JPH05254814A - Carbonaceous fine particle and its production - Google Patents

Carbonaceous fine particle and its production

Info

Publication number
JPH05254814A
JPH05254814A JP4089544A JP8954492A JPH05254814A JP H05254814 A JPH05254814 A JP H05254814A JP 4089544 A JP4089544 A JP 4089544A JP 8954492 A JP8954492 A JP 8954492A JP H05254814 A JPH05254814 A JP H05254814A
Authority
JP
Japan
Prior art keywords
fine particles
carbonaceous
polymer
acrylonitrile
carbonaceous fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4089544A
Other languages
Japanese (ja)
Inventor
Hajime Yasuda
源 安田
Hisashi Tamai
久司 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4089544A priority Critical patent/JPH05254814A/en
Publication of JPH05254814A publication Critical patent/JPH05254814A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a new carbonaceous material capable of exhibiting various useful physical properties such as large specific surface area and shape holding properties as a functional material and industrially and advantageously produce the new carbonaceous material capable of exhibiting the useful physical properties. CONSTITUTION:The objective carbonaceous fine particles are fine particles, composed of a carbonaceous substance and characterized by having hollow parts. The objective method for producing the carbonaceous fine particles is characterized by burning core-shell type polymer fine particles, consisting essentially of a polymer prepared by polymerizing a hydrophobic monomer having vinyl group and having a higher acrylonitrile monomer content in the outer shell part than that in the central part, thermally decomposing the central part and providing the hollow parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な炭素質微粒子お
よびその製造方法に関し、より詳しくは、触媒、導電性
材料、電池用電極材料、磁性材料、弾性体用材料を始め
とする高機能材料として有用な炭素質微粒子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel carbonaceous fine particle and a method for producing the same, and more specifically, it has high performance including catalysts, conductive materials, battery electrode materials, magnetic materials and elastic materials. The present invention relates to carbonaceous fine particles useful as a material.

【0002】[0002]

【従来の技術】炭素材料は、古くは「炭焼きによる木炭
材料」から始まって、人類の生活の中になくてはならな
い材料であったことは言うまでもない。資源が豊富で且
つ種々形を変え得るので、広い分野にまで適用されてき
ている。炭素材料発展の歴史の中においても、特に19
60年頃出現したポリアクリロニトリル(PAN)を原
料としたPAN系炭素繊維は、以降、各種の産業、人類
社会の中での炭素材料の役割を変貌させた。
2. Description of the Related Art Needless to say, carbon materials have been essential materials in human life since the beginning of "charcoal materials made by charcoal". Since it is rich in resources and can be transformed into various forms, it has been applied to a wide range of fields. In the history of carbon material development, especially 19
PAN-based carbon fibers made from polyacrylonitrile (PAN) that appeared around 1960 changed the role of carbon materials in various industries and human society.

【0003】CFRP、CFRC、C/Cコンポジット
という形態で宇宙、航空、海洋、建設、高速機械、核融
合など最先端技術分野での構造材料としてなくてはなら
ないものとなっている。これは、炭素繊維という形態の
炭素材料が、種々の形に変形できる材料であるととも
に、プラスチックやセメント、セラミックス等の他の素
材との複合化が可能であることによるといえる。198
0年代以降、コンピュータ─産業の発展に伴って、磁性
材料、IC関連素材、コンデンサー、光ファイバー用素
材、又二次電池用電極材として再び炭素材料が注目さ
れ、黒鉛、ダイヤモンド、C60炭素クラスター等の化合
形態のものが主に薄膜上の形態で、或いは金属元素と複
合化されたりしながら新機能材料としての応用研究がな
されている。
In the form of CFRP, CFRC, C / C composite, it has become an indispensable structural material in the state of the art such as space, aviation, ocean, construction, high speed machinery and nuclear fusion. It can be said that this is because the carbon material in the form of carbon fiber is a material that can be transformed into various shapes and can be compounded with other materials such as plastic, cement, and ceramics. 198
Since the 0's, with the development of the computer industry, carbon materials have regained attention as magnetic materials, IC-related materials, capacitors, optical fiber materials, and secondary battery electrode materials. Graphite, diamond, C 60 carbon clusters, etc. Application research as a new functional material is being carried out, mainly in the form of a thin film or in the form of a composite with a metal element.

【0004】[0004]

【発明が解決しようとする課題】従来の技術に係わる炭
素材料は、基板上に生成した繊維や薄膜であったり、仮
にシート状または粒状のものであったとしても、大面積
の薄物のシートではなかったり、可撓性がなかったり、
粒子の大きさが小さくなく、大きさが揃っていなかった
りして、新機能性材料として応用展開していくには制約
があり、この様な形態等の点で改良することが望まれて
いた。
The carbon material according to the prior art is a fiber or a thin film formed on a substrate, or even if it is a sheet-like or granular one, it is a thin sheet having a large area. Not, not flexible,
Since the size of the particles is not small and the sizes are not uniform, there are restrictions on application and development as new functional materials, and improvements in terms of such morphology were desired. ..

【0005】本発明者等は、上記従来の炭素材料の達成
しえない課題に注目し、これを解決すべく鋭意検討した
結果、アクリロニトリルは、炭素繊維の原料として使用
されている様に、ビニル基を有する疎水性単量体のなか
でも例外的に焼成しても炭化するのみで焼失することが
ないことに着目し、ビニル基を有する疎水性単量体を重
合してなる重合体から主としてなる重合体粒子であっ
て、外殻部のアクリロニトリル単量体含有率が、中心部
のアクリロニトリル単量体含有率より高いコア─シェル
型重合体微粒子を焼成してみたところ、アクリロニトリ
ル単量体の含有率の低い中心部は容易に熱分解して消失
し、一方アクリロニトリル単量体含有率の高い外殻部は
比較的強固な殻となって残り、結果的に中空の炭素質微
粒子となることを見出した。また、かかる中空の炭素質
微粒子は、中空であるが故に見た目より比表面積が大き
く、保形性がある等、機能性材料としての種々の有用な
物性を示し、各種用途への応用の可能性の高い材料とな
り得ることを見出し、本発明に到達した。
The present inventors have paid attention to the problems that the above-mentioned conventional carbon materials cannot achieve, and as a result of diligent studies to solve the problems, as a result, acrylonitrile is used as a raw material for carbon fibers. Focusing on the fact that even among the hydrophobic monomers having a group, it does not burn off even if it is exceptionally baked, it is mainly composed of a polymer obtained by polymerizing a hydrophobic monomer having a vinyl group. In the polymer particles, the acrylonitrile monomer content of the outer shell part is higher than the acrylonitrile monomer content of the central part, and the core-shell polymer fine particles are tried to be calcined. The core with low content easily decomposes and disappears, while the shell with high content of acrylonitrile monomer remains as a relatively strong shell, resulting in hollow carbonaceous fine particles. watch the It was. Further, such hollow carbonaceous fine particles have various specific physical properties as a functional material, such as having a specific surface area larger than it looks because of being hollow and having a shape-retaining property, and are likely to be applicable to various applications. The present invention has been accomplished by finding that it can be used as a material having high cost.

【0006】即ち、本発明の目的は、比表面積が大き
く、保形性がある等、機能性材料としての種々の有用な
物性を示す新規な炭素材料を提供することに存する。ま
た、本発明の他の目的は、有用な物性を示す新規な炭素
材料を、工業的有利に製造することに存する。
That is, an object of the present invention is to provide a novel carbon material which has various useful physical properties as a functional material, such as a large specific surface area and shape retention. Another object of the present invention is to industrially produce a novel carbon material having useful physical properties.

【0007】[0007]

【課題を解決するための手段】しかして、かかる本発明
の目的は、炭素質物質からなる微粒子であって、中空部
分を有することを特徴とする炭素質微粒子および、ビニ
ル基を有する疎水性単量体を重合してなる重合体から主
としてなる重合体粒子であって、外殻部のアクリロニト
リル単量体含有率が、中心部のアクリロニトリル単量体
含有率より高いコア─シェル型重合体微粒子を焼成し
て、該中心部を熱分解せしめて中空とすることを特徴と
する炭素質微粒子の製造方法により容易に達成される。
SUMMARY OF THE INVENTION The object of the present invention is, therefore, to provide carbonaceous fine particles having a hollow portion, and carbonaceous fine particles, and a hydrophobic monolayer having a vinyl group. A polymer particle mainly composed of a polymer obtained by polymerizing a polymer, wherein the content of acrylonitrile monomer in the outer shell is higher than the content of acrylonitrile monomer in the central portion. This can be easily achieved by a method for producing fine carbonaceous particles which is characterized in that the central part is pyrolyzed to be hollow by firing.

【0008】以下、本発明をより詳細に説明する。本発
明の炭素質微粒子は、炭素質物質からなり、且つ、中空
部分を有することを特徴とする。炭素質物質とは、主と
して炭素のみからなる物質であって、炭素の含有率が8
5重量%以上、好ましくは95重量%以上の物質であ
る。例えば、黒鉛、非晶質炭素、黒鉛前駆物質としての
炭素等が挙げられる。また、共重合体モノマーとして、
アクリロニトリルを用いる場合には、炭素以外に窒素が
1〜10重量%含まれる場合もある。
The present invention will be described in more detail below. The carbonaceous fine particles of the present invention are characterized by being made of a carbonaceous substance and having a hollow portion. A carbonaceous substance is a substance mainly composed of carbon and has a carbon content of 8%.
It is a substance of 5% by weight or more, preferably 95% by weight or more. Examples thereof include graphite, amorphous carbon, carbon as a graphite precursor, and the like. In addition, as a copolymer monomer,
When acrylonitrile is used, nitrogen may be contained in an amount of 1 to 10% by weight in addition to carbon.

【0009】本発明炭素質微粒子が、中空部分を有する
とは、微粒子内部に、通常の細孔とは明らかに区別し得
る程度の大きさの空洞部、即ち、微粒子直径の約20%
以上、好ましくは約30〜80%の直径を有する空洞部
を有することを意味し、これにより、本発明炭素質微粒
子は、非常に大きな比表面積を有し、且つ、弾力性、可
撓性等、種々の有用な物性を示す。また、炭素質微粒子
自体の粒径は特に限定されないが、あまり大きいと比表
面積等の点で、機能性材料としての利点が失われるの
で、10μm以下、より好ましくは5μm以下、最も好
ましくは1μm以下とするとよい。また、粒径の下限は
特に限定されないが、0.01μm以上、より好ましく
は0.1μm以上である。
The fact that the carbonaceous fine particles of the present invention have a hollow portion means that the inside of the fine particles is a hollow portion having a size that can be clearly distinguished from ordinary pores, that is, about 20% of the diameter of the fine particles.
As described above, it means having a cavity having a diameter of preferably about 30 to 80%, whereby the carbonaceous fine particles of the present invention have a very large specific surface area, elasticity, flexibility and the like. , Shows various useful physical properties. The particle size of the carbonaceous fine particles themselves is not particularly limited, but if it is too large, the advantage as a functional material is lost in terms of the specific surface area and the like, so 10 μm or less, more preferably 5 μm or less, most preferably 1 μm or less. It is good to do. The lower limit of the particle size is not particularly limited, but is 0.01 μm or more, more preferably 0.1 μm or more.

【0010】かかる本発明の炭素質微粒子は、アクリロ
ニトリル単量体を含む疎水性ビニル系重合体から主とし
てなる重合体粒子であって、外殻部のアクリロニトリル
単量体含有率が、中心部のアクリロニトリル含有率より
高いコア─シェル型重合体微粒子を焼成して、該中心部
を熱分解せしめて中空とすることにより、容易に製造で
きる。また、該コア─シェル型重合体微粒子は、ビニル
基を有する疎水性単量体を水中で乳化重合してなるシー
ド粒子の表面に、アクリロニトリルまたはその誘導体を
主成分とする単量体をシード重合させることにより容易
に製造できるが、本発明の炭素質微粒子は、製造方法に
よって限定されるものではない。
The carbonaceous fine particles of the present invention are polymer particles mainly composed of a hydrophobic vinyl polymer containing an acrylonitrile monomer, wherein the content of acrylonitrile monomer in the outer shell is acrylonitrile in the central portion. The core-shell type polymer particles having a content higher than the content are calcined to thermally decompose the central part to make it hollow, whereby it can be easily produced. Further, the core-shell type polymer fine particles are obtained by emulsion-polymerizing a hydrophobic monomer having a vinyl group in water on the surface of a seed particle, and acrylonitrile or a derivative thereof as a main component is seed-polymerized. However, the carbonaceous fine particles of the present invention are not limited by the production method.

【0011】ビニル基を有する疎水性単量体は、通常の
乳化剤存在下または不存在下で、その疎水性の故に水中
に微小球状となって容易に乳化し、続くシード重合のシ
ード粒子としての重合体微粒子となる。乳化の際、温
度、単量体の濃度、反応時間等を調節することにより、
シード粒子の粒径を容易に調節することが可能で、該粒
径は、炭素質微粒子の所望の粒径に応じて、焼成による
縮みを考慮して決定すればよいが、通常平均粒子径が
0.001〜50μm、より好ましくは0.1〜10μ
m、最も好ましくは0.2〜1.0μmとすることがで
きる。一般に、電極等の用途向けにシート状に成形する
には、粒径は細かい方がよい。
The hydrophobic monomer having a vinyl group, in the presence or absence of a usual emulsifier, is easily emulsified into microspheres in water due to its hydrophobicity, and is easily emulsified as seed particles for the subsequent seed polymerization. It becomes polymer fine particles. During the emulsification, by adjusting the temperature, the concentration of the monomer, the reaction time, etc.,
The particle size of the seed particles can be easily adjusted, and the particle size may be determined in consideration of shrinkage due to firing according to the desired particle size of the carbonaceous particles, but usually the average particle size is 0.001 to 50 μm, more preferably 0.1 to 10 μm
m, most preferably 0.2 to 1.0 μm. Generally, in order to form a sheet for applications such as electrodes, it is preferable that the particle size is small.

【0012】この場合、用いるビニル基を有する疎水性
単量体としては、特に限定はされないが、スチレン、メ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
ブチル、酢酸ビニル等を用いることができる。アクリロ
ニトリルも使用可能ではあるが、その含有率は、50モ
ル%以下、より好ましくは30モル%以下とするのが好
ましい。
In this case, the hydrophobic monomer having a vinyl group to be used is not particularly limited, but styrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, vinyl acetate and the like can be used. Although acrylonitrile can be used, its content is preferably 50 mol% or less, more preferably 30 mol% or less.

【0013】次に、上述の方法で合成した重合体微粒子
を、高分子生成反応の種、即ちシード粒子として、アク
リロニトリルを主成分とする単量体を所定量添加しシー
ド重合する。この様にしてポリアクリロニトリルを主成
分とする外殻を有するコア─シェル型のポリアクリロニ
トリル共重合体の微粒子を製造する。該シード重合の際
には、アクリロニトリルの他に、例えば、ビニル基を有
する他の疎水性単量体等を添加してもよい。その場合ア
クリロニトリルが少なくとも50モル%以上、より好ま
しくは70モル%以上とすることが中空の炭素質微粒子
の強度を保つ上で好ましい。
Next, the polymer fine particles synthesized by the above-mentioned method are seed-polymerized by adding a predetermined amount of acrylonitrile-based monomer as a seed for polymer formation reaction, that is, as seed particles. In this way, fine particles of a core-shell type polyacrylonitrile copolymer having an outer shell containing polyacrylonitrile as a main component are produced. In addition to acrylonitrile, other hydrophobic monomers having a vinyl group may be added during the seed polymerization. In that case, it is preferable that the content of acrylonitrile is at least 50 mol% or more, more preferably 70 mol% or more in order to maintain the strength of the hollow carbonaceous fine particles.

【0014】重合開始剤としては、一般的な水溶性の重
合開始剤を用いるのが好ましい。具体的にはアゾ系の
2,2’−アゾビス(2─アミジノプロパン)ヒドロク
ロリドや、過酸化塩等を用いることができる。アクリロ
ニトリル添加量は、生成してくるコア─シェル型重合体
微粒子の大きさが直径0.01〜50μm、好ましくは
0.1〜10μm、最も好ましくは0.2〜1.0μm
になる様に添加量を調節するのがよい。更に、上述の重
合反応は、例えば、アルゴン、ヘリウム、窒素ガスの様
な不活性ガス雰囲気下に行うのが好ましい。また、重合
反応の温度は0〜200℃、より好ましくは、室温〜1
00℃の範囲で、反応時間は1秒〜50時間、より好ま
しくは1分〜10時間の範囲で所望の粒径に応じて、適
宜調節するのが好ましい。
As the polymerization initiator, it is preferable to use a general water-soluble polymerization initiator. Specifically, azo-based 2,2′-azobis (2-amidinopropane) hydrochloride, a peroxide salt or the like can be used. The amount of acrylonitrile added is such that the size of the resulting core-shell polymer particles is 0.01 to 50 μm in diameter, preferably 0.1 to 10 μm, and most preferably 0.2 to 1.0 μm.
It is better to adjust the amount added so that Further, the above-mentioned polymerization reaction is preferably carried out in an inert gas atmosphere such as argon, helium or nitrogen gas. The temperature of the polymerization reaction is 0 to 200 ° C., more preferably room temperature to 1
In the range of 00 ° C, the reaction time is preferably 1 second to 50 hours, more preferably 1 minute to 10 hours, and appropriately adjusted according to the desired particle size.

【0015】この様にして合成したコア─シェル型重合
体微粒子を、濾過または遠心分離の様な方法で分別す
る。必要に応じて、水洗し、重合開始剤等の不純物を取
り除き、更に乾燥する。得られたコア─シェル型重合体
微粒子を焼成することにより中空の炭素質微粒子を製造
することができる。焼成は、通常アルゴン、ヘリウム、
窒素ガス等の不活性ガス気流下行うが、中心部のみが焼
失し、外殻部分は焼失しない程度の温度を選べば、空気
中で焼成することもできる。焼成温度は、200〜32
50℃、好ましくは300〜2800℃の範囲で適宜選
択できる。
The core-shell type polymer fine particles thus synthesized are separated by a method such as filtration or centrifugation. If necessary, it is washed with water to remove impurities such as a polymerization initiator and then dried. By firing the obtained core-shell type polymer particles, hollow carbonaceous particles can be produced. The firing is usually argon, helium,
It is carried out in a stream of an inert gas such as nitrogen gas, but if the temperature is selected such that only the central part is burnt out and the outer shell part is not burnt out, it is possible to carry out the baking in air. The firing temperature is 200 to 32
It can be appropriately selected in the range of 50 ° C, preferably 300 to 2800 ° C.

【0016】さらに、焼成を水蒸気、炭酸ガスまたはこ
れらの混合ガス、さらにはこれらを不活性ガスで希釈し
たガスの雰囲気下、600〜1300℃で焼成した中空
の炭素質微粒子にミクロポアを発達させた多孔体の中空
炭素質微粒子を得ることもできる。焼成は、コア─シェ
ル型重合体微粒子を予め圧力をかけて成形し、成形体の
形で焼成することもできる。この場合には中空の炭素質
微粒子が互いに密着した、ある程度焼結した構造体を製
造することができる。
Further, micropores were developed in the hollow carbonaceous fine particles which were calcined at 600 to 1300 ° C. in the atmosphere of steam, carbon dioxide gas or a mixed gas thereof, or a gas obtained by diluting these with an inert gas. It is also possible to obtain porous hollow carbonaceous fine particles. In the firing, the core-shell type polymer fine particles may be preliminarily applied with pressure to be molded, and then fired in the form of a molded body. In this case, it is possible to manufacture a structure in which hollow carbonaceous fine particles are in close contact with each other and which is sintered to some extent.

【0017】この様にして製造した構造体は、弾性に富
み、可撓性を有しており、シート状にすると折り曲げる
ことができる等変形自在な炭素材となる。またこの構造
体は、押し圧力を加えると収縮して変形するが、圧力を
開放するともとの形状に復帰するという性質も有してい
る。なお、前述したシード重合の際、アクリロニトリル
以外に添加する単量体成分として、アクリロニトリルと
共重合可能な単量体で、金属化合物が配位しやすい官能
基を有する単量体を1種類以上、添加し、後に金属化合
物を添加して反応させることにより、外殻部分が、金属
が錯体化したポリアクリロニトリル共重合体からなる重
合体微粒子を得ることができる。そしてこの重合体微粒
子を焼成することにより、金属を担持した炭素質微粒子
を彫ることができる。この場合の他の金属化合物が配位
しやすい官能基を有する疎水性単量体としては、例えば
アクリル酸、メタクリル酸、マレイン酸、イタコン酸、
スチレンスルホン酸、ビニルスルホン酸、アクリルアミ
ド、メタクリルアミド、アクリロイルモルポリン、ジメ
チルアミノエチルアクリレート、ジメチルアミノエチル
アクリレート、ジメチルアミノプロピルアクリルアミ
ド、これらの塩および4級化物、ビニルピロリドン、ビ
ニルピリジン、ビニルイミダゾールなどが挙げられる。
The structure manufactured in this manner is rich in elasticity and has flexibility. When it is formed into a sheet, it becomes a deformable carbon material that can be bent. Further, this structure has a property that it contracts and deforms when a pressing force is applied, but returns to its original shape when the pressure is released. Incidentally, at the time of the above-mentioned seed polymerization, as a monomer component to be added in addition to acrylonitrile, at least one kind of monomer having a functional group in which a metal compound is easily coordinated, which is a monomer copolymerizable with acrylonitrile, By adding and then reacting with a metal compound, it is possible to obtain polymer fine particles whose outer shell part is composed of a metal-complexed polyacrylonitrile copolymer. Then, by firing the polymer fine particles, the carbonaceous fine particles carrying the metal can be carved. Examples of the hydrophobic monomer having a functional group in which the other metal compound in this case is easily coordinated include acrylic acid, methacrylic acid, maleic acid, itaconic acid,
Styrene sulfonic acid, vinyl sulfonic acid, acrylamide, methacrylamide, acryloylmorpholine, dimethylaminoethyl acrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylamide, their salts and quaternary compounds, vinylpyrrolidone, vinylpyridine, vinylimidazole, etc. Can be mentioned.

【0018】これらの単量体の含有率は、担持すべき金
属の量に応じて決定すればよいが、上述した強度上の理
由で、アクリロニトリルが少なくとも50モル%以上、
より好ましくは70モル%以上とすることが好ましい。
配位させる金属化合物としては、例えばTi,V,C
r,Mn,Fe,Co,Ni,Cu,Zn,Ru,M
o,Rh,Pd,Ag,Pt,Au等の遷移金属の化合
物が挙げられ、これらの金属のハロゲン化物、チオラー
ト化合物、シアノ化合物、アミン化合物、カルボニル化
合物等を用いることができる。
The content of these monomers may be determined depending on the amount of the metal to be supported, but for the above-mentioned reasons of strength, at least 50 mol% of acrylonitrile,
It is more preferably 70 mol% or more.
Examples of the metal compound to be coordinated include Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Zn, Ru, M
Examples thereof include compounds of transition metals such as o, Rh, Pd, Ag, Pt, and Au, and halides of these metals, thiolate compounds, cyano compounds, amine compounds, carbonyl compounds and the like can be used.

【0019】また、金属化合物は、外殻部分がアクリロ
ニトリル単独の重合体である場合にもその表面に担持さ
せることが可能である。金属錯体が配位したコア─シェ
ル型重合体微粒子を焼成することにより、金属の超微粒
子が担持された中空の炭素質微粒子が得られる。
Further, the metal compound can be supported on the surface even when the outer shell is a polymer of acrylonitrile alone. By firing the core-shell type polymer fine particles coordinated with the metal complex, hollow carbonaceous fine particles carrying ultrafine metal particles are obtained.

【0020】[0020]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はその要旨を越えない限り、下記実施例
により限定されるものではない。なお、各実施例または
比較例において、得られた炭素質微粒子の粒径および中
空部分の直径は、透過型電子顕微鏡写真または走査型電
子顕微鏡写真から求めた。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In each Example or Comparative Example, the particle size of the obtained carbonaceous fine particles and the diameter of the hollow portion were obtained from a transmission electron microscope photograph or a scanning electron microscope photograph.

【0021】(実施例1)還流冷却器、温度計、Ar導
入管および攪拌機を備えた300mlのフラスコにスチ
レン4.2g、水200gを仕込み、Ar気流下で70
℃で加熱した。ついで過硫酸カリウム0.054gを添
加し、30分間重合させ、得られた重合体分散液にアク
リロニトリル8.5gを1時間かけて滴下した。その後
5時間反応させ重合体微粒子分散液を得た。得られた重
合体微粒子の平均粒径は0.36μmであった。得られ
た微粒子分散液を乾燥し、Ar気流下焼成炉で400
℃、4時間焼成した結果、0.17μmの平均中空径を
有する平均粒径0.25μmの炭素質微粒子が得られ
た。 (実施例2〜8)単量体組成(濃度の合計は一定)およ
び焼成温度を表1記載の通りに変えた以外は、前記実施
例1と全く同様にして重合体微粒子および炭素質微粒子
を得た。該重合体微粒子の平均粒径および該炭素質微粒
子の平均中空径を表1に示す。又、実施例2にて得られ
た炭素質微粒子の粒子の構造を図1に示す。
(Example 1) 4.2 g of styrene and 200 g of water were charged into a 300 ml flask equipped with a reflux condenser, a thermometer, an Ar introduction tube and a stirrer, and the mixture was heated to 70 in an Ar stream.
Heated at ° C. Then, 0.054 g of potassium persulfate was added and polymerized for 30 minutes, and 8.5 g of acrylonitrile was added dropwise to the obtained polymer dispersion over 1 hour. Then, the reaction was carried out for 5 hours to obtain a polymer fine particle dispersion liquid. The average particle size of the obtained polymer fine particles was 0.36 μm. The obtained fine particle dispersion liquid is dried, and the temperature is 400 in a firing furnace under Ar flow.
As a result of firing at 4 ° C. for 4 hours, carbonaceous fine particles having an average hollow diameter of 0.17 μm and an average particle diameter of 0.25 μm were obtained. (Examples 2 to 8) Polymer fine particles and carbon fine particles were prepared in exactly the same manner as in Example 1 except that the monomer composition (total concentration was constant) and the firing temperature were changed as shown in Table 1. Obtained. Table 1 shows the average particle diameter of the polymer fine particles and the average hollow diameter of the carbonaceous fine particles. The particle structure of the carbonaceous fine particles obtained in Example 2 is shown in FIG.

【0022】[0022]

【表1】 <表1> ───────────────────────────────── 実施 単量体組成 重合体微粒子 焼成温度 平均中空径 例No. (モル比) 平均粒径(μm) (℃) (μm) ───────────────────────────────── 1 AN/St=8/2 0.36 400 0.17 2 AN/St=8/2 0.36 600 0.18 3 AN/St=8/2 0.36 800 0.18 4 AN/St=9/1 0.29 600 0.15 5 AN/St=7/3 0.40 600 0.27 6 AN/St=6/4 0.28 400 0.20 7 AN/St=6/4 0.28 600 0.20 8 AN/St=6/4 0.28 800 0.20 ───────────────────────────────── AN:アクリロニトリル、St:スチレン [Table 1] <Table 1> ───────────────────────────────── Implementation Monomer composition Polymer fine particles Firing Temperature Average hollow diameter Example No. (molar ratio) Average particle diameter (μm) (℃) (μm) ──────────────────────────── ────── 1 AN / St = 8/2 0.36 400 0.17 2 AN / St = 8/2 0.36 600 0.18 3 AN / St = 8/2 0.36 800 0. 18 4 AN / St = 9/1 0.29 600 0.15 5 AN / St = 7/3 0.40 600 0.27 6 AN / St = 6/4 0.28 400 0.20 7 AN / St = 6/4 0.28 600 0.20 8 AN / St = 6/4 0.28 800 0.20 ───────────────────────── ───────── AN: Acrylonitrile, St: Styrene

【0023】(実施例9)還流冷却器、温度計、Ar導
入管および攪拌機を備えた300mlのフラスコにスチ
レン2.1g、水200gを仕込み、Ar気流下で70
℃で加熱した。ついで過硫酸カリウム0.0541gを
添加し、30分間重合させ、得られた重合体分散液にア
クリロニトリル9.5gを1時間かけて滴下した。その
後5時間反応させ重合体微粒子分散液を得た。得られた
重合体微粒子の平均粒径は0.29μmであった。
(Example 9) 2.1 g of styrene and 200 g of water were charged into a 300 ml flask equipped with a reflux condenser, a thermometer, an Ar introducing tube and a stirrer, and the mixture was heated to 70 under Ar flow.
Heated at ° C. Then, 0.0541 g of potassium persulfate was added and polymerized for 30 minutes, and 9.5 g of acrylonitrile was added dropwise to the obtained polymer dispersion over 1 hour. Then, the reaction was carried out for 5 hours to obtain a polymer fine particle dispersion liquid. The average particle size of the obtained polymer fine particles was 0.29 μm.

【0024】該重合体微粒子分散液50gに塩化パラジ
ウム0.35gを含む水溶液50gを室温で添加した。
1時間攪拌した後、該分散液を遠心分離して上澄液を除
去することにより、パラジウム担持微粒子を得た。該パ
ラジウム担持微粒子を乾燥し、Ar気流下焼成炉で10
00℃、4時間焼成した結果、0.15μmの平均中空
径を有するパラジウム担持炭素質微粒子が得られた。 (実施例10〜11)単量体組成(濃度の合計は一
定)、焼成温度および金属化合物を表2記載の通りに変
えた以外は、前記実施例9と全く同様にして重合体微粒
子および金属担持炭素質微粒子を得た。該重合体微粒子
の平均粒径および該炭素質微粒子の平均中空径を表2に
示す。
To 50 g of the polymer fine particle dispersion, 50 g of an aqueous solution containing 0.35 g of palladium chloride was added at room temperature.
After stirring for 1 hour, the dispersion was centrifuged and the supernatant was removed to obtain palladium-supporting fine particles. The palladium-supported fine particles are dried and then heated in a firing furnace under Ar flow for 10
As a result of firing at 00 ° C. for 4 hours, palladium-supporting carbonaceous fine particles having an average hollow diameter of 0.15 μm were obtained. (Examples 10 to 11) Polymer fine particles and metal were prepared in exactly the same manner as in Example 9 except that the monomer composition (total concentration was constant), firing temperature and metal compound were changed as shown in Table 2. Supported carbonaceous fine particles were obtained. Table 2 shows the average particle diameter of the polymer fine particles and the average hollow diameter of the carbonaceous fine particles.

【0025】[0025]

【表2】 <表2> ──────────────────────────────────── 実施 単量体組成 重合体微粒子 金属化合物 焼成温度 平均中空径 例No. (モル比) 平均粒径(μm) (℃) (μm) ──────────────────────────────────── 9 AN/St=9/1 0.29 PdCl2 1000 0.15 10 AN/St=9/1 0.29 AgNO3 800 0.15 11 AN/St=9/1 0.29 FeCl3・6H2O 800 0.15 ──────────────────────────────────── AN:アクリロニトリル、St:スチレン [Table 2] <Table 2> ──────────────────────────────────── Implementation Monomer composition Particles of coalesced metal compound Firing temperature Average hollow diameter Example No. (molar ratio) Average particle diameter (μm) (℃) (μm) ─────────────────────── ────────────── 9 AN / St = 9/1 0.29 PdCl 2 1000 0.15 10 AN / St = 9/1 0.29 AgNO 3 800 0.15 11 AN / St = 9/1 0.29 FeCl 3・ 6H 2 O 800 0.15 ──────────────────────────────── ───── AN: Acrylonitrile, St: Styrene

【0026】(実施例12)還流冷却器、温度計、Ar
導入管および攪拌機を備えた300mlのフラスコにス
チレン2.1g(20mmol)、水190gを仕込
み、Ar気流下で70℃で加熱した。ついで過硫酸カリ
ウム0.0541gを添加し、30分間重合させ、得ら
れた重合体分散液にアクリロニトリル8.5g(160
mmol)とアクリル酸1.5gの混合液を1時間かけ
て滴下した。その後5時間反応させ重合体微粒子分散液
を得た。得られた重合体微粒子の平均粒径は0.29μ
mであった。該重合体微粒子分散液100gに0.1規
定水酸化ナトリウム水溶液100gを添加し、室温で1
時間攪拌し、その液をエタノール中に際分散させた。分
散液100gをフラスコにとり、塩化コバルト2.3g
を含む水溶液100gを室温で添加した。1時間攪拌し
た後、分散液を遠心分離して上澄液を除去することによ
りコバルト担持炭素質微粒子を得た。該コバルト担持微
粒子を乾燥し、Ar気流下焼成炉で800℃、2時間焼
成した結果、0.15μmの平均中空径を有する平均粒
径0.24μmのコバルト担持炭素質微粒子が得られ
た。得られたコバルト担持炭素質微粒子の透過型電子顕
微鏡写真を図2に示す。微粒子内部に金属コバルトの存
在がわかる。更にX線回折スペクトルを図3に示す。金
属コバルトに対応する回折スペクトルが明瞭に認められ
る。
(Embodiment 12) Reflux condenser, thermometer, Ar
2.1 g (20 mmol) of styrene and 190 g of water were charged into a 300 ml flask equipped with an introduction tube and a stirrer, and heated at 70 ° C. under Ar flow. Then, 0.0541 g of potassium persulfate was added and polymerized for 30 minutes, and 8.5 g of acrylonitrile (160 g) was added to the obtained polymer dispersion.
mmol) and 1.5 g of acrylic acid were added dropwise over 1 hour. Then, the reaction was carried out for 5 hours to obtain a polymer fine particle dispersion liquid. The average particle size of the obtained polymer fine particles is 0.29μ.
It was m. 100 g of 0.1N aqueous sodium hydroxide solution was added to 100 g of the polymer fine particle dispersion, and the mixture was stirred at room temperature for 1 hour.
After stirring for a time, the liquid was redispersed in ethanol. 100 g of the dispersion is placed in a flask and 2.3 g of cobalt chloride.
Was added at room temperature. After stirring for 1 hour, the dispersion was centrifuged and the supernatant was removed to obtain cobalt-supporting carbonaceous fine particles. The cobalt-supported fine particles were dried and calcined at 800 ° C. for 2 hours in a firing furnace under an Ar stream, and as a result, cobalt-supported carbonaceous fine particles having an average hollow diameter of 0.15 μm and an average particle diameter of 0.24 μm were obtained. A transmission electron micrograph of the obtained cobalt-supporting carbonaceous fine particles is shown in FIG. It can be seen that metallic cobalt exists inside the fine particles. Further, the X-ray diffraction spectrum is shown in FIG. The diffraction spectrum corresponding to metallic cobalt is clearly visible.

【0027】(実施例13〜16)単量体組成(濃度の
合計は一定)、焼成温度および金属化合物を表3記載の
通りに変えた以外は、前記実施例12と全く同様にして
重合体微粒子および金属担持炭素質微粒子を得た。該重
合体微粒子の平均粒径および該炭素質微粒子の平均中空
径を表3に示す。 (実施例17)還流冷却器、温度計、Ar導入管および
攪拌機を備えた300mlのフラスコにメタクリル酸メ
チル2.0g、水200gを仕込み、Ar気流下で70
℃で加熱した。ついで過硫酸カリウム0.0541gを
添加し、30分間重合させ、得られた重合体分散液にア
クリロニトリル9.5gをを1時間かけて滴下した。そ
の後5時間反応させ重合体微粒子分散液を得た。得られ
た重合体微粒子の平均粒径は0.30μmであった。得
られた微粒子分散液を乾燥し、Ar気流下焼成炉で40
0℃、4時間焼成した結果、0.15μmの平均中空径
を有する平均粒径0.25μmの炭素質微粒子が得られ
た。
(Examples 13 to 16) Polymers were prepared in the same manner as in Example 12 except that the monomer composition (total concentration was constant), firing temperature and metal compound were changed as shown in Table 3. Fine particles and metal-supported carbonaceous fine particles were obtained. Table 3 shows the average particle diameter of the polymer fine particles and the average hollow diameter of the carbonaceous fine particles. (Example 17) A 300-ml flask equipped with a reflux condenser, a thermometer, an Ar introduction tube, and a stirrer was charged with 2.0 g of methyl methacrylate and 200 g of water, and the mixture was heated to 70 under an Ar stream.
Heated at ° C. Then, 0.0541 g of potassium persulfate was added and polymerized for 30 minutes, and 9.5 g of acrylonitrile was added dropwise to the obtained polymer dispersion over 1 hour. Then, the reaction was carried out for 5 hours to obtain a polymer fine particle dispersion liquid. The average particle size of the obtained polymer fine particles was 0.30 μm. The obtained fine particle dispersion liquid is dried, and is dried in a firing furnace under an Ar stream.
As a result of firing at 0 ° C. for 4 hours, carbonaceous fine particles having an average hollow diameter of 0.15 μm and an average particle diameter of 0.25 μm were obtained.

【0028】[0028]

【表3】 <表3> ─────────────────────────────────── 実施 単量体組成 重合体微粒子 金属化合物 焼成温度 平均中空径 例No. (モル比) 平均粒径(μm) (℃) (μm) ─────────────────────────────────── 12 AN/AA/St=8/1/1 0.29 CoCl2・6H2O 800 0.15 13 AN/AA/St=8/1/1 0.29 NiCl2・6H2O 1000 0.15 14 AN/AA/St=85/5/10 0.29 CoCl2・6H2O 800 0.15 15 AN/AA/St=85/5/10 0.29 NiCl2・6H2O 1000 0.15 16 AN/AA/St=8/1/1 0.29 PdCl2 1000 0.15 ─────────────────────────────────── 17 AN/MMA=8/2 0.30 ──── 400 0.15 ─────────────────────────────────── AN:アクリロニトリル、AA:アクリル酸、St:ス
チレン MMA:メタクリル酸メチル
[Table 3] <Table 3> ─────────────────────────────────── Implementation Monomer Composition Polymer Fine particle metal compound Firing temperature Average hollow diameter Example No. (molar ratio) Average particle diameter (μm) (℃) (μm) ───────────────────────── ──────────── 12 AN / AA / St = 8/1/1 0.29 CoCl 2・ 6H 2 O 800 0.15 13 AN / AA / St = 8/1/1 0 .29 NiCl 2 · 6H 2 O 1000 0.15 14 AN / AA / St = 85/5/10 0.29 CoCl 2 · 6H 2 O 800 0.15 15 AN / AA / St = 85/5/10 0 .29 NiCl 2 · 6H 2 O 1000 0.15 16 AN / AA / St = 8/1/1 0.29 PdCl 2 1000 0.15 ───────────────── ────────────────── 17 AN / MMA = 8/2 0.30 ──── 400 0.15 ────────────── ──── ────────────────── AN: Acrylonitrile, AA: Acrylic acid, St: Styrene MMA: Methyl methacrylate

【0029】(実施例18)還流冷却器、温度計、Ar
導入管および攪拌機を備えた300mlのフラスコにス
チレン8.32g、水200gを仕込み、Ar気流下で
70℃で加熱した。ついで過硫酸カリウム0.0541
gを添加し、30分間重合させ、得られた重合体分散液
にアクリロニトリル6.36gをを1時間かけて滴下し
た。その後5時間反応させ重合体微粒子分散液を得た。
得られた重合体微粒子の平均粒径は0.28μmであっ
た。得られた微粒子分散液を乾燥し、その3gを錠剤成
形器で200kg/cm2 で1分間プレスした後、Ar
気流下焼成炉で800℃、4時間焼成した結果、サブミ
クロンサイズの平均中空径を有する炭素質微粒子が得ら
れた。
(Embodiment 18) Reflux condenser, thermometer, Ar
A 300 ml flask equipped with an introduction tube and a stirrer was charged with 8.32 g of styrene and 200 g of water, and heated at 70 ° C. under an Ar stream. Then potassium persulfate 0.0541
g was added thereto, the mixture was polymerized for 30 minutes, and 6.36 g of acrylonitrile was added dropwise to the obtained polymer dispersion over 1 hour. Then, the reaction was carried out for 5 hours to obtain a polymer fine particle dispersion liquid.
The average particle size of the obtained polymer fine particles was 0.28 μm. The obtained fine particle dispersion is dried, and 3 g thereof is pressed with a tablet press at 200 kg / cm 2 for 1 minute, and then Ar
As a result of firing at 800 ° C. for 4 hours in a firing furnace, carbonaceous fine particles having an average hollow diameter of submicron size were obtained.

【0030】(実施例19)実施例1で製造した平均粒
径0.36μmの重合体微粒子を乾燥した後、直径7m
m、高さ3mmの円柱状の容器に入れ、容器ごとアルゴ
ン気流下焼成炉で800℃、2時間焼成したところ、円
柱状の炭素質微粒子が密着した弾力性に富む成形体が得
られた。該成形体は、圧縮圧力をかけて収縮させてもと
の大きさに弾性的に回復した。さたにこれを高分解能透
過型電子顕微鏡で観察すると平均粒径0.2μmで内部
に平均直径0.17μmの中空部分を有する炭素質微粒
子から構成されていることが確認された。
(Example 19) The polymer fine particles having an average particle size of 0.36 μm produced in Example 1 were dried, and then the diameter was 7 m.
The container was placed in a cylindrical container having a height of 3 mm and a height of 3 mm, and the container was baked at 800 ° C. for 2 hours in a baking furnace under an argon gas flow. As a result, a molded body having cylindrical carbon fine particles adhered thereto and having high elasticity was obtained. The compact elastically recovered to its original size when it was shrunk by applying compressive pressure. Further, when it was observed with a high resolution transmission electron microscope, it was confirmed that it was composed of carbonaceous fine particles having an average particle diameter of 0.2 μm and a hollow portion having an average diameter of 0.17 μm inside.

【0031】[0031]

【発明の効果】本発明炭素質微粒子は、中空であるとい
う特異な形状を有するために、比表面積が大きく、保形
性がある等、機能性材料としての種々の有用な物性を示
し、また、予め外殻部の形成材料として金属化合物が配
位しやすい様な官能基を有する材料を含有させることに
より、金属化合物を容易且つ強固に担持させることが可
能で、かかる炭素質微粒子は、磁性材、IC関連材料、
コンデンサ−、二次電池用電極材、触媒等、多様な用途
が期待され多大な工業的利益を提供するものである。ま
た、本発明の炭素質微粒子の製造方法によれば、かかる
有用な物性を示す炭素質微粒子を、容易に製造可能であ
る。
EFFECTS OF THE INVENTION The carbonaceous fine particles of the present invention have a unique shape of being hollow, and thus exhibit various useful physical properties as a functional material such as a large specific surface area and shape retention. By previously containing a material having a functional group capable of easily coordinating a metal compound as a material for forming the outer shell, the metal compound can be easily and firmly supported, and the carbonaceous fine particles are magnetic. Materials, IC related materials,
It is expected to have various uses such as a capacitor, an electrode material for a secondary battery, and a catalyst, and provides a great industrial benefit. Further, according to the method for producing carbonaceous fine particles of the present invention, the carbonaceous fine particles exhibiting such useful physical properties can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明にて得られた炭素質微粒子の粒
子の構造を示す図面である。
FIG. 1 is a drawing showing a particle structure of carbonaceous fine particles obtained in the present invention.

【図2】 図2は本発明にて得られたコバルト担持炭素
質微粒子の粒子の構造を示す透過型電子顕微鏡写真であ
る。
FIG. 2 is a transmission electron micrograph showing the particle structure of the cobalt-supporting carbonaceous fine particles obtained in the present invention.

【図3】 図3は本発明にて得られたコバルト担持炭素
質微粒子のX線スペクトルを示す図面である。
FIG. 3 is a drawing showing an X-ray spectrum of the cobalt-supporting carbonaceous fine particles obtained in the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素質物質からなる微粒子であって、中
空部分を有することを特徴とする炭素質微粒子。
1. Fine particles of a carbonaceous substance, which have a hollow portion.
【請求項2】 金属を担持したことを特徴とする請求項
1記載の炭素質微粒子。
2. The carbonaceous fine particles according to claim 1, which carry a metal.
【請求項3】 ビニル基を有する疎水性単量体を重合し
てなる重合体から主としてなる重合体粒子であって、外
殻部のアクリロニトリル単量体含有率が、中心部のアク
リロニトリル単量体含有率より高いコア─シェル型重合
体微粒子を焼成して、該中心部を熱分解せしめて中空と
することを特徴とする炭素質微粒子の製造方法。
3. Polymer particles mainly composed of a polymer obtained by polymerizing a hydrophobic monomer having a vinyl group, wherein the content of acrylonitrile monomer in the outer shell portion is acrylonitrile monomer in the central portion. A method for producing carbonaceous fine particles, characterized in that core-shell type polymer fine particles having a content higher than the content are fired to thermally decompose the central portion to make it hollow.
【請求項4】 前記コア─シェル型重合体微粒子が、ビ
ニル基を有する疎水性単量体を水中で乳化重合してなる
シード粒子の表面に、アクリロニトリルまたはその誘導
体を主成分とする単量体をシード重合させてなるもので
あることを特徴とする請求項3記載の炭素質微粒子の製
造方法。
4. The core-shell type polymer microparticles are obtained by emulsion-polymerizing a hydrophobic monomer having a vinyl group in water, and seed particles are formed on the surface of acrylonitrile or a derivative thereof as a main component. 4. The method for producing carbonaceous fine particles according to claim 3, wherein the carbonaceous fine particles are seed-polymerized.
JP4089544A 1992-03-13 1992-03-13 Carbonaceous fine particle and its production Pending JPH05254814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4089544A JPH05254814A (en) 1992-03-13 1992-03-13 Carbonaceous fine particle and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089544A JPH05254814A (en) 1992-03-13 1992-03-13 Carbonaceous fine particle and its production

Publications (1)

Publication Number Publication Date
JPH05254814A true JPH05254814A (en) 1993-10-05

Family

ID=13973762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089544A Pending JPH05254814A (en) 1992-03-13 1992-03-13 Carbonaceous fine particle and its production

Country Status (1)

Country Link
JP (1) JPH05254814A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143835A (en) * 1998-04-03 2000-11-07 Solutia Inc. Polyacrylonitrile polymer treatment
US6277933B1 (en) 1998-04-03 2001-08-21 Solutia Inc. Polyacrylonitrile particles by surfmer polymerization and sodium removal by chemical exchange
JP2003049328A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon fiber and method for producing the same
JP2003049330A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon fiber and method for producing the same
JP2003049331A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Metal-attached carbon fiber, method for producing the same and electron-releasing element
JP2003049329A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon fiber and method for producing the same
JP2003048705A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon particle and method for producing the same
JP2006219358A (en) * 2005-02-14 2006-08-24 Institute Of National Colleges Of Technology Japan Nanocarbon and method for producing the nanocarbon
WO2008047548A1 (en) * 2006-09-27 2008-04-24 Kaneka Corporation Metal-containing fine particle
JP2009293052A (en) * 2007-04-20 2009-12-17 Kaneka Corp Method for producing metal-containing fine particle
JP2010270144A (en) * 2010-07-29 2010-12-02 Utec:Kk Microcapsules and process for production of the same
WO2011078145A1 (en) 2009-12-24 2011-06-30 東レ株式会社 Carbon microparticle and process for production thereof
JP2014172764A (en) * 2013-03-06 2014-09-22 Kawamura Institute Of Chemical Research Metal-carrying porous carbonaceous material, and production method of the same
JP2017031020A (en) * 2015-08-04 2017-02-09 株式会社クラレ Hollow carbon particle comprising nitrogen element and method for producing hollow carbon particle
JP2017530076A (en) * 2014-09-30 2017-10-12 エルジー・ケム・リミテッド Method for producing hollow carbon capsule
CN113889627A (en) * 2020-07-01 2022-01-04 中国石油化工股份有限公司 Gas diffusion layer and preparation method and application thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143835A (en) * 1998-04-03 2000-11-07 Solutia Inc. Polyacrylonitrile polymer treatment
US6277933B1 (en) 1998-04-03 2001-08-21 Solutia Inc. Polyacrylonitrile particles by surfmer polymerization and sodium removal by chemical exchange
JP2003048705A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon particle and method for producing the same
JP2003049330A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon fiber and method for producing the same
JP2003049331A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Metal-attached carbon fiber, method for producing the same and electron-releasing element
JP2003049329A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon fiber and method for producing the same
JP4678106B2 (en) * 2001-08-03 2011-04-27 日立化成工業株式会社 Hollow carbon fiber and method for producing the same
JP2003049328A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Hollow carbon fiber and method for producing the same
JP4678105B2 (en) * 2001-08-03 2011-04-27 日立化成工業株式会社 Hollow carbon fiber and method for producing the same
JP4678104B2 (en) * 2001-08-03 2011-04-27 日立化成工業株式会社 Hollow carbon fiber and method for producing the same
JP4678103B2 (en) * 2001-08-03 2011-04-27 日立化成工業株式会社 Metal-attached carbon fiber, manufacturing method thereof, and electron-emitting device
JP2006219358A (en) * 2005-02-14 2006-08-24 Institute Of National Colleges Of Technology Japan Nanocarbon and method for producing the nanocarbon
WO2008047548A1 (en) * 2006-09-27 2008-04-24 Kaneka Corporation Metal-containing fine particle
JP2009293052A (en) * 2007-04-20 2009-12-17 Kaneka Corp Method for producing metal-containing fine particle
WO2011078145A1 (en) 2009-12-24 2011-06-30 東レ株式会社 Carbon microparticle and process for production thereof
JP2010270144A (en) * 2010-07-29 2010-12-02 Utec:Kk Microcapsules and process for production of the same
JP2014172764A (en) * 2013-03-06 2014-09-22 Kawamura Institute Of Chemical Research Metal-carrying porous carbonaceous material, and production method of the same
JP2017530076A (en) * 2014-09-30 2017-10-12 エルジー・ケム・リミテッド Method for producing hollow carbon capsule
US10821687B2 (en) 2014-09-30 2020-11-03 Lg Chem, Ltd. Method for producing hollow carbon capsules
JP2017031020A (en) * 2015-08-04 2017-02-09 株式会社クラレ Hollow carbon particle comprising nitrogen element and method for producing hollow carbon particle
CN113889627A (en) * 2020-07-01 2022-01-04 中国石油化工股份有限公司 Gas diffusion layer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH05254814A (en) Carbonaceous fine particle and its production
US5834121A (en) Composite magnetic beads
CN101323444B (en) Carbon or carbon composite hollow ball and preparation thereof
JP2006501124A (en) Method for producing inverted opal-like structure
JP2001181403A (en) Composite particle, method for producing the same and method for using the same
JPH06142491A (en) Composite particle, hollow particle and their production
CN106378093B (en) Preparation method and application of magnetic hollow graphene-based composite microsphere material
JPWO2005108451A1 (en) Method for producing colloidal crystal by polymer graft fine particles
US5856409A (en) Method of making hydrophobic copolymers hydrophilic
US20100092724A1 (en) Process for producing carbon structural body, carbon structural body, and aggregate and dispersion of carbon structural bodies
JP2004123834A (en) Porous hollow polymer particle, method for manufacturing porous hollow polymer particle, porous ceramic filter and method for manufacturing porous ceramic filter
CN101219785B (en) Method for manufacturing carbon nano-hollow sphere with polymethyl methacrylate/polyacrylonitrile nucleocapsid polymer as forerunner body
EP0391589B1 (en) Method of making hydrophobic copolymers hydrophilic
US10913045B2 (en) Porous microsphere and method for preparing the same
Li et al. Application of Co/Ti film catalysts with different nanostructures in the reduction of p-nitrophenol to p-aminophenol
KR102257560B1 (en) Metal-organic frameworks-beads typed spherical hybrid particles and manufacturing method of the same
CN109384948B (en) Metal oxide/polymer microsphere particle brush and preparation method thereof
CN108314788B (en) Method for preparing copolymer/HKUST-1 hybrid material by in-situ polymerization
JP3519418B2 (en) Sintered fine particles of uniform particle size and method for producing the same
CN115920863A (en) Composite material for gas adsorption separation and preparation method thereof
EP0506247B1 (en) Method of preparing surface-porous crosslinked copolymer beads
US5169904A (en) Method of making hydrophobic copolymers hydrophilic
JP4823454B2 (en) Polyvinylidene halide carbon
CN108854871B (en) Cyclic colloid and preparation method thereof
JP5202869B2 (en) Porous material