JPH05252015A - Semiconductor circuit - Google Patents

Semiconductor circuit

Info

Publication number
JPH05252015A
JPH05252015A JP4046507A JP4650792A JPH05252015A JP H05252015 A JPH05252015 A JP H05252015A JP 4046507 A JP4046507 A JP 4046507A JP 4650792 A JP4650792 A JP 4650792A JP H05252015 A JPH05252015 A JP H05252015A
Authority
JP
Japan
Prior art keywords
gate
potential
control signal
nonconductive
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4046507A
Other languages
Japanese (ja)
Other versions
JP3074906B2 (en
Inventor
Tsutomu Furuki
勉 古木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04046507A priority Critical patent/JP3074906B2/en
Publication of JPH05252015A publication Critical patent/JPH05252015A/en
Application granted granted Critical
Publication of JP3074906B2 publication Critical patent/JP3074906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent malfunction by making a pMOS transistor(TR) forming a CMOS gate nonconductive and then making an nMOSTR nonconductive resulting in causing the gate to be nonconductive. CONSTITUTION:A transfer gate consists of CMOS TRs being a pMOSTR31 and an nMOSTR32. The TRs 31, 32 are controlled respectively by a control signal from a control terminal 10 and a control signal via a delay circuit 4 to make the TR 31 whose gate-drain capacitance is large nonconductive and to make the TR 32 whose gate-drain capacitance is small nonconductive and then the transfer gate is made nonconductive. Thus, a level increase when a low potential level is kept for an output terminal is suppressed to prevent occurrence of malfunction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体回路に関し、特に
CMOSトランスファゲートを用いたマイクロコンピュ
ータなどのディジタル集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor circuit, and more particularly to a digital integrated circuit such as a microcomputer using a CMOS transfer gate.

【0002】[0002]

【従来の技術】マイクロコンピュータなどのディジタル
集積回路には、図4に示すように、pMOST31とn
MOST32を並列に接続したトランスファゲートが用
いられている。pMOST31およびnMOST32の
一方のソース・ドレイン領域を入力端子1とし、他方の
ソース・ドレイン領域を出力端子2とし、pMOST3
1のゲート電極11とnMOST32のゲート電極12
にそれぞれ互いにほぼ逆相の制御信号が印加される。通
常制御信号端子10は、nMOST32のゲート電極1
2に直接接続され、pMOST31のゲート電極11に
はインバータ41を介して接続される。
2. Description of the Related Art In a digital integrated circuit such as a microcomputer, as shown in FIG.
A transfer gate in which MOSTs 32 are connected in parallel is used. One of the source / drain regions of pMOST31 and nMOST32 is used as an input terminal 1, the other source / drain region is used as an output terminal 2, and pMOST3
1 gate electrode 11 and nMOST 32 gate electrode 12
The control signals having substantially opposite phases to each other are applied to. The normal control signal terminal 10 is the gate electrode 1 of the nMOST 32.
2 is directly connected to the gate electrode 11 of the pMOST 31 via an inverter 41.

【0003】このトランスファゲートはゲート電極11
の電位が低レベル、ゲート電極12の電位が高レベルの
時pMOST31及びnMOST32は共に導通状態と
なり入力端子1の電位レベルを出力端子2へ伝達させ
る。またゲート電極11の電位が高レベル、ゲート電極
12の電位が低レベルの時は、pMOST31及びnM
OST32は共に非導通状態となるため、入力端子1の
電位レベルにかかわらず出力端子2の電位レベルは保持
され続ける。この様子を図5の信号波形図を用いて説明
する。
This transfer gate has a gate electrode 11
When the potential of the gate electrode 12 is low and the potential of the gate electrode 12 is high, both the pMOST 31 and the nMOST 32 become conductive, and the potential level of the input terminal 1 is transmitted to the output terminal 2. Further, when the potential of the gate electrode 11 is at a high level and the potential of the gate electrode 12 is at a low level, pMOST31 and nM
Since both OSTs 32 are in the non-conducting state, the potential level of the output terminal 2 continues to be held regardless of the potential level of the input terminal 1. This situation will be described with reference to the signal waveform diagram of FIG.

【0004】初期状態(時刻t1以前)を入力端子1、
ゲート電極12及び出力端子2の電位を高レベル、ゲー
ト電極11の電位を低レベルとする。時刻t1で入力端
子の電位が低レベルへスイッチングするとpMOST3
1、nMOST32は共に導通状態にあるため、出力端
子2の電位は時刻t2で低レベルにスイッチングする。
この時刻t2はpMOST31、nMOST32の電流
駆動能力及び出力端子2の負荷容量に依存する。次に時
刻t3でゲート電極11、ゲート電極12の電位を低レ
ベルへ同時にスイッチングさせpMOST31とnMO
ST32を非導通状態にする。この時出力端子2の電位
は低レベルを保持し続けるはずであるが、ゲート電極1
1の電位のスイッチングの影響を受け出力端子2の電位
レベルが上昇してしまう。
In the initial state (before time t1), the input terminal 1,
The potentials of the gate electrode 12 and the output terminal 2 are set to high level, and the potential of the gate electrode 11 is set to low level. When the potential of the input terminal switches to a low level at time t1, pMOST3
Since both 1 and nMOST 32 are conductive, the potential of the output terminal 2 switches to a low level at time t2.
This time t2 depends on the current driving capability of the pMOST31 and nMOST32 and the load capacitance of the output terminal 2. Next, at time t3, the potentials of the gate electrode 11 and the gate electrode 12 are simultaneously switched to the low level, and pMOST31 and nMO are switched.
ST32 is turned off. At this time, the potential of the output terminal 2 should continue to maintain a low level, but the gate electrode 1
The potential level of the output terminal 2 rises under the influence of the switching of the potential of 1.

【0005】ここでこの現象について説明する。図6は
MOSTの断面図である。通常MOSTはゲート電極1
05とソース・ドレイン拡散層102,103は図示の
ようにオーバーラップしている。このオーバーラップの
長さをゲート・ドレイン・オーバーラップ長Δとして定
義する。
Here, this phenomenon will be described. FIG. 6 is a sectional view of the MOST. Normally MOST is gate electrode 1
05 and the source / drain diffusion layers 102 and 103 overlap each other as shown in the drawing. The length of this overlap is defined as the gate / drain overlap length Δ.

【0006】ここでpMOSTのソース・ドレイン拡散
層の不純物はボロンを使用している。nMOSTのソー
ス・ドレイン拡散層の不純物のヒ素と比較してボロンは
拡散係数が大きいため、pMOSTのゲート・ドレイン
・オーバーラップ長ΔはnMOSTのそれより大きくな
ることは明らかである。実際pMOSTはnMOSTの
2倍程度のゲート・ドレイン・オーバーラップ長を有す
る。
Boron is used as the impurity in the source / drain diffusion layer of the pMOST. Since boron has a larger diffusion coefficient than arsenic, which is an impurity in the source / drain diffusion layer of the nMOST, it is clear that the gate / drain overlap length Δ of the pMOST is larger than that of the nMOST. In fact, pMOST has a gate-drain-overlap length that is about twice that of nMOST.

【0007】又pMOSTのそれより2倍程度大きく設
計するのが一般的である。このことからpMOSTのゲ
ート・ドレイン間容量21はnMOSTのそれ22より
4倍程度大きくなるため、ゲート電極11の電位が低レ
ベルから高レベルへのスイッチングによって出力端子2
の電位レベルが上昇してしまう。このレベル上昇は出力
端子2の負荷容量とゲート・ドレイン間容量の比に依存
する。
Further, it is generally designed to be about twice as large as that of pMOST. As a result, the gate-drain capacitance 21 of the pMOST is about four times larger than that 22 of the nMOST, so that the potential of the gate electrode 11 is switched from the low level to the high level to output the output terminal 2
The potential level of will rise. This rise in level depends on the ratio of the load capacitance of the output terminal 2 to the gate-drain capacitance.

【0008】ゲート1段当りのスイッチング時間が速い
製品ほど、つまり電流駆動能力が大きいトランジスタを
使用するほどGND配線に生じるノイズの振幅は大きく
なりノイズマージンがきびしくなってくる。又近年低電
圧化が進みつつありノイズマージンは減少する方向にあ
る。これらのことにより従来問題とならなかったトラン
スファゲートのゲート・ソース間容量によるカップリン
グが近年問題になってきた。
A product having a faster switching time per one stage of a gate, that is, a transistor having a larger current driving capability is used, the amplitude of noise generated in the GND wiring becomes larger and the noise margin becomes more severe. Further, in recent years, as the voltage has been lowered, the noise margin tends to decrease. For these reasons, the coupling due to the gate-source capacitance of the transfer gate, which has not been a problem in the past, has become a problem in recent years.

【0009】[0009]

【発明が解決しようとする課題】この従来のトランスフ
ァゲートの動作では、入力端子1及び出力端子2の電位
が低レベルの時にトランスファゲートを非導通状態にス
イッチングさせるためゲート電極11及び12の電位を
同時にスイッチングさせると、pMOST31のゲート
・ドレイン間容量により出力端子2の電位レベルが上昇
し、出力端子2の電位の低レベルが保持できなくなり誤
動作を引き起こす原因となっていた。
In the operation of this conventional transfer gate, when the potentials of the input terminal 1 and the output terminal 2 are at a low level, the potentials of the gate electrodes 11 and 12 are switched in order to switch the transfer gate to the non-conducting state. Simultaneous switching raises the potential level of the output terminal 2 due to the gate-drain capacitance of the pMOST 31, which makes it impossible to maintain the low level of the potential of the output terminal 2 and causes a malfunction.

【0010】[0010]

【課題を解決するための手段】本発明は、第1の制御信
号で導通/非導通を制御されるpMOSTと、第2の制
御信号で導通/非導通を制御されるnMOSTとを含む
ゲートを備える半導体回路において、前記第1の制御信
号から所定時間遅れて第2の制御信号を変化させる手段
を有するというものである。
The present invention includes a gate including a pMOST whose conduction / non-conduction is controlled by a first control signal and an nMOST whose conduction / non-conduction is controlled by a second control signal. The semiconductor circuit comprises a means for changing the second control signal with a delay of a predetermined time from the first control signal.

【0011】[0011]

【実施例】次に本発明の実施例について図面を参照して
説明する。図1は本発明の第1の実施例の説明に使用す
るトランスファゲートの回路図、図2はその動作説明に
使用する信号波形図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a circuit diagram of a transfer gate used to explain the first embodiment of the present invention, and FIG. 2 is a signal waveform diagram used to explain its operation.

【0012】この実施例は、第1の制御信号で導通/非
導通を制御されるpMOST31と、第2の制御信号で
導通/非導通を制御されるnMOST32とを並列に接
続したCMOSゲートを備える半導体回路において、前
記第1の制御信号から所定時間遅れて第2の制御信号を
変化させる手段を有するというものである。すなわち、
第1の制御信号は、制御信号端子10に加わる信号、第
2の制御信号(ゲート電極12に加わる信号)は制御信
号端子10に加わる信号を遅延回路4(インバータ4
1,42および43を従続接続したもの)を通した信号
である。
This embodiment has a CMOS gate in which a pMOST 31 whose conduction / non-conduction is controlled by a first control signal and an nMOST 32 whose conduction / non-conduction is controlled by a second control signal are connected in parallel. The semiconductor circuit has means for changing the second control signal after a delay of a predetermined time from the first control signal. That is,
The first control signal is the signal applied to the control signal terminal 10, and the second control signal (the signal applied to the gate electrode 12) is the signal applied to the control signal terminal 10 in the delay circuit 4 (inverter 4).
1, 42 and 43 are connected in cascade).

【0013】初期状態として入力端子1、ゲート電極1
2及び出力端子2の電位が高レベル、ゲート電極11の
電位が低レベルの時、時刻t1で入力端子1の電位を低
レベルにスイッチングさせると、pMOST31及びn
MOST32が導通状態にあるので、時刻t2で出力端
子2の電位が低レベルへスイッチングする。次に時刻t
3でゲート電極11の電位を高レベルにスイッチングさ
せpMOST31を非導通状態にさせる。この時pMO
ST31のゲート・ドレイン間容量21により出力端子
2の電位レベルが上昇するが、この時nMOST32は
導通状態にあるので出力端子2の電位は低レベルにおち
つく。pMOST31を非導通状態にさせた後、時刻t
4でゲート電極12の電位を低レベルにスイッチングさ
せトランスファゲートを非導通状態にさせる。この時n
MOST32のゲート・ドレイン間容量22により出力
端子2の低レベルをさらに低下させるが、回路動作には
なんら問題はない。このように出力端子2の電位は完全
に低レベルを保持でき、ゲート・ドレイン間容量21に
よる誤動作を防止することができる。
As an initial state, the input terminal 1 and the gate electrode 1
2 and the potential of the output terminal 2 are at a high level and the potential of the gate electrode 11 is at a low level, when the potential of the input terminal 1 is switched to the low level at time t1, the pMOSTs 31 and n
Since the MOST 32 is conductive, the potential of the output terminal 2 switches to the low level at time t2. Then at time t
At 3, the potential of the gate electrode 11 is switched to a high level to make the pMOST 31 non-conductive. At this time pMO
The potential level of the output terminal 2 rises due to the gate-drain capacitance 21 of ST31, but at this time the nMOST 32 is in the conductive state, so that the potential of the output terminal 2 falls to a low level. After turning off pMOST31, time t
At 4, the potential of the gate electrode 12 is switched to a low level to make the transfer gate non-conductive. At this time n
Although the low level of the output terminal 2 is further lowered by the gate-drain capacitance 22 of the MOST 32, there is no problem in the circuit operation. In this way, the potential of the output terminal 2 can be kept at a completely low level, and malfunction due to the gate-drain capacitance 21 can be prevented.

【0014】次に時刻t5でゲート電極11の電位を低
レベル、時刻t6でゲート電極12の電位を高レベル、
時刻t7で入力端子1の電位を高レベルにそれぞれスイ
ッチングさせると、pMOST31,nMOST32は
導通状態になるので時刻t8で出力端子2の電位が高レ
ベルにスイッチングする。この状態から時刻t9でゲー
ト電極11の電極を高レベルにスイッチングすると、出
力端子2の電位はpMOSTのゲート・ドレイン間容量
21によりレベルが上昇するが回路動作にはなんら問題
はない。ここで図2の波形図ではnMOST32のゲー
ト・ドレイン間容量22が小さいため、ゲート・ドレイ
ン間容量22による出力端子2の電位のレベル変動は省
略している。
Next, at time t5, the potential of the gate electrode 11 is low, and at time t6 the potential of the gate electrode 12 is high.
When the potential of the input terminal 1 is switched to the high level at the time t7, the pMOST31 and the nMOST32 are brought into the conductive state, and the potential of the output terminal 2 is switched to the high level at the time t8. When the electrode of the gate electrode 11 is switched to a high level at this time t9 from this state, the potential of the output terminal 2 rises due to the gate-drain capacitance 21 of the pMOST, but there is no problem in the circuit operation. Here, in the waveform diagram of FIG. 2, since the gate-drain capacitance 22 of the nMOST 32 is small, the level fluctuation of the potential of the output terminal 2 due to the gate-drain capacitance 22 is omitted.

【0015】図3は本発明の第2の実施例の説明に使用
する回路図であり、本発明をCMOSクロックインバー
タに適用した例である。
FIG. 3 is a circuit diagram used to explain the second embodiment of the present invention, which is an example in which the present invention is applied to a CMOS clock inverter.

【0016】電源端子VDD,接地端子GNDの間にpM
OST31a,31b及びnMOST32a,32bを
直列に接続して挿入し、pMOST31aおよびnMO
ST32bのゲートを入力端子1に接続し、pMOST
31bのゲート電極11を制御信号端子10へ、nMO
ST32bのゲート電極と制御信号端子10との間にイ
ンバータ41,42,43を挿入し、pMOST31b
とnMOST32aのドレインの出力端子2としてい
る。
Between the power supply terminal V DD and the ground terminal GND, pM
The OSTs 31a and 31b and the nMOSTs 32a and 32b are connected in series and inserted, and the pMOSTs 31a and nMOS are inserted.
The gate of ST32b is connected to the input terminal 1, and the pMOST
The gate electrode 11 of 31b to the control signal terminal 10
Inverters 41, 42, 43 are inserted between the gate electrode of ST32b and the control signal terminal 10, and pMOST31b
And the output terminal 2 of the drain of the nMOST 32a.

【0017】本実施例では入力端子1の電位レベルの反
転レベルが出力端子2へ出力されるほかはトランスファ
ゲートの動作と同じであるため波形図は省略する。
In this embodiment, the waveform diagram is omitted because it is the same as the operation of the transfer gate except that the inverted level of the potential level of the input terminal 1 is output to the output terminal 2.

【0018】本実施例の場合、入力端子1、ゲート電極
12の電位が高レベル、ゲート電極11及び出力端子2
の電位が低レベルの時、ゲート電極11の電位を高レベ
ルへスイッチングさせたのち、低レベルへスイッチング
すると、出力端子2の電位の低レベルが上昇することな
く低レベル保持状態を保つことができる。
In the case of this embodiment, the potentials of the input terminal 1 and the gate electrode 12 are at a high level, the gate electrode 11 and the output terminal 2 are high.
When the potential of the gate electrode 11 is low level, the potential of the gate electrode 11 is switched to the high level and then to the low level, so that the low level holding state can be maintained without increasing the low level of the potential of the output terminal 2. ..

【0019】[0019]

【発明の効果】以上説明したように本発明は、CMOS
ゲートにおいてゲート・ドレイン間容量の大きいpMO
STを先に非導通状態に、その後ゲート・ドレイン間容
量の小さいnMOSTの非導通状態にすることによって
出力端子の電位の低レベル保持時のレベル上昇をおさえ
ることができ、半導体回路の誤動作を防止できる効果が
ある。
As described above, according to the present invention, the CMOS
PMO with large gate-drain capacitance at the gate
By making ST non-conducting first and then making nMOST with a small gate-drain capacitance non-conducting, it is possible to suppress the level rise when the potential of the output terminal is kept at a low level and prevent malfunction of the semiconductor circuit. There is an effect that can be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の説明に使用するCMO
Sトランスファゲートの回路図である。
FIG. 1 is a CMO used to describe a first embodiment of the present invention.
It is a circuit diagram of an S transfer gate.

【図2】図1に示した回路の動作の説明に使用する信号
波形図である。
FIG. 2 is a signal waveform diagram used for explaining the operation of the circuit shown in FIG.

【図3】本発明の第2の実施例の説明に使用するCMO
Sクロックトインバータの回路図である。
FIG. 3 is a CMO used to describe a second embodiment of the present invention.
It is a circuit diagram of an S clocked inverter.

【図4】従来の技術の説明に使用するCMOSトランス
ファゲートの回路図である。
FIG. 4 is a circuit diagram of a CMOS transfer gate used for explaining a conventional technique.

【図5】図4に示した回路の動作の説明に使用する信号
波形図である。
5 is a signal waveform diagram used to describe an operation of the circuit shown in FIG.

【図6】MOSTの断面図である。FIG. 6 is a cross-sectional view of a MOST.

【符号の説明】[Explanation of symbols]

1 入力端子 2 出力端子 11 pMOST31のゲート電極 12 nMOST32のゲート電極 21 pMOSTのゲート・ドレイン間容量 22 nMOSTのゲート・ドレイン間容量 32,32a,32b nMOST 4 遅延回路 41,42,43 インバータ 101 一導電型のシリコン基板 102,103 ソース・ドレイン領域 104 ゲート酸化膜 105 ゲート電極 106 ゲート・ドレイン間容量 L ゲート長 Δ オーバラップ容量 1 Input Terminal 2 Output Terminal 11 Gate Electrode of pMOST 31 12 Gate Electrode of nMOST 32 21 Gate-Drain Capacitance of pMOST 22 Gate-Drain Capacitance of nMOST 32, 32a, 32b nMOST 4 Delay Circuit 41, 42, 43 Inverter 101 One Conduction Type silicon substrate 102, 103 Source / drain region 104 Gate oxide film 105 Gate electrode 106 Gate-drain capacitance L Gate length Δ Overlap capacitance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の制御信号で導通/非導通を制御さ
れるpMOSTと、第2の制御信号で導通/非導通を制
御されるnMOSTとを含むゲートを備える半導体回路
において、前記第1の制御信号から所定時間遅れて第2
の制御信号を変化させる手段を有することを特徴とする
半導体回路。
1. A semiconductor circuit comprising a gate including a pMOST whose conduction / non-conduction is controlled by a first control signal and an nMOST whose conduction / non-conduction is controlled by a second control signal. Second after a predetermined time from the control signal of
2. A semiconductor circuit having means for changing the control signal of.
【請求項2】 第1の制御信号をインバータを少なくと
も3段通して反転させて第2の制御信号とする請求項記
載の半導体回路。
2. The semiconductor circuit according to claim 1, wherein the first control signal is inverted through at least three stages through an inverter to generate a second control signal.
JP04046507A 1992-03-04 1992-03-04 Semiconductor circuit Expired - Fee Related JP3074906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04046507A JP3074906B2 (en) 1992-03-04 1992-03-04 Semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04046507A JP3074906B2 (en) 1992-03-04 1992-03-04 Semiconductor circuit

Publications (2)

Publication Number Publication Date
JPH05252015A true JPH05252015A (en) 1993-09-28
JP3074906B2 JP3074906B2 (en) 2000-08-07

Family

ID=12749171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04046507A Expired - Fee Related JP3074906B2 (en) 1992-03-04 1992-03-04 Semiconductor circuit

Country Status (1)

Country Link
JP (1) JP3074906B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636008B2 (en) 2006-09-22 2009-12-22 Samsung Electronics Co., Ltd. Pass gate circuit stably transferring signal and control method
JP2012010322A (en) * 2010-05-21 2012-01-12 Canon Inc Solid-state imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636008B2 (en) 2006-09-22 2009-12-22 Samsung Electronics Co., Ltd. Pass gate circuit stably transferring signal and control method
JP2012010322A (en) * 2010-05-21 2012-01-12 Canon Inc Solid-state imaging apparatus

Also Published As

Publication number Publication date
JP3074906B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US4508983A (en) MOS Analog switch driven by complementary, minimally skewed clock signals
US4321661A (en) Apparatus for charging a capacitor
US4769561A (en) Bipolar transistor-field effect transistor composite circuit
US4985647A (en) CMOS transfer switch free from malfunction on noise signal
US4122360A (en) Logic circuit using CMOS transistors
JPH0746511B2 (en) Data output driver for high output gain
US4430583A (en) Apparatus for increasing the speed of a circuit having a string of IGFETs
US3912948A (en) Mos bootstrap inverter circuit
JPH06314773A (en) Semiconductor device
US4417162A (en) Tri-state logic buffer circuit
US5677550A (en) Integrated circuit devices including insulated-gate transistor device having two separately biasable gates
KR100432941B1 (en) Methods and apparatus for bipolar elimination in silicon-on-insulator(soi) domino circuits
US6100565A (en) Semiconductor integrated circuit device with operation in partial depletion type mode and perfect depletion type mode
KR100331417B1 (en) Liquid crystal display device
US4547681A (en) Semiconductor device having contacting but electrically isolated regions of opposite conductivity types
US5444401A (en) Current limited output driver for a gate array circuit
US5083179A (en) CMOS semiconductor integrated circuit device
JPH05252015A (en) Semiconductor circuit
US5164617A (en) High speed bicmos logic circuit
JP2978346B2 (en) Input circuit of semiconductor integrated circuit device
EP0013117B1 (en) A mos dynamic logic circuit
US3745370A (en) Charge circuit for field effect transistor logic gate
US4503345A (en) MOS/LSI Time delay circuit
JP3060617B2 (en) Output buffer circuit
JP2800336B2 (en) Semiconductor analog switch

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509

LAPS Cancellation because of no payment of annual fees