve installed in the blast furnace and insert the water-cooled probe equipped with the plasma torch into the blast furnace core.
When 0 degree C air is sent 8000 standard state cubic meters / hour and stopped after 15 hours, the blast pressure is normal 3.4.
This is an operation example in which the solidification of the melt is eliminated when the gold rod is inserted from the tuyere after returning to 5 ± 0.05 kg / cm 2.

【0021】比較例 送風圧力が通常3.5±0.05kg/平方センチメー
トル程度で操業していた状態から、3.8±0.08k
g/平方センチメートルに増加したので、中心部O/C
を低下させて、全体のO/Cを低下させた操業例であ
る。実施例1から6に比べると、出銑量が少なく燃料比
が高い。
Comparative Example From a state in which the blast pressure was normally 3.5 ± 0.05 kg / square centimeter, it was 3.8 ± 0.08 k.
O / C at the center because it increased to g / cm2
Is an example of an operation in which the overall O / C has been reduced. Compared to Examples 1 to 6, the amount of tapped iron is small and the fuel ratio is high.

【0022】[0022]

【発明の効果】以上説明したように本発明においては、
炉芯内に粉が蓄積し、炉中心部に滴下する溶融物の温度
が低下して溶融物が固化しかけ炉芯内温度が低下しはじ
めたとき、プラズマトーチを利用して高温のガスを炉芯
内に送って、速やかに固化しかけた溶融物を加熱溶解す
るとともに、粉を消費して炉芯内温度を回復させること
により、通気不良を回避し、生産性向上、燃料比低下を
はかり、安定した溶銑供給が可能である。
As described above, according to the present invention,
When powder accumulates in the furnace core and the temperature of the melt that drops in the center of the furnace decreases and the melt solidifies and the temperature inside the furnace begins to decrease, a high temperature gas is generated using the plasma torch. By sending it to the core and heating and melting the melt that is about to solidify promptly, by consuming the powder and recovering the temperature inside the furnace core, avoiding defective ventilation, improving productivity, measuring the fuel ratio, A stable hot metal supply is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高炉操業法で使用する、プラズマトー
チ搭載の水冷プローブを炉芯内に挿入する立面図
FIG. 1 is an elevational view of inserting a water-cooled probe equipped with a plasma torch into a furnace core used in the blast furnace operation method of the present invention.

【図2】羽口と羽口の間から水冷プローブを挿入する場
合の平面図
FIG. 2 is a plan view when the water-cooled probe is inserted between the tuyere and the tuyere.

【図3】羽口1本の開孔部を利用して水冷プローブを挿
入する場合の平面図
FIG. 3 is a plan view of the case where a water-cooled probe is inserted using the opening portion of one tuyere.

【手続補正書】[Procedure amendment]

【提出日】平成3年5月28日[Submission date] May 28, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 健二 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社第三技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Tamura Kenji Tamura 1-1-1 Edamitsu, Hachimanto-ku, Kitakyushu-shi, Fukuoka Inside Nippon Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉頂から鉄鉱石とコークスを層状に装入
し、羽口部から熱風あるいは熱風および補助燃料を吹込
み溶銑を吹製する高炉操業において、炉芯が冷えて固化
しはじめたときにプラズマトーチを挿入し、高温の窒素
とともに水蒸気、炭酸ガスのいずれか又は両方を炉芯に
吹込むことを特徴とする高炉操業法。
1. In a blast furnace operation in which iron ore and coke are charged in layers from the furnace top and hot air or hot air and auxiliary fuel are blown from the tuyere to blow hot metal, the core begins to cool and solidify. A blast furnace operating method characterized in that a plasma torch is sometimes inserted and either or both of steam and carbon dioxide gas are blown into the core together with high-temperature nitrogen.
【請求項2】 高温の窒素とともに水蒸気、炭酸ガスの
いずれか、又は両方を炉芯に吹込むことに替えて、高温
の窒素とともに酸素を炉芯に吹込むことを特徴とする、
請求項1記載の高炉操業法。
2. Oxygen is blown into the core together with high-temperature nitrogen instead of blowing either or both of steam and carbon dioxide into the core together with high-temperature nitrogen.
The blast furnace operating method according to claim 1.
【請求項3】 高温の窒素とともに水蒸気、炭酸ガスの
いずれか、又は両方を炉芯に吹込むことに替えて、高温
の空気または炭酸ガスを炉芯に吹込むことを特徴とす
る、請求項1記載の高炉操業法。
3. A method of blowing hot air or carbon dioxide into the furnace core instead of blowing steam, carbon dioxide, or both together with hot nitrogen into the furnace core. 1. The blast furnace operation method described in 1.
JP7434891A 1991-03-15 1991-03-15 Method for operating blast furnace Withdrawn JPH05255720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7434891A JPH05255720A (en) 1991-03-15 1991-03-15 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7434891A JPH05255720A (en) 1991-03-15 1991-03-15 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH05255720A true JPH05255720A (en) 1993-10-05

Family

ID=13544526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7434891A Withdrawn JPH05255720A (en) 1991-03-15 1991-03-15 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH05255720A (en)

Similar Documents

Publication Publication Date Title
JP3771728B2 (en) Blowing pulverized coal and reducing gas into the blast furnace
JP2008179876A (en) Powder heating burner lance and smelting reduction method using it
EP2871247B1 (en) Method for operating blast furnace
JP2017053029A (en) Operation method of oxygen blast furnace
JP3176680B2 (en) Blast furnace operation method
JP4650226B2 (en) Melting reduction method
KR100187693B1 (en) Scrap melting method
JP4392100B2 (en) Method of injecting reducing gas into the blast furnace
JPS591606A (en) Method of raising hot blast temperature
JPH05255720A (en) Method for operating blast furnace
JP2021181613A (en) Method for starting blast furnace after resting blowing
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace
JPH04268003A (en) Method for operating blast furnace
JPH06128614A (en) Operation of blast furnace
JP3395943B2 (en) Combustion burners used in metallurgical furnaces
JPH05255721A (en) Method for operating blast furnace
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
TWI817466B (en) Electric furnaces and steelmaking methods
JP2933809B2 (en) Operating method of moving bed type scrap melting furnace
JPH06108125A (en) Operation of blast furnace
JPH08260010A (en) Operation for blowing large quanty of pulverized coal in blast furnace
JP3601799B2 (en) Combustion burners used in melting furnaces for steelmaking
JPH05271723A (en) Method for operating blast furnace
JP2627232B2 (en) Blast furnace operation method
JP3523720B2 (en) Scrap melting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514