JPH05252676A - Manufacture of rotor for brushless motor - Google Patents
Manufacture of rotor for brushless motorInfo
- Publication number
- JPH05252676A JPH05252676A JP4045290A JP4529092A JPH05252676A JP H05252676 A JPH05252676 A JP H05252676A JP 4045290 A JP4045290 A JP 4045290A JP 4529092 A JP4529092 A JP 4529092A JP H05252676 A JPH05252676 A JP H05252676A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- rotor
- brushless motor
- mixture
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は回転子に永久磁石を使用
するブラシレスモータの回転子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rotor of a brushless motor using a permanent magnet for the rotor.
【0002】[0002]
【従来の技術】近年、回転電機の制御性能改善・高効率
・低騒音等を目的として回転子に永久磁石を使用したブ
ラシレスモータが多く採用されている。さらに、ブラシ
レスモータの効率改善や出力増加のために、希土類系永
久磁石に代表される磁束密度の高い永久磁石が採用され
るようになってきている。2. Description of the Related Art In recent years, brushless motors using a permanent magnet in a rotor have been widely used for the purpose of improving control performance, high efficiency, and low noise of rotating electric machines. Further, in order to improve the efficiency and increase the output of brushless motors, permanent magnets having a high magnetic flux density represented by rare earth-based permanent magnets have been adopted.
【0003】ブラシレスモータの回転数を変化させるた
めの制御方式として、固定子巻線に印加する電圧の値を
変化させるPAM方式と、電圧は一定に保ち電圧波形を
比較的高い周波数(数kHz〜数十kHz)でオン・オフさ
せ、オン・オフの時間比率を変化させて平均印加電圧を
変えるPWM方式がある。As a control method for changing the rotation speed of the brushless motor, a PAM method for changing the value of the voltage applied to the stator winding and a control method for keeping the voltage constant and a voltage waveform having a relatively high frequency (several kHz to several kHz). There is a PWM method in which the average applied voltage is changed by turning on / off at several tens of kHz and changing the on / off time ratio.
【0004】図4に3相全波駆動方式の制御回路とブラ
シレスモータの主要接続回路図、図5にPWM方式によ
るモータ固定子巻線への印加電圧波形と電流波形の一例
を示す。図4において、12は交流電源(図では単相を
表わしているが、三相でもよい)、13は整流ダイオー
ド、14は平滑コンデンサー、15は3相全波駆動用ト
ランジスター、16はブラシレスモータ、Vuはブラシ
レスモータ16の任意の一リード端子と平滑コンデンサ
ー14のマイナス側にかかる電圧、IuはVuを測定し
ているブラシレスモータ16のリード端子に流れる電流
である。図5に示すように、IuはVuがPWM波形で
あるため、PWM周波数に対応した高周波電流が基本波
電流に重畳されている。一方、PAM方式においても特
に高速で運転するブラシレスモータは、3相全波駆動用
トランジスター15の通電切り替え時に急激な電流Iu
の変化があり、PWM方式と同様に高周波電流が基本波
電流に重畳される。FIG. 4 is a main connection circuit diagram of a control circuit of a three-phase full-wave drive system and a brushless motor, and FIG. 5 shows an example of a voltage waveform and a current waveform applied to a motor stator winding by the PWM system. In FIG. 4, 12 is an AC power supply (in the figure, a single phase is shown, but it may be three phases), 13 is a rectifying diode, 14 is a smoothing capacitor, 15 is a three-phase full-wave drive transistor, 16 is a brushless motor, Vu is a voltage applied to any one lead terminal of the brushless motor 16 and the negative side of the smoothing capacitor 14, and Iu is a current flowing through the lead terminal of the brushless motor 16 measuring Vu. As shown in FIG. 5, since Vu of Iu has a PWM waveform, a high frequency current corresponding to the PWM frequency is superimposed on the fundamental wave current. On the other hand, even in the PAM system, the brushless motor that operates at a particularly high speed has a sudden current Iu when the energization of the three-phase full-wave driving transistor 15 is switched.
And the high frequency current is superimposed on the fundamental wave current as in the PWM method.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、希土類
系永久磁石に代表される磁束密度の高い永久磁石を採用
すると、図4,図5に示す電流Iuに重畳した高周波電
流に対応して高周波磁束が発生し、この高周波磁束が希
土類系永久磁石に鎖交する。希土類系永久磁石はその電
気比抵抗が概略10-4Ωcm程度で比較的大きい導電性が
あり電流が流れやすいため、磁石内部で大きな渦電流が
発生する。この渦電流はモータの損失となるため、結果
的にブラシレスモータの効率が大幅に悪化し、高価な希
土類系磁石を使用してブラシレスモータの効率改善や出
力増加を行う意味がなくなる。However, when a permanent magnet having a high magnetic flux density represented by a rare earth permanent magnet is adopted, a high frequency magnetic flux is generated corresponding to the high frequency current superposed on the current Iu shown in FIGS. 4 and 5. The generated high-frequency magnetic flux is linked to the rare-earth permanent magnet. The rare earth permanent magnet has a relatively large electrical resistance of about 10 −4 Ωcm and has relatively large conductivity, and a current easily flows, so that a large eddy current is generated inside the magnet. Since this eddy current causes a loss of the motor, the efficiency of the brushless motor is significantly deteriorated as a result, and it is meaningless to improve the efficiency of the brushless motor and increase the output thereof by using an expensive rare earth magnet.
【0006】またこの問題を解決するために、希土類系
永久磁石に代表される導電性永久磁石とフェライト系永
久磁石(電気比抵抗は概略104Ωcm程度)に代表され
る非導電性永久磁石とを交互に配置して回転子を構成す
ることや、フェライト系永久磁石の代わりに希土類系永
久磁石微小粉と絶縁性流動体を混合して作成した半導電
性永久磁石を使用することが考えられているが、一台の
回転子を製造するのに多数の永久磁石を取りつける必要
があり、製造工数が増大して結果的にコストの高いブラ
シレスモータになってしまう。In order to solve this problem, a conductive permanent magnet typified by a rare earth permanent magnet and a non-conductive permanent magnet typified by a ferrite permanent magnet (electrical resistivity is about 10 4 Ωcm) are used. It is conceivable to arrange the rotors alternately to form a rotor, or to use a semi-conductive permanent magnet made by mixing rare earth-based permanent magnet fine powder and an insulating fluid instead of the ferrite permanent magnet. However, it is necessary to attach a large number of permanent magnets in order to manufacture one rotor, and the number of manufacturing steps increases, resulting in a costly brushless motor.
【0007】本発明は上記問題点を解決し、高効率・高
出力でさらに製造工数の少ないブラシレスモータ回転子
の製造方法を提供することを目的とする。An object of the present invention is to solve the above problems and to provide a method of manufacturing a brushless motor rotor which has high efficiency and high output and which requires less manufacturing steps.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明のブラシレスモータ回転子の製造方法は、複数
の導電性永久磁石片を有するブラシレスモータの回転子
であって、前記導電性永久磁石片を所定の空間を開けて
配置した後、永久磁石微小粉と絶縁性流動体の混合物を
前記空間に注入して回転子を一体成型するものである。In order to achieve the above object, a method for manufacturing a brushless motor rotor according to the present invention is a rotor for a brushless motor having a plurality of conductive permanent magnet pieces. After arranging the magnet pieces in a predetermined space, a mixture of permanent magnet fine powder and an insulating fluid is poured into the space to integrally mold the rotor.
【0009】[0009]
【作用】本発明は上記したように、永久磁石微小粉と絶
縁性流動体の混合物は導電性永久磁石の電気比抵抗より
はるかに大きい電気比抵抗を有しているので、ブラシレ
スモータ運転中に高周波磁束が回転子に鎖交しても、磁
石内部で大きな渦電流が発生することがない。さらに、
導電性永久磁石片を所定の空間を開けて配置した後、永
久磁石微小粉と絶縁性流動体の混合物を前記空間に注入
して回転子を一体成型するので、回転子を製造するのに
多数の永久磁石を取りつける必要がなくなり、製造工数
が大幅に減少することになる。As described above, according to the present invention, since the mixture of the permanent magnet fine powder and the insulating fluid has the electric resistivity much larger than that of the conductive permanent magnet, it is possible to operate the brushless motor during operation. Even if the high-frequency magnetic flux links the rotor, no large eddy current is generated inside the magnet. further,
After arranging the conductive permanent magnet pieces in a predetermined space, the mixture of the permanent magnet fine powder and the insulating fluid is injected into the space and the rotor is integrally molded. Since it is not necessary to install the permanent magnet, the number of manufacturing steps will be greatly reduced.
【0010】[0010]
【実施例】(実施例1)以下、本発明の第1の実施例に
ついて、図1〜図2を参照しながら説明する。(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
【0011】図1は本発明の第1の実施例のブラスレス
モータ回転子の製造方法を示す斜視図である。(a)は
円筒状回転子鉄心の斜視図、(b)は複数の導電性永久
磁石片の斜視図、(c)は円筒状回転子鉄心に複数の導
電性永久磁石片を軸方向に所定の空間を開けて配置した
状態の斜視図、(d)は(c)の状態のものに永久磁石
微小粉と絶縁性流動体の混合物を前記空間に注入して、
回転子を一体成型した完成状態の斜視図を示す。図1に
示すように、回転子1は円筒状回転子鉄心1に複数の導
電性永久磁石片2を軸方向に所定の空間を開けて配置
し、前記空間に永久磁石微小粉と絶縁性流動体の混合物
3を注入して回転子を一体成型している。なお、4は円
筒状回転子鉄心1の外周に軸方向に設けた溝、5は回転
子完成品を示す。FIG. 1 is a perspective view showing a method for manufacturing a brassless motor rotor according to a first embodiment of the present invention. (A) is a perspective view of a cylindrical rotor core, (b) is a perspective view of a plurality of conductive permanent magnet pieces, (c) is a cylindrical rotor core, and a plurality of conductive permanent magnet pieces are axially predetermined. Is a perspective view showing a state where the space is opened, and (d) is a state of (c) in which a mixture of permanent magnet fine powder and an insulating fluid is injected into the space,
The perspective view of the completed state which integrally molded the rotor is shown. As shown in FIG. 1, a rotor 1 comprises a cylindrical rotor core 1 and a plurality of conductive permanent magnet pieces 2 arranged axially in a predetermined space. The mixture 3 of the body is injected to integrally mold the rotor. In addition, 4 is a groove formed in the outer periphery of the cylindrical rotor core 1 in the axial direction, and 5 is a finished rotor product.
【0012】図2は本発明の製造方法のなかで、永久磁
石微小粉と絶縁性流動体の混合物3を前記空間に注入す
る工程を示す断面図である。注入型6a,6b,6cの
中に円筒状回転子鉄心1と複数の導電性永久磁石片2を
装着し、永久磁石微小粉と絶縁性流動体の混合物3を注
入口7から円筒状回転子鉄心1の外周に軸方向に設けた
溝4を通して前記空間に注入する。なお、ここで言う絶
縁性流動体とはナイロン,PPS,ポリエステル等の成
型用樹脂のことであり、熱硬化性,熱可塑性を問わな
い。FIG. 2 is a sectional view showing a step of injecting the mixture 3 of the permanent magnet fine powder and the insulating fluid into the space in the manufacturing method of the present invention. A cylindrical rotor iron core 1 and a plurality of conductive permanent magnet pieces 2 are mounted in injection molds 6a, 6b, 6c, and a mixture 3 of permanent magnet fine powder and insulating fluid is injected from an injection port 7 into a cylindrical rotor. It is injected into the space through a groove 4 provided in the outer periphery of the iron core 1 in the axial direction. The insulating fluid referred to here is a molding resin such as nylon, PPS, or polyester, and may be thermosetting or thermoplastic.
【0013】以上のようにして製造されたブラシレスモ
ータでは、永久磁石微小粉と絶縁性流動体の混合物の電
気比抵抗が、導電性永久磁石の電気比抵抗よりはるかに
大きい値を有しているので、ブラシレスモータ運転中に
高周波磁束が回転子に鎖交しても、磁石内部で大きな渦
電流が発生することがない。さらに、永久磁石微小粉と
絶縁性流動体の混合物を注入するだけで、回転子を一体
成型することができる。したがって、ブラシレスモータ
の効率改善や出力増加を行うことができるようになると
ともに、高価な導電性永久磁石と、安価な永久磁石微小
粉と絶縁性流動体の混合物を両方使用するため、すべて
を導伝性永久磁石で構成するより、材料面で大幅に安価
なブラシレスモータを提供することができるようにな
る。さらに、回転子の製造工数が大幅に減少するので、
工数面でも大幅な改善ができる。In the brushless motor manufactured as described above, the electric resistivity of the mixture of the permanent magnet fine powder and the insulating fluid is much larger than that of the conductive permanent magnet. Therefore, even if the high-frequency magnetic flux links the rotor during operation of the brushless motor, a large eddy current is not generated inside the magnet. Furthermore, the rotor can be integrally molded only by injecting the mixture of the permanent magnet fine powder and the insulating fluid. Therefore, it is possible to improve the efficiency and increase the output of the brushless motor, and at the same time, to use an expensive conductive permanent magnet and an inexpensive mixture of permanent magnet fine powder and an insulating fluid, it is possible to conduct everything. It is possible to provide a brushless motor that is significantly cheaper in terms of material than a brushless motor that is composed of conductive permanent magnets. In addition, the number of rotor manufacturing steps is significantly reduced,
Significant improvements can be made in terms of man-hours.
【0014】なお、本実施例では導電性永久磁石片の配
置を回転軸方向に積み重ねた構成となっているが、円周
方向に配置しても同様の効果が得られることは言うまで
もない。In this embodiment, the conductive permanent magnet pieces are stacked in the rotational axis direction, but it goes without saying that the same effect can be obtained by arranging them in the circumferential direction.
【0015】また、本実施例では固定子が外側で回転子
が内側の内転型ブラシレスモータを示したが、固定子が
内側で回転子が外側の外転型ブラシレスモータについて
も同様の効果が得られることは言うまでもない。Further, in this embodiment, the inversion type brushless motor in which the stator is on the outer side and the rotor is on the inner side is shown. It goes without saying that you can get it.
【0016】(実施例2)以下、本発明の第2の実施例
について図3を参照しながら説明する。(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIG.
【0017】図3は導電性永久磁石片を中心から半径方
向に配置したブラシレスモータの一実施例を示す。
(a)はブラシレスモータ完成品の断面図、(b)は回
転子のみの斜視図である。平板状固定子鉄心8の磁極面
に対向して平板状回転子が設けられている。前記平板上
回転子は、回転子鉄心9に複数の導電性永久磁石片10
を中心から半径方向に配置し、前記導電性永久磁石片1
0の間に設けられた空間に永久磁石微小粉と絶縁性流動
体の混合物11を第1の実施例と同様の方法で注入する
ことにより、回転子の製造工数が大幅に減少することが
できる。FIG. 3 shows an embodiment of a brushless motor in which conductive permanent magnet pieces are arranged in the radial direction from the center.
(A) is a cross-sectional view of a completed brushless motor, and (b) is a perspective view of only a rotor. A flat plate-shaped rotor is provided so as to face the magnetic pole surface of the flat plate-shaped stator core 8. The flat plate rotor includes a rotor core 9 and a plurality of conductive permanent magnet pieces 10.
Are arranged in the radial direction from the center, and the conductive permanent magnet piece 1
By injecting the mixture 11 of the permanent magnet fine powder and the insulating fluid into the space provided between 0 in the same manner as in the first embodiment, the number of manufacturing steps of the rotor can be greatly reduced. .
【0018】さらに、回転子鉄心を使用しないブラシレ
スモータについても同様の効果が得られることは言うま
でもない。Needless to say, the same effect can be obtained with a brushless motor that does not use a rotor core.
【0019】[0019]
【発明の効果】以上の実施例の説明より明らかなよう
に、本発明は複数の導電性永久磁石片を有するブラシレ
スモータの回転子であって、導電性永久磁石片を所定の
空間を開けて配置した後、永久磁石微小粉と絶縁性流動
体の混合物を前記空間に注入して回転子を一体成型した
ことにより、永久磁石微小粉と絶縁性流動体の混合物の
電気比抵抗が、導電性永久磁石の電気比抵抗よりはるか
に大きい値を有しているので、ブラシレスモータ運転中
に高周波磁束が回転子に鎖交しても、磁石内部で大きな
渦電流が発生することがない。さらに、永久磁石微小粉
と絶縁性流動体の混合物を注入するだけで、回転子を一
体成型するので回転子を製造するのに多数の永久磁石を
取り付ける必要がなくなり、製造工数が大幅に減少する
こととなり、工数面でも大幅な改善ができるものであ
る。As is apparent from the above description of the embodiments, the present invention is a rotor of a brushless motor having a plurality of conductive permanent magnet pieces, in which the conductive permanent magnet pieces are opened in a predetermined space. After arranging, the mixture of permanent magnet fine powder and insulating fluid was injected into the space, and the rotor was integrally molded, so that the electrical resistivity of the mixture of permanent magnet fine powder and insulating fluid became conductive. Since the electric resistance of the permanent magnet is much larger than that of the permanent magnet, a large eddy current is not generated inside the magnet even if the high-frequency magnetic flux links the rotor during operation of the brushless motor. Furthermore, since the rotor is integrally molded by simply injecting a mixture of the permanent magnet fine powder and the insulating fluid, it is not necessary to attach many permanent magnets to manufacture the rotor, and the number of manufacturing steps is greatly reduced. This means that the number of man-hours can be greatly improved.
【図1】(a)は本発明の第1の実施例のブラスレスモ
ータの円筒状回転子鉄心の斜視図 (b)は同、複数の導電性永久磁石片の斜視図 (c)は同、円筒状回転子鉄心に複数の導電性永久磁石
片を軸方向に所定の空間を開けて配置した状態の斜視図 (d)は同、(c)の状態のものに永久磁石微小粉と絶
縁性流動体の混合物を前記空間に注入して回転子を一体
成型した完成状態の斜視図1A is a perspective view of a cylindrical rotor core of a brassless motor according to a first embodiment of the present invention, FIG. 1B is the same, and FIG. 1C is a perspective view of a plurality of conductive permanent magnet pieces. , A perspective view of a cylindrical rotor core in which a plurality of conductive permanent magnet pieces are arranged with a predetermined space opened in the axial direction, and (d) is the same as that in the state of (c), which is insulated from the permanent magnet fine powder. Perspective view of a completed state in which a mixture of a volatile fluid is injected into the space and the rotor is integrally molded
【図2】本発明の永久磁石微小粉と絶縁性流動体の混合
物を注入する工程を示す断面図FIG. 2 is a sectional view showing a step of injecting a mixture of permanent magnet fine powder and an insulating fluid of the present invention.
【図3】(a)は本発明の第2の実施例のブラスレスモ
ータ完成品の断面図 (b)は同、ブラシレスモータ回転子のみの斜視図FIG. 3A is a cross-sectional view of a finished brassless motor of the second embodiment of the present invention, and FIG. 3B is a perspective view of only the brushless motor rotor.
【図4】3相全波駆動PWM方式の制御回路とブラシレ
スモータの主要接続回路図FIG. 4 is a main connection circuit diagram of a control circuit of a three-phase full-wave drive PWM system and a brushless motor.
【図5】(a)はPWM方式による印加電圧波形図 (b)は同、電流波形図5A is a waveform diagram of an applied voltage by a PWM method, and FIG. 5B is a current waveform diagram of the same.
2 導電性永久磁石片 3 永久磁石微小粉と絶縁性流動体の混合物 5 回転子 2 Conductive permanent magnet pieces 3 Mixture of permanent magnet fine powder and insulating fluid 5 Rotor
Claims (4)
性永久磁石片を所定の空間を開けて配置した後、永久磁
石微小粉と絶縁性流動体の混合物を前記空間に注入して
回転子を一体成型したブラシレスモータ回転子の製造方
法。1. A plurality of conductive permanent magnet pieces are provided, the conductive permanent magnet pieces are arranged with a predetermined space between them, and then a mixture of permanent magnet fine powder and an insulating fluid is injected into the space. Manufacturing method for a brushless motor rotor in which the rotor is integrally molded.
は、導電性永久磁石片を回転軸方向または円周方向に配
置した請求項1記載のブラシレスモータ回転子の製造方
法。2. The method of manufacturing a brushless motor rotor according to claim 1, wherein the magnetic pole surface is formed in a cylindrical shape, and the conductive permanent magnet pieces are arranged in the rotational axis direction or the circumferential direction.
っては、導電性永久磁石片を中心から放射状または半径
方向に配置した請求項1記載のブラシレスモータ回転子
の製造方法。3. The method for manufacturing a brushless motor rotor according to claim 1, wherein, when the magnetic pole surface is orthogonal to the rotation axis, the conductive permanent magnet pieces are arranged radially or radially from the center.
2,請求項3のいずれかに記載のブラシレスモータ回転
子の製造方法。4. The method for manufacturing a brushless motor rotor according to claim 1, wherein a rotor core is not used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4045290A JPH05252676A (en) | 1992-03-03 | 1992-03-03 | Manufacture of rotor for brushless motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4045290A JPH05252676A (en) | 1992-03-03 | 1992-03-03 | Manufacture of rotor for brushless motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05252676A true JPH05252676A (en) | 1993-09-28 |
Family
ID=12715184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4045290A Pending JPH05252676A (en) | 1992-03-03 | 1992-03-03 | Manufacture of rotor for brushless motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05252676A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001025189A (en) * | 1999-07-09 | 2001-01-26 | Toyota Motor Corp | Permanent magnet of permanent magnet rotor |
JP2005354899A (en) * | 2005-09-09 | 2005-12-22 | Mitsubishi Electric Corp | Permanent magnet type motor |
WO2008084615A1 (en) * | 2007-01-11 | 2008-07-17 | Daikin Industries, Ltd. | Field element, rotary electric machine, and method of manufacturing field element |
DE102013017958B4 (en) | 2012-10-31 | 2017-03-30 | Fanuc Corporation | Rotor of a motor using magnets |
JP2022051201A (en) * | 2020-09-18 | 2022-03-31 | 株式会社Ihi | Rotor and motor |
-
1992
- 1992-03-03 JP JP4045290A patent/JPH05252676A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001025189A (en) * | 1999-07-09 | 2001-01-26 | Toyota Motor Corp | Permanent magnet of permanent magnet rotor |
JP2005354899A (en) * | 2005-09-09 | 2005-12-22 | Mitsubishi Electric Corp | Permanent magnet type motor |
WO2008084615A1 (en) * | 2007-01-11 | 2008-07-17 | Daikin Industries, Ltd. | Field element, rotary electric machine, and method of manufacturing field element |
DE102013017958B4 (en) | 2012-10-31 | 2017-03-30 | Fanuc Corporation | Rotor of a motor using magnets |
US9948167B2 (en) | 2012-10-31 | 2018-04-17 | Fanuc Corporation | Rotor of motor which uses magnets to achieve variation-free torque |
JP2022051201A (en) * | 2020-09-18 | 2022-03-31 | 株式会社Ihi | Rotor and motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5619085A (en) | Slotless, brushless, large air-gap electric motor | |
US7202620B2 (en) | Apparatus and method for dissipating a portion of the commutation derived collapsing field energy in a multi-phase unipolar electric motor | |
US5425165A (en) | Method of making a slotless, brushless, large air-gap electric motor | |
CA2097194C (en) | Polyphase switched reluctance motor | |
US4995159A (en) | Method of making an electronically commutated reluctance motor | |
US5015903A (en) | Electronically commutated reluctance motor | |
US6674205B2 (en) | Auxiliary magnetizing winding for interior permanent magnet rotor magnetization | |
US20130062985A1 (en) | Brushless dc motor | |
JP2003111322A (en) | Rotor of permanent magnet machine | |
JPH05304737A (en) | Permanent magnet type motor | |
JPS6335158A (en) | Single-phase brushless motor | |
CN112889214A (en) | Control device for rotating electric machine and control method for rotating electric machine | |
JP3062085U (en) | Opposite-axis magnetic brushless DC motor | |
JPH05252676A (en) | Manufacture of rotor for brushless motor | |
JPH0993895A (en) | Brushless motor | |
JPH01318536A (en) | Brushless dc motor and rotor magnet therefor | |
JPH06205573A (en) | Winding changeover type rotating electric machine | |
CN112787476B (en) | Integrated direct-current induction hybrid excitation brushless motor based on alternating-pole rotor | |
EP0505476A4 (en) | ||
USRE32654E (en) | Wide air gap permanent magnet motors | |
JPH05227686A (en) | Brushless motor | |
Harkare et al. | Design and development of a switched reluctance motor and dsPIC based drive | |
JPS62126888A (en) | Controlling method for brushless motor | |
JP2001078401A (en) | Permanent magnet type synchronous motor | |
JPS6323523A (en) | Electrically driven motor with integrated coil having magnetic material injection-molded yoke |