JPH05248987A - Automatic inspection device for lens joint surface - Google Patents

Automatic inspection device for lens joint surface

Info

Publication number
JPH05248987A
JPH05248987A JP8444192A JP8444192A JPH05248987A JP H05248987 A JPH05248987 A JP H05248987A JP 8444192 A JP8444192 A JP 8444192A JP 8444192 A JP8444192 A JP 8444192A JP H05248987 A JPH05248987 A JP H05248987A
Authority
JP
Japan
Prior art keywords
lens
light
joint surface
photo
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8444192A
Other languages
Japanese (ja)
Inventor
Kunihiko Sasaki
佐々木  邦彦
Masatoshi Kobayashi
正敏 小林
Hirotada Kobayashi
裕忠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8444192A priority Critical patent/JPH05248987A/en
Publication of JPH05248987A publication Critical patent/JPH05248987A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To automatically sense foreign matters over the whole area of the lens joint surface by casting light so that it is converged on the joint surface of a complex lens to be inspected in rotating, moving the light projecting part bit by bit, and sensing the transmitted photo-quantity by a photo-receiving part. CONSTITUTION:Light emitted by a semiconductor laser 13 is cast via a light projecting system 14 and converged on the joint surface 7a of a complex lens to be inspected 7. The lens 7 rotates round the optical axis at a frequency (f). If there is any foreign matter on the joint surface 7a, the received photo-quantity by a photo-diode 21 drops with the cyclic period 1/f. If the photo-reception signal is subjected to Fourie transform by a spectral analizer 33, the extreme value of received photo-quantity appears at the frequency nf (n is integer). Only signals with frequency nf can be extracted by giving an appropriate threashold to the received photo-quantity by the use of a personal computer 34, and the foreign matters are sensed. By motors 15, 18, gears 17, 20, etc., movement can be generated from the center of the lens 7 to the end while the light flux from the projecting part 1 focuses at the joint surface 7a, which enables inspection over the whole area of joint surface 7a. The photo-reception part 3 moves in compliance with the photo-projecting part 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ接合面に混入し
た異物を自動的に検出するためのレンズ接合面自動検査
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens joint surface automatic inspection device for automatically detecting foreign matter mixed in a lens joint surface.

【0002】[0002]

【従来の技術】従来、接合レンズの接合面の検査は目視
によって行なわれていたが、検査員の見落としがあり、
またレンズ形状によっては接合面の異物の見にくいもの
もあるという欠点があった。
2. Description of the Related Art Conventionally, the cemented surface of a cemented lens has been visually inspected, but there is an oversight by an inspector.
Further, there is a drawback that it is difficult to see foreign matter on the cemented surface depending on the lens shape.

【0003】因って、上記欠点を解決すべく、例えば実
開昭58−63541号公報には以下の様な考案が提案
されている。図14に示す様に、レーザを用いたレンズ
接合面の検査方式であり、51は半導体レーザ、52は
その中央に光軸と同軸な孔を備え且つその下面52aが
散乱面として構成された観察板である。53は平凹状の
拡散レンズで、観察板52の孔内に隙間なく合うように
接着され且つ散乱面として構成されたその下方の平面5
3aが観察板52の下面52aと同一面にあるようにな
されている。
Therefore, in order to solve the above-mentioned drawbacks, for example, Japanese Utility Model Laid-Open No. 58-63541 proposes the following device. As shown in FIG. 14, it is a method of inspecting a lens joint surface using a laser, in which 51 is a semiconductor laser, 52 is a hole having a hole coaxial with the optical axis in its center, and its lower surface 52a is a scattering surface. It is a plate. Reference numeral 53 denotes a plano-concave diffusion lens, which is adhered to the inside of the hole of the observation plate 52 without any space and is formed as a scattering surface.
3a is flush with the lower surface 52a of the observation plate 52.

【0004】54は接合された2枚のレンズの一方のレ
ンズ、55は他方のレンズであり、53a面にレーザ光
が入射すると散乱面により散乱せしめられレンズ54と
レンズ55との間隔に対応して散乱光が干渉を生じるた
め、52a面に干渉縞が現れる。検査員がこの干渉縞を
観察し、縞形状によって検査員が異物の有無を判断す
る。
Reference numeral 54 is one lens of the two cemented lenses, and 55 is the other lens. When laser light is incident on the surface 53a, it is scattered by the scattering surface and corresponds to the distance between the lens 54 and the lens 55. Since the scattered light causes interference, interference fringes appear on the surface 52a. The inspector observes the interference fringes, and the inspector determines the presence or absence of foreign matter based on the fringe shape.

【0005】[0005]

【発明が解決しようとする課題】しかるに、前記実開昭
58−63541号公報記載の装置は、干渉縞は見やす
いものの、人手による目視検査に頼らざるを得ない。ま
た、図14中の53a面に現れるはずの干渉縞は拡散レ
ンズ53があるために観察できず、接合面全面にわたっ
て検査することはできない。
However, the apparatus described in Japanese Utility Model Laid-Open No. Sho 58-63541, although it is easy to see the interference fringes, has no choice but to rely on a manual visual inspection. Further, the interference fringes that should appear on the surface 53a in FIG. 14 cannot be observed because of the diffusion lens 53, and cannot be inspected over the entire bonding surface.

【0006】因って、本発明は前記従来技術における問
題点に鑑みて開発されたもので、レンズ接合面全面にわ
たって混入した泡やごみ等の異物を自動的に検出できる
レンズ接合面自動検査装置の提供を目的とする。
Therefore, the present invention was developed in view of the above problems in the prior art, and an automatic lens-joint surface inspection device capable of automatically detecting foreign matter such as bubbles and dust mixed in over the entire lens-joint surface. For the purpose of providing.

【0007】[0007]

【課題を解決するための手段】図1〜図3は本発明を示
す概念図で、図1はレンズ接合面検査方法の原理を示
し、図2はレンズ接合面での光の軌跡を示し、図3は受
光部での受光光量の時間変化を示す。図1に示す様に、
レンズ接合面7aに集光させることができる投光部1
と、投光部1からの光がレンズ接合面7aの中心から端
まで集光できるように投光部1を移動させる受光移動部
2と、投光部1からの光を受ける受光部3と、投光部1
の移動に合わせて受光部3を移動させる受光移動部4
と、被検接合レンズ7を側面から押さえ光軸に対して一
定周波数で回転させることができる回転駆動部5と、受
光部3での検出信号を特定周波数のみ選択できる信号処
理部6とから構成したものである。
1 to 3 are conceptual views showing the present invention, FIG. 1 shows the principle of a method for inspecting a lens joint surface, and FIG. 2 shows a locus of light on the lens joint surface. FIG. 3 shows the time variation of the amount of light received at the light receiving section. As shown in Figure 1,
Light projecting unit 1 capable of condensing on the lens joint surface 7a
And a light receiving and moving section 2 for moving the light projecting section 1 so that the light from the light projecting section 1 can be condensed from the center to the end of the lens joint surface 7a, and a light receiving section 3 for receiving the light from the light projecting section 1. , Floodlight 1
Light receiving moving unit 4 for moving the light receiving unit 3 according to the movement of the
And a rotation drive unit 5 that can press the cemented lens 7 to be inspected from the side surface and rotate at a constant frequency with respect to the optical axis, and a signal processing unit 6 that can select only a specific frequency for the detection signal of the light receiving unit 3. It was done.

【0008】[0008]

【作用】前記構成において、回転駆動部5により被検接
合レンズ7の光軸を中心に一定周波数fで回転している
被検接合レンズ7に、被検接合レンズ7の表面ではなく
接合面を検査することから、レンズ接合面7aに集光す
るように投光部1から一定光量の光を照射し、受光部3
で被検接合レンズ7を透過した光量を検出する。
In the above-mentioned structure, the cemented surface, not the surface of the cemented lens 7 to be inspected, is attached to the cemented lens 7 to be inspected rotating at the constant frequency f about the optical axis of the cemented lens 7 to be inspected by the rotation drive section 5. Since the inspection is performed, a certain amount of light is emitted from the light projecting unit 1 so as to be focused on the lens joint surface 7a, and the light receiving unit 3
The amount of light transmitted through the cemented lens 7 to be tested is detected.

【0009】被検接合レンズ7は回転していることか
ら、図2の点線のような被検接合レンズ7と同じ中心を
もつ同一円上を光は照射する。ここでレンズ接合面7a
の図2のような任意の位置に異物8があったとする。被
検接合レンズ7の回転に伴って光が照射される区間の
内、異物のない区間(図2の位置10から位置9までの
区間)ではレンズ接合面7aで光は透過するが、異物の
ある区間(図2の位置9から位置10までの区間)では
光が散乱してしまう。
Since the cemented lens 7 to be tested is rotating, the light illuminates the same circle having the same center as that of the cemented lens 7 to be tested as indicated by the dotted line in FIG. Here, the lens joint surface 7a
It is assumed that the foreign matter 8 is present at an arbitrary position as shown in FIG. In the section where the light is irradiated with the rotation of the cemented lens 7 to be tested, there is no foreign matter (the section from position 10 to position 9 in FIG. 2), the light is transmitted through the lens cemented surface 7a, but Light is scattered in a certain section (section from position 9 to position 10 in FIG. 2).

【0010】この結果、図3のように受光光量は異物の
ある区間(光が位置9を照射している時刻11から位置
10を照射している時刻12までの区間)で落ちる。図
3に示すように、被検接合レンズ7が周波数fで回転し
ているので受光光量の変化する周期がT(=l/f)と
なる。したがって、信号処理部6により受光信号のうち
光量変化する周期がTである信号のみを選択することで
ノイズ等の偽信号と区別し、レンズ接合面7aに混入し
た異物を自動的に検出する。
As a result, as shown in FIG. 3, the amount of received light drops in a section where there is a foreign substance (section from the time 11 when the light irradiates the position 9 to the time 12 when the light irradiates the position 10). As shown in FIG. 3, since the cemented lens 7 to be inspected is rotating at the frequency f, the cycle in which the amount of received light changes is T (= 1 / f). Therefore, the signal processing unit 6 selects only the signal whose light amount change period is T from the received light signal to distinguish it from the false signal such as noise, and automatically detects the foreign matter mixed in the lens joint surface 7a.

【0011】また、レンズ接合面7aに集光するように
投光移動部2によって投光部1を移動させることで、光
軸をレンズ接合面7aの中心から端まで通過させること
ができる。従って、受光移動部4によって受光部3を移
動させて、投光部1からの光をとらえられるので、レン
ズ接合面全面について検査可能となる。
Further, by moving the light projecting unit 1 by the light projecting moving unit 2 so that the light is focused on the lens joint surface 7a, the optical axis can be passed from the center to the end of the lens joint surface 7a. Therefore, since the light receiving unit 3 can be moved by the light receiving moving unit 4 to capture the light from the light projecting unit 1, it is possible to inspect the entire lens bonding surface.

【0012】[0012]

【実施例1】図4〜図7は本実施例を示し、図4は概略
構成図、図5は回転駆動部5の横断面図、図6はレンズ
第1表面7bへ垂直に光束が入射した時にレンズ接合面
7aで焦点を結ぶ条件を示す説明図、図7はフーリエ交
換後の信号を示す特性図である。
[Embodiment 1] FIGS. 4 to 7 show the present embodiment, FIG. 4 is a schematic configuration diagram, FIG. 5 is a cross-sectional view of a rotary drive unit 5, and FIG. FIG. 7 is an explanatory diagram showing a condition for focusing on the lens cemented surface 7a when doing, and FIG. 7 is a characteristic diagram showing a signal after Fourier exchange.

【0013】投光部1の13は半導体レーザで、14は
半導体レーザ13からの光をレンズ接合面7aに直径数
十μmに集光させるための投光レンズ系、15はレンズ
接合面7aに集光するように投光レンズ系14を移動さ
せるモータ、16は投光レンズ系14のうち集光するた
めに移動するレンズのレンズホルダー、17はモータ1
5の回転をレンズホルダー16の光軸に平行な移動に変
換するギアである。
13 of the light projecting portion 1 is a semiconductor laser, 14 is a light projecting lens system for condensing light from the semiconductor laser 13 onto the lens joint surface 7a to a diameter of several tens of μm, and 15 on the lens joint surface 7a. A motor for moving the light projecting lens system 14 so as to collect light, 16 is a lens holder of a lens of the light projecting lens system 14 that is moved for collecting light, and 17 is a motor 1.
5 is a gear that converts rotation of 5 into movement parallel to the optical axis of the lens holder 16.

【0014】投光移動部2の18は投光部1からの光が
レンズ第1表面7bに垂直に入射するように投光部1を
移動させるモータ、19は半導体レーザ13,投光レン
ズ系14およびモータ15を一体になるように固定した
固定板、20はモータ18の回転を投光部1のレンズ第
1表面7b曲率と等しい曲率の移動に変換するギアであ
る。
Reference numeral 18 of the light projecting and moving section 2 moves the light projecting section 1 so that the light from the light projecting section 1 is vertically incident on the first lens surface 7b, and 19 is a semiconductor laser 13 and a light projecting lens system. A fixing plate that integrally fixes 14 and the motor 15 and a gear 20 that converts the rotation of the motor 18 into a movement having a curvature equal to the curvature of the lens first surface 7b of the light projecting unit 1.

【0015】受光部3の21は半導体レーザ13からの
透過光の光量を検出するフォトダイオード、22はフォ
トダイオード21に集光させるための受光レンズ系、2
3は受光レンズ系22を移動させるモータ、24は受光
レンズ系22のうち移動するレンズのレンズホルダー、
25はモータ23の回転をレンズホルダー24の光軸に
平行な移動に変換するギアである。
Reference numeral 21 of the light receiving portion 3 is a photodiode for detecting the amount of light transmitted from the semiconductor laser 13, reference numeral 22 is a light receiving lens system for focusing the light on the photodiode 21, 2
3 is a motor for moving the light receiving lens system 22, 24 is a lens holder of the moving lens of the light receiving lens system 22,
Reference numeral 25 denotes a gear that converts the rotation of the motor 23 into a movement parallel to the optical axis of the lens holder 24.

【0016】受光移動部4の26は投光部1の移動に合
わせて受光部3を移動させるためのモータ、27はフォ
トダイオード21,受光レンズ系22およびモータ23
を一体となるように固定した固定板、28はモータ26
の回転を受光系3で投光部1からの光をとらえられるよ
うな移動に変換するギアである。
Reference numeral 26 of the light receiving moving unit 4 is a motor for moving the light receiving unit 3 in accordance with the movement of the light projecting unit 1, and 27 is a photodiode 21, a light receiving lens system 22 and a motor 23.
Is a fixing plate that is fixed so that the
Is a gear that converts the rotation of the light into a movement that allows the light from the light projecting unit 1 to be captured by the light receiving system 3.

【0017】回転駆動部5の29は被検接合レンズ7を
側面から押さえることができるように支軸29aとバネ
29bを有するヤトイ、30はヤトイ29が被検接合レ
ンズ7の側面から中心方向に向かって押圧できるように
支軸29aを導く穴30aを有し且つ回転体32の回転
に連動して回転できる機構を有するレンズホルダー、3
1は被検接合レンズ7を回転させるためのモータ、32
はモータ31の回転をレンズホルダー30に伝える回転
体である。信号処理部6の33はスペクトルアナライ
ザ、34はパーソナルコンピュータである。
Reference numeral 29 of the rotation driving unit 5 is a toy having a support shaft 29a and a spring 29b so that the cemented lens 7 to be inspected can be pressed from the side surface, and 30 is a toy 29 in the center direction from the side surface of the cemented lens 7 to be inspected. A lens holder that has a hole 30a that guides the support shaft 29a so that it can be pressed toward and has a mechanism that can rotate in conjunction with the rotation of the rotating body 32.
1 is a motor for rotating the cemented lens 7 to be inspected, 32
Is a rotating body that transmits the rotation of the motor 31 to the lens holder 30. The signal processing unit 6 includes a spectrum analyzer 33 and a personal computer 34.

【0018】以上の構成から成る装置は、図4に示す様
に、半導体レーザ13から出たレーザ光は、レンズ接合
面7aに直径数十μmに集光されるように配置された投
光レンズ系14を介して被検接合レンズ7に照射され
る。モータ18,固定板19およびギア20により投光
部1の移動軌跡は被検接合レンズ7のレンズ第1表面7
bの曲率に等しいことから、レンズ第1表面7bに入射
する光はレンズ第1表面7bと垂直である。
As shown in FIG. 4, the apparatus having the above-described structure is a projection lens arranged so that the laser light emitted from the semiconductor laser 13 is condensed on the lens bonding surface 7a to have a diameter of several tens of μm. The cemented lens 7 to be tested is irradiated via the system 14. The locus of movement of the light projecting portion 1 due to the motor 18, the fixed plate 19 and the gear 20 is the lens first surface 7 of the cemented lens 7 to be tested.
Light incident on the first lens surface 7b is perpendicular to the first lens surface 7b because it is equal to the curvature of b.

【0019】今、図6に示すように、レンズ接合面7a
の中心から半径Rの円周上を検査するために、半径R円
周上に焦点を結びたいとする。レンズ第1表面7bに太
さD、広がり角αの光束が垂直に入射してくると、レン
ズ接合面7aに焦点を結ぶためには、入射光束の太さ
D、広がり角αは次式を満たす必要がある。ただし、レ
ンズ第1表面の曲率r1は入射光束の太さDに比べ十分
大きいものとする。
Now, as shown in FIG. 6, the lens joint surface 7a
To inspect on a circle of radius R from the center of, we want to focus on the circle of radius R. When a light beam having a thickness D and a divergence angle α is vertically incident on the first lens surface 7b, in order to focus on the lens joint surface 7a, the thickness D of the incident light beam and the divergence angle α are calculated by the following equation. Need to meet. However, the curvature r1 of the first surface of the lens is sufficiently larger than the thickness D of the incident light beam.

【0020】[0020]

【数1】 [Equation 1]

【0021】広がり角αを一定とすると、上記の式を満
たすように入射光束の太さDを投光レンズ系14の配置
で調節すれば、半導体レーザ13からの光はレンズ接合
面7aの半径R円周状に焦点を結ぶ。被検接合レンズ7
を透過した光は、受光レンズ系22によりフォトダイオ
ード21で集光してレーザ光の光量を検出する。ここで
フォトダイオード21で検出される光は、光量検出する
ための光であり、対称な光束として焦点を結ぶようにと
らえる必要はない。
If the divergence angle α is constant, if the thickness D of the incident light beam is adjusted by the arrangement of the light projecting lens system 14 so that the above expression is satisfied, the light from the semiconductor laser 13 has a radius of the lens cemented surface 7a. Focus on the R circumference. Tested cemented lens 7
The light that has passed through is collected by the photodiode 21 by the light receiving lens system 22 and the light amount of the laser light is detected. Here, the light detected by the photodiode 21 is light for detecting the amount of light, and it is not necessary to capture it as a symmetrical light flux so as to focus it.

【0022】モータ15,レンズホルダー16およびギ
ア17による投光レンズ系14の配置と、モータ23,
レンズホルダー24およびギア25による受光レンズ系
22の配置は、シミュレーションによりあらかじめ把握
しているものとする。ここでモータ31の回転が回転体
32を介してレンズホルダー30に伝わり、被検接合レ
ンズ7は一定周波数fで回転している。いまレンズ接合
面7aに異物がなかったとすると受光光量は一定であ
り、レンズ接合面7aに異物があった場合はレンズ回転
と同じ周期T(=1/f)で受光光量が落ちる。
Arrangement of the projection lens system 14 by the motor 15, the lens holder 16 and the gear 17, and the motor 23,
It is assumed that the arrangement of the light receiving lens system 22 by the lens holder 24 and the gear 25 is known in advance by simulation. Here, the rotation of the motor 31 is transmitted to the lens holder 30 via the rotating body 32, and the test cemented lens 7 rotates at a constant frequency f. If there is no foreign matter on the lens joint surface 7a, the amount of received light is constant, and if there is a foreign matter on the lens joint surface 7a, the amount of received light drops at the same cycle T (= 1 / f) as the lens rotation.

【0023】スペクトルアナライザ33により受光信号
をフーリエ変換すると、異物のある時には図7のように
レンズ回転と同一周波数fまたはその高調波成分の周波
数nf(n=2,3,4,・・・)に受光光量の極値が
現れる。パーソナルコンピュータ34を用いて、受光光
量に適切なしきい値を与えてやれば周波数nf(n=
1,2,3,・・・)の信号のみを抽出でき、レンズ接
合面7aの異物の有無が検査できる。
When the received light signal is Fourier transformed by the spectrum analyzer 33, when there is a foreign substance, the same frequency f as the lens rotation or the frequency nf of its harmonic component (n = 2, 3, 4, ...) As shown in FIG. An extreme value of the amount of received light appears at. If an appropriate threshold value is given to the amount of received light using the personal computer 34, the frequency nf (n =
1, 2, 3, ...) can be extracted, and the presence or absence of foreign matter on the lens joint surface 7a can be inspected.

【0024】ここでレーザ光は、被検接合レンズ7のレ
ンズ接合面7aでは直径数十μmに集光されるが、レン
ズ第1表面7bおよびレンズ第2表面7cでは広がりを
持った一定の範囲に当たる。従ってフォトダイオード2
1で検出する受光光量は、レンズ第1表面7bおよびレ
ンズ第2表面7cにある小さなゴミ等の影響は受けな
い。
Here, the laser light is condensed to a diameter of several tens of μm on the lens cemented surface 7a of the cemented lens 7 to be inspected, but is spread over a certain range on the first lens surface 7b and the second lens surface 7c. Hit Therefore, the photodiode 2
The amount of received light detected in 1 is not affected by small dust or the like on the first lens surface 7b and the second lens surface 7c.

【0025】本実施例によれば、被検接合レンズ7の表
面7bおよび7cに付着した小さなゴミ等を検出する事
もなく、レンズ接合面7aの異物の有無を自動的に検査
できる。また、モータ15,レンズホルダー16および
ギア17とモータ18,固定板19およびギア20とに
よって、投光部1からの光束がレンズ接合面7aで焦点
を結んだまま、接合レンズ中心から端まで移動でき、接
合面全面について検査可能となる。
According to this embodiment, the presence or absence of foreign matter on the lens cemented surface 7a can be automatically inspected without detecting small dust or the like adhering to the surfaces 7b and 7c of the cemented lens 7 to be tested. Further, by the motor 15, the lens holder 16 and the gear 17, and the motor 18, the fixing plate 19 and the gear 20, the light flux from the light projecting unit 1 moves from the center of the cemented lens to the end while being focused on the lens cemented surface 7a. It is possible to inspect the entire joint surface.

【0026】[0026]

【実施例2】図8は本実施例における信号処理部6の概
略構成図である。本実施例は、前記実施例1におけるフ
ォトダイオード21からの信号処理部6を置き換えたも
のである。本実施例では、前記実施例1におけるスペク
トルアナライザ33とパーソナルコンピュータ34とを
廃止し、代わりにロックイン増幅器35,発信器36,
位相シフタ37,LPF38および電圧表示器39を設
けて構成した点が異なり、他の構成は同一な構成部分か
ら成るものであり、構成の説明を省略するとともに、同
一符号を用いて作用の説明を行なう。
Second Embodiment FIG. 8 is a schematic configuration diagram of the signal processing unit 6 in the present embodiment. In this embodiment, the signal processing unit 6 from the photodiode 21 in the first embodiment is replaced. In this embodiment, the spectrum analyzer 33 and the personal computer 34 in the first embodiment are eliminated, and instead, the lock-in amplifier 35, the oscillator 36,
The phase shifter 37, the LPF 38, and the voltage indicator 39 are different from each other in configuration, and other configurations are the same in configuration. Therefore, the description of the configuration will be omitted and the operation will be described using the same reference numerals. To do.

【0027】以上の構成から成る装置は、前記実施例1
と同様に検出された受光信号は、発信器36により発生
し位相シフタ37により受光信号と同期をとった周波数
fの参照信号と、ロックイン増幅器35で乗算を行い、
LPF38を通して直流成分を取り出すことで周期的な
受光信号を抽出できる。
The apparatus having the above-mentioned configuration is the same as that of the first embodiment.
Similarly, the detected light receiving signal is multiplied by the lock-in amplifier 35 by the reference signal of the frequency f generated by the oscillator 36 and synchronized with the light receiving signal by the phase shifter 37.
A periodic light receiving signal can be extracted by extracting a DC component through the LPF 38.

【0028】いまレンズ接合面7aに異物がないとする
と、受光信号は一定であり、周波数fの参照信号と乗算
を行なっても、直流成分はなくLPF38の出力はロー
レベルである。レンズ接合面7aに異物がある場合、受
光光量は周期Tで落ちるので、周波数f(=l/T)の
参照信号と乗算を行なうと、受光信号の振幅に比例した
直流成分が現れ、LPF38の出力はハイレベルとな
る。したがって、レンズ接合面7aの異物の有無を判断
できる。
Assuming that there is no foreign matter on the lens cemented surface 7a, the received light signal is constant, and even when multiplied by the reference signal of the frequency f, there is no DC component and the output of the LPF 38 is at a low level. If there is a foreign substance on the lens cemented surface 7a, the amount of received light drops at the cycle T. Therefore, when multiplied by the reference signal of frequency f (= 1 / T), a DC component proportional to the amplitude of the received light signal appears and the LPF 38 The output goes high. Therefore, it is possible to determine the presence or absence of foreign matter on the lens cemented surface 7a.

【0029】本実施例によれば、前記実施例1と同様
に、レンズ接合面全面の異物の有無を自動的に検査でき
る。また、前記実施例1と比較して高価な測定器を使用
せずに済むので、安価で且つコンパクトに構成できる。
According to this embodiment, as in the first embodiment, it is possible to automatically inspect the entire surface of the lens joint surface for foreign matter. Further, since it is not necessary to use an expensive measuring instrument as compared with the first embodiment, it is possible to make the configuration inexpensive and compact.

【0030】[0030]

【実施例3】図9〜図12は本実施例を示し、図9は概
略構成図、図10は絞り40の平面図、図11および図
12は絞り40の作動を示す平面図である本実施例は、
前記実施例1における回転駆動部5のヤトイ29および
レンズホルダ30を廃止し、代わりに絞り40を設けて
構成した点が異なり、他の構成は同一な構成部分から成
るもので、同一構成部分には同一番号を付してその説明
を省略する。
Third Embodiment FIGS. 9 to 12 show the present embodiment, FIG. 9 is a schematic configuration diagram, FIG. 10 is a plan view of a diaphragm 40, and FIGS. 11 and 12 are plan views showing the operation of the diaphragm 40. Examples are
The difference is that the toy 29 and the lens holder 30 of the rotary drive unit 5 in the first embodiment are eliminated and a diaphragm 40 is provided instead, and other configurations are made up of the same components. Are assigned the same numbers and explanations thereof are omitted.

【0031】40は回転体32の回転に連動して回転で
きる機構を有する絞りである。絞り40はリング状の外
側40aと内側40bとで構成され、外側40aと内側
40bとは別々に回転できる様に構成されている。絞り
40は押さえ部材41と固定ネジ42とを有しており、
絞り40の内側40bには孔40cが形成されている。
Reference numeral 40 is a diaphragm having a mechanism capable of rotating in association with the rotation of the rotating body 32. The diaphragm 40 is composed of a ring-shaped outer side 40a and an inner side 40b, and the outer side 40a and the inner side 40b can be rotated separately. The diaphragm 40 has a pressing member 41 and a fixing screw 42,
A hole 40c is formed in the inner side 40b of the diaphragm 40.

【0032】41は被検接合レンズ7を支える押さえ部
材で、三角形の一番鋭角な頂点の先には被検接合レンズ
7を支える押さえ軸41aが立設され、他の鋭角な頂点
の先は絞り40の外側40aに、鈍角な頂点の先は絞り
40の内側40bにそれぞれ軸支されている。42は絞
り40の外側40aと内側40bとを固定するための固
定ネジである。
A pressing member 41 supports the cemented lens 7 to be inspected. A pressing shaft 41a supporting the cemented lens 7 to be inspected is erected at the tip of the sharpest apex of the triangle, and the tips of the other acute angles are at the tips. The outside 40a of the diaphragm 40 and the tip of the obtuse apex are pivotally supported inside 40b of the diaphragm 40, respectively. Reference numeral 42 is a fixing screw for fixing the outer side 40a and the inner side 40b of the diaphragm 40.

【0033】以上の構成から成る装置は、絞り40,押
さえ部材41および固定ネジ42を用いて被検接合レン
ズ7を側面から押さえる。図11および図12を用いて
被検接合レンズ7を側面から押さえる機構について説明
する。
In the apparatus having the above structure, the diaphragm 40, the pressing member 41, and the fixing screw 42 are used to press the cemented lens 7 to be tested from the side surface. A mechanism for pressing the cemented lens 7 to be inspected from the side will be described with reference to FIGS. 11 and 12.

【0034】外部から絞り40に力を加えないとき、押
さえ部材41の位置は図11のようにあったとする。押
さえ部材41の押さえ軸41aは絞り40の中心に集ま
っている。ここで絞り40の内側40bは動かさずに外
側40aを時計周り方向に回転させたとする。押さえ部
材41の三角形部分の二つの頂点は、別々に回転する絞
り40の内側40bと外側40aにそれぞれ軸支されて
いるから、絞り40の内側40bに軸支された点を支点
として押さえ部材41の押さえ軸41aは絞り40の中
心から端に向かって移動する。
When no force is applied to the diaphragm 40 from the outside, the position of the pressing member 41 is assumed to be as shown in FIG. The pressing shaft 41a of the pressing member 41 is gathered at the center of the diaphragm 40. Here, it is assumed that the inner side 40b of the diaphragm 40 is not moved and the outer side 40a is rotated clockwise. Since the two vertices of the triangular portion of the pressing member 41 are axially supported by the inner side 40b and the outer side 40a of the diaphragm 40 rotating separately, the pressing member 41 is supported by the point pivotally supported by the inner side 40b of the diaphragm 40. The pressing shaft 41a of the above moves from the center of the diaphragm 40 toward the end.

【0035】このようにして図12では、三つの押さえ
部材41の間に空間をつくり、押さえ部材41の押さえ
軸41aが被検接合レンズ7を挟んで押さえる。挟み終
わった後に固定ネジ42を締めることで絞り40の内側
40bと外側40aとが固定され、絞り40を回転させ
た時に被検接合レンズ7も回転させることができる。
Thus, in FIG. 12, a space is created between the three pressing members 41, and the pressing shaft 41a of the pressing member 41 sandwiches and holds the cemented lens 7 to be tested. The inner side 40b and the outer side 40a of the diaphragm 40 are fixed by tightening the fixing screw 42 after the sandwiching is completed, and when the diaphragm 40 is rotated, the test cemented lens 7 can also be rotated.

【0036】本実施例によれば、前記実施例1と同様に
レンズ接合面全面の異物有無を自動的に検査できるだけ
ではなく、様々な直径の被検接合レンズを検査すること
ができる。
According to the present embodiment, in the same manner as in the first embodiment, not only the presence or absence of foreign matter on the entire surface of the lens joint surface can be automatically inspected, but also the cemented lenses to be inspected having various diameters can be inspected.

【0037】図13は本実施例を示す概略構成図であ
る。本実施例は、前記実施例における投光移動部2およ
び受光移動部3を変更するとともに、表面異物除去部を
設けて構成した点が異なり、他の構成は同一な構成部分
から成るもので、同一構成部分には同一番号を付してそ
の説明を省略する。
FIG. 13 is a schematic configuration diagram showing this embodiment. The present embodiment is different in that the light projecting moving unit 2 and the light receiving moving unit 3 in the previous embodiment are modified and a surface foreign matter removing unit is provided, and other configurations are the same in configuration. The same components are assigned the same numbers and their explanations are omitted.

【0038】投光部1,受光部3,回転駆動部5および
信号処理部6は前記実施例1と同様であり、43は投光
部1をレンズ第1表面7bの法線方向に向きを変えるた
めのモータ、44はモータ43の回転を受光部1の向き
に変換するためのギア、45は受光部1,モータ43お
よびギア44を一体に移動できるXYステージである。
The light projecting unit 1, the light receiving unit 3, the rotation driving unit 5, and the signal processing unit 6 are the same as those in the first embodiment, and 43 is the direction of the light projecting unit 1 in the direction normal to the lens first surface 7b. A changing motor, 44 is a gear for converting the rotation of the motor 43 to the direction of the light receiving unit 1, and 45 is an XY stage that can move the light receiving unit 1, the motor 43, and the gear 44 integrally.

【0039】46は受光部3の向きを変えるためのモー
タ、47はモータ46の回転を受光部3の向きに変換す
るためのギア、48は受光部3,モータ46およびギア
47を一体に移動できるXYステージである。
Reference numeral 46 is a motor for changing the direction of the light receiving section 3, 47 is a gear for converting the rotation of the motor 46 to the direction of the light receiving section 3, and 48 is the light receiving section 3, the motor 46 and the gear 47 are integrally moved. It is an XY stage that can be done.

【0040】49は被検接合レンズ7の表面に向けて空
気を吹き出すことでレンズ表面のごみ等の異物を除去す
るエアーブロー、50はエアーブロー49の空気の吹き
出し状態を制御する電磁弁である。
Numeral 49 is an air blow for removing foreign matters such as dust on the lens surface by blowing air toward the surface of the cemented lens 7 to be inspected, and numeral 50 is a solenoid valve for controlling the air blowing state of the air blow 49. ..

【0041】以上の構成から成る装置は、前記実施例1
と同様に、回転駆動部5により被検接合レンズ7を回転
させ、信号処理部6により受光信号を処理すれば、レン
ズ接合面7aの異物有無を自動的に検査できる。
The apparatus constructed as described above is the same as that of the first embodiment.
Similarly, by rotating the cemented lens 7 to be tested by the rotation driving unit 5 and processing the received light signal by the signal processing unit 6, it is possible to automatically inspect the lens cemented surface 7a for the presence of foreign matter.

【0042】また以下に説明する工程を追加すると、更
に検査精度が高まる。検査開始前に、電磁弁50により
エアーブロー49から空気を吹き出し、被検接合レンズ
7表面に付着している異物を除去する。除去し終えた
ら、電磁弁50を切りエアーブロー49から空気の吹き
出しを止める、すると検査時に、半導体レーザ13から
のレーザ光がフォトダイオード21に達するまでに、レ
ンズ接合面7aの異物以外にレーザ光を遮るものがより
少なくなり、フォトダイオード21での受光光量の精度
が高まる。
The inspection accuracy is further improved by adding the steps described below. Before the inspection is started, air is blown from the air blow 49 by the solenoid valve 50 to remove foreign matter adhering to the surface of the cemented lens 7 to be inspected. When the removal is completed, the electromagnetic valve 50 is turned off to stop the air blow from the air blow 49. Then, at the time of inspection, laser light from the semiconductor laser 13 reaches the photodiode 21 in addition to foreign matter on the lens bonding surface 7a. The number of objects that block light is reduced, and the accuracy of the amount of light received by the photodiode 21 is improved.

【0043】本実施例によれば、前記実施例1と同様に
レンズ接合面の異物検査を自動的に検査できるだけでは
なく、レンズ表面の曲率が様々な種類の接合レンズにつ
いても検査できる。さらに、前記実施例1に比べて検査
精度が高くなる。
According to the present embodiment, in addition to the automatic inspection of foreign matter on the lens cemented surface as in the case of Embodiment 1, it is possible to inspect cemented lenses having various lens surface curvatures. Further, the inspection accuracy is higher than that in the first embodiment.

【0044】[0044]

【発明の効果】以上説明した様に、本発明に係るレンズ
接合面自動検査装置によれば、レンズ接合面における異
物有無の検査を自動的に行なうことが出来るとともに、
接合面全面について検査可能であり、優れた効果が得ら
れる。
As described above, according to the automatic lens joint surface inspection apparatus of the present invention, it is possible to automatically inspect the presence or absence of foreign matter on the lens joint surface.
The entire bonding surface can be inspected, and excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】本発明を示す概念図である。FIG. 2 is a conceptual diagram showing the present invention.

【図3】本発明を示す概念図である。FIG. 3 is a conceptual diagram showing the present invention.

【図4】実施例1を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a first embodiment.

【図5】実施例1を示す横断面図である。FIG. 5 is a transverse sectional view showing the first embodiment.

【図6】実施例1を示す説明図である。FIG. 6 is an explanatory view showing the first embodiment.

【図7】実施例1を示す特性図である。FIG. 7 is a characteristic diagram showing Example 1.

【図8】実施例2を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a second embodiment.

【図9】実施例3を示す概略構成図である。FIG. 9 is a schematic configuration diagram showing a third embodiment.

【図10】実施例3を示す平面図である。FIG. 10 is a plan view showing a third embodiment.

【図11】実施例3を示す平面図である。FIG. 11 is a plan view showing a third embodiment.

【図12】実施例3を示す平面図である。FIG. 12 is a plan view showing a third embodiment.

【図13】実施例4を示す概略構成図である。FIG. 13 is a schematic configuration diagram showing a fourth embodiment.

【図14】従来例を示す概略構成図である。FIG. 14 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 投光部 2 投光移動部 3 受光部 4 受光移動部 5 回転駆動部 6 信号処理部 1 Light emitting unit 2 Light emitting moving unit 3 Light receiving unit 4 Light receiving moving unit 5 Rotation drive unit 6 Signal processing unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レンズ接合面に集光させる投光部と、該
投光部からの光がレンズ接合面の中心から端まで集光で
きるように前記投光部を移動させる投光移動部と、前記
投光部からの光を受ける受光部と、前記投光部の移動に
合わせて前記受光部を移動させる受光移動部と、被検接
合レンズを側面から押さえ光軸に対して一定周波数で回
転させる回転駆動部と、前記受光部での検出信号を特定
周波数のみ選択できる信号処理部とから構成したことを
特徴とするレンズ接合面自動検査装置。
1. A light projecting section for collecting light on a lens cemented surface, and a light projecting moving section for moving the light projecting section so that light from the light projecting section can be condensed from the center to the end of the lens cemented surface. , A light-receiving unit that receives light from the light-projecting unit, a light-receiving moving unit that moves the light-receiving unit according to the movement of the light-projecting unit, and a cemented lens to be inspected from the side surface at a constant frequency with respect to the optical axis. An automatic lens joint surface inspection device comprising a rotation drive unit for rotating and a signal processing unit capable of selecting only a specific frequency for a detection signal from the light receiving unit.
JP8444192A 1992-03-06 1992-03-06 Automatic inspection device for lens joint surface Withdrawn JPH05248987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8444192A JPH05248987A (en) 1992-03-06 1992-03-06 Automatic inspection device for lens joint surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8444192A JPH05248987A (en) 1992-03-06 1992-03-06 Automatic inspection device for lens joint surface

Publications (1)

Publication Number Publication Date
JPH05248987A true JPH05248987A (en) 1993-09-28

Family

ID=13830684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8444192A Withdrawn JPH05248987A (en) 1992-03-06 1992-03-06 Automatic inspection device for lens joint surface

Country Status (1)

Country Link
JP (1) JPH05248987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212376A (en) * 1991-05-20 1993-08-24 Chiyuraru Tec Kk Water purifier
JP2010032549A (en) * 2009-11-10 2010-02-12 Fujikoden Corp Lens holding device
JP2013251262A (en) * 2012-05-30 2013-12-12 Samsung Display Co Ltd Inspection system using scanning electron microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212376A (en) * 1991-05-20 1993-08-24 Chiyuraru Tec Kk Water purifier
JP2010032549A (en) * 2009-11-10 2010-02-12 Fujikoden Corp Lens holding device
JP2013251262A (en) * 2012-05-30 2013-12-12 Samsung Display Co Ltd Inspection system using scanning electron microscope

Similar Documents

Publication Publication Date Title
KR100808702B1 (en) A pixel-based method, apparatus and optical head for defect detection on semiconductor wafer surfaces
JP4500641B2 (en) Defect inspection method and apparatus
US5883714A (en) Method and apparatus for detecting defects on a disk using interferometric analysis on reflected light
JPH0143901B2 (en)
CN111307269B (en) Laser confocal/differential confocal Raman spectrum vibration parameter measuring method
US5719840A (en) Optical sensor with an elliptical illumination spot
WO1997034124A1 (en) Optical surface detection for magnetic disks
JP3934051B2 (en) Measurement of surface defects
JPH11281582A (en) Surface inspection apparatus
JPH08304050A (en) Magnetic film defect inspection device for magnetic disk
JPH05248987A (en) Automatic inspection device for lens joint surface
JPH0833354B2 (en) Defect inspection equipment
KR20180123699A (en) Method and system for inspecting boards for microelectronics or optics by laser Doppler effect
JPH0291504A (en) Method for inspecting cross-sectional profile of fine pattern
JP4040777B2 (en) Foreign matter inspection device
JPS61118639A (en) Apparatus for measuring quantity of eccentricity
JPH08334317A (en) Measuring microscope
CN111307268B (en) Laser confocal/differential confocal vibration parameter measuring method
JPH0795040B2 (en) Micro foreign matter inspection device
JPS6023689Y2 (en) Micro-irregularity detection device
JPS60125511A (en) Device for examining precisely worked face with laser light interference
JPS6315142A (en) Flaw inspection apparatus
JPH03120406A (en) Optical tube internal diameter measuring instrument
JPH0763689A (en) Rotation-type flaw inspection apparatus
JPH01121739A (en) Defect detecting device for transparent plate material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518