JPH03120406A - Optical tube internal diameter measuring instrument - Google Patents

Optical tube internal diameter measuring instrument

Info

Publication number
JPH03120406A
JPH03120406A JP25859789A JP25859789A JPH03120406A JP H03120406 A JPH03120406 A JP H03120406A JP 25859789 A JP25859789 A JP 25859789A JP 25859789 A JP25859789 A JP 25859789A JP H03120406 A JPH03120406 A JP H03120406A
Authority
JP
Japan
Prior art keywords
tube
light
inner diameter
condenser lens
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25859789A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishimura
力 西村
Tadashi Kato
忠 加藤
Norihiro Funakoshi
宣博 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25859789A priority Critical patent/JPH03120406A/en
Publication of JPH03120406A publication Critical patent/JPH03120406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily perform inspection in a tube and measure its internal diame ter by irradiating the internal wall of the tube with a light beam, guiding the scattered light into a photodetector which has plural photodetecting elements through a condenser lens, and specifying the generation position of the scattered light according to light intensity values detected by the respective elements. CONSTITUTION:Laser light emitted by a semiconductor laser 11 is bent by 90 deg. through a reflecting mirror 21 to irradiate the wall surface in the tube 10 almost perpendicularly. The laser light irradiating the inside of the tube 10 is reflected by its wall surface and part of the scattered light is reaches a two-divided concentric photodetecting element 27 through the condenser lens 25. The outputs of the respective detecting elements of the element 27 are sent out to a condenser lens movement quantity detection part 29. The detection part 29 detects the quantity of vertical movement of the condenser lens when the difference between the two light intensity values becomes zero and feeds a corresponding control signal back to a driving part 31. The driving part 31 moves the condenser lens 25 to a position corresponding to the control signal. The internal diameter of the tube 10 can be found from the control signal sent out of the detection part 29 to the driving part 31.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、人間が入って検査することができない小径の
パイプあるいは鋼管の内径を測定し、その内壁状態の検
査に用いる光学式管内径測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an optical pipe inner diameter measurement method used to measure the inner diameter of small diameter pipes or steel pipes that cannot be inspected by humans, and to inspect the inner wall condition of the pipes. Regarding equipment.

都市の地下あるいは建築物の内部に敷設された配管は、
何らかの障害がない限りその内部状況の検査を行わない
のが通例であった。これは、検査方法がなかったこと、
また検査自体がコスト的に引き合わないことがその理由
であり、障害が発生した場合に限りその原因の究明や修
理の可否判断のために管内検査が実施されていた。
Pipes installed underground in cities or inside buildings are
It was customary not to inspect the internal situation unless there was some kind of problem. This is because there was no testing method,
Another reason for this was that the inspection itself was not cost-effective, and in-service inspections were carried out only when a failure occurred to investigate the cause and determine whether repairs were possible.

本発明の光学式管内径測定装置は、例えば敷設管の寿命
データベース構築などの用途に利用されるものである。
The optical pipe inner diameter measuring device of the present invention is used, for example, for constructing a life database of installed pipes.

〔従来の技術〕[Conventional technology]

従来の管内検査装置は小型テレビカメラを用いた構成で
あり、それを管内に挿入し、画像として捉えた管内壁面
の状態を検査員が観察する方法をとっていた。これは、
得られる画像データがイメージ情報であり、その情報量
が膨大になるためであった。すなわち、そのデータ処理
により障害の有無を見つけるには、処理装置が大掛かり
になるとともに処理時間も長くなることから、検査員が
直接モニタ画面を監視しつつ、その都度欠陥の種別、修
理の必要度および可能性などを判断して適切な処置をと
る方が容易なためであった。
Conventional pipe inspection equipment uses a small television camera, which is inserted into the pipe, and an inspector observes the condition of the pipe's inner wall surface as an image. this is,
This is because the image data obtained is image information, and the amount of information is enormous. In other words, in order to detect the presence or absence of a fault through data processing, the processing equipment would be large-scale and the processing time would be long. Therefore, inspectors must monitor the monitor screen directly and identify the type of defect and the degree of need for repair each time. This is because it is easier to judge the possibility and take appropriate measures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、平面物体を対象としてレーザ光を照射し、その反
射光を用いて距離を計測する方法は従来よりあったが、
光源およびその検出系は配線上の理由により固定せざる
を得なかった。したがって、自ら回転して管の内側から
内径を測定するものとしては適していなかった。
On the other hand, there has been a conventional method of irradiating a flat object with laser light and measuring distance using the reflected light.
The light source and its detection system had to be fixed for wiring reasons. Therefore, it was not suitable as a device that rotates by itself and measures the inner diameter from the inside of the tube.

本発明は、簡単かつ手軽に管内の検査を可能とし、有効
に管内径の測定を行うことができる光学式管内径測定装
置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical pipe inner diameter measuring device that can easily and easily inspect the inside of a pipe and effectively measure the pipe inner diameter.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体レーザから出力されるレーザ光をビー
ム整形し、さらに平行光ビームとして出射する光源部と
、平行光ビームを対物レンズを介して集光し、さらに回
転する反射ミラーで反射させ、集光された光ビームを管
の内壁に所定角度で照射する光ビーム照射部と、集光さ
れた光ビームの照射に応じて管の内壁で散乱した光を移
動可能な集光レンズを介して複数の光検出素子を有する
光検出器に取り込み、各光検出素子に検出される光強度
に応じて所定の位置に集光レンズを移動させ、この移動
量を前記管の内径の変動量に応じた値として検出する内
径変動量検出部とを備えて構成する。
The present invention includes a light source unit that beam-shapes laser light output from a semiconductor laser and emits it as a parallel light beam; the parallel light beam is focused through an objective lens; and further reflected by a rotating reflecting mirror. A light beam irradiation unit that irradiates a focused light beam onto the inner wall of the tube at a predetermined angle, and a movable condensing lens that directs light scattered on the inner wall of the tube according to the irradiation of the focused light beam. The light is captured in a photodetector having a plurality of photodetecting elements, and a condensing lens is moved to a predetermined position according to the intensity of light detected by each photodetecting element, and the amount of this movement is adjusted according to the amount of variation in the inner diameter of the tube. and an inner diameter variation detection section that detects the variation amount as a value.

〔作 用〕[For production]

本発明は、管の内壁に所定角度で集光した光ビームを照
射し、その内壁で散乱した光を集光レンズを介して複数
の光検出素子を有する光検出器に取り込む。この光検出
器を含む内径変動量検出部では、各光検出素子に検出さ
れる光強度に応じて散乱光の発注位置を特定する。
In the present invention, the inner wall of a tube is irradiated with a light beam focused at a predetermined angle, and the light scattered on the inner wall is taken into a photodetector having a plurality of photodetecting elements via a condensing lens. The inner diameter variation detecting section including this photodetector specifies the ordered position of scattered light according to the light intensity detected by each photodetector element.

すなわち、管の内径の変動に応じて散乱光の発生位置が
変動するが、それに伴って光検出器の各光検出素子に検
出される光強度も変化する。本発明では、各光検出素子
に検出される光強度が所定の分布になるように散乱光を
集光する集光レンズの移動量を制御する。したがって、
集光レンズの移動量が散乱光の発生位置に対応し、集光
レンズの移動量を用いて管の内径の測定を行うことがで
きる。
That is, the generation position of the scattered light changes according to the change in the inner diameter of the tube, but the light intensity detected by each photodetection element of the photodetector also changes accordingly. In the present invention, the amount of movement of the condensing lens that condenses scattered light is controlled so that the light intensity detected by each photodetecting element has a predetermined distribution. therefore,
The amount of movement of the condensing lens corresponds to the position where the scattered light is generated, and the inner diameter of the tube can be measured using the amount of movement of the condensing lens.

〔実施例〕〔Example〕

以下、図面に基づいて本発明の実施例について詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は、本発明一実施例の要部構成を示すブロック図
である。
FIG. 1 is a block diagram showing the main configuration of an embodiment of the present invention.

図において、参照番号10は管の一部断面を示す。半導
体レーザ11から出射されたレーザ光は、ビーム整形用
プリズム13でビーム形状が楕円から円形に整形され、
コリメータレンズ15で平行光となり、対物レンズ17
で集光され、ミラー回転用モータ19に取り付けられた
反射ミラー21で90度方向に曲げられ、管10内の壁
面にほぼ垂直に照射される。
In the figure, reference numeral 10 indicates a partial cross section of the tube. The laser beam emitted from the semiconductor laser 11 is shaped by a beam shaping prism 13 from an ellipse to a circle.
The collimator lens 15 converts the light into parallel light, and the objective lens 17
The light is condensed by a reflecting mirror 21 attached to a mirror rotation motor 19 and bent in a 90 degree direction, and is irradiated almost perpendicularly to the wall surface inside the tube 10 .

管10内に照射されたレーザ光はその壁面で反射し、そ
の大部分の光は反射ミラー21から逆の。
The laser light irradiated into the tube 10 is reflected by its wall surface, and most of the light is reflected from the reflecting mirror 21 in the opposite direction.

−経路で戻るが、一部の散乱光は、ミラー回転用モータ
19に取り付けられて反射ミラー21と同期して回転す
る反射ミラー23で反射され、集光レンズ25を介して
2分割同心円杖光検出素子27に達する。
- A part of the scattered light is reflected by a reflection mirror 23 attached to a mirror rotation motor 19 and rotated in synchronization with the reflection mirror 21, and is transmitted through a condensing lens 25 into two concentric circular cane beams. It reaches the detection element 27.

2分割同心円状光検出素子27の各検出素子の出力は、
集光レンズ移動量検出部29に送出される。集光レンズ
移動量検出部29は、二つの各光強度の差がゼロとなる
集光レンズ25の上下方向の移動量を検出し、対応する
制御信号をその駆動部31にフィードバックする。駆動
部31は、集光レンズ25を制御信号に応じた位置に移
動させる。
The output of each detection element of the two-divided concentric photodetection element 27 is
It is sent to the condensing lens movement amount detection section 29. The condensing lens movement amount detection unit 29 detects the vertical movement amount of the condensing lens 25 at which the difference between the two light intensities becomes zero, and feeds back a corresponding control signal to the driving unit 31. The drive unit 31 moves the condensing lens 25 to a position according to the control signal.

ここで、2分割同心円状光検出素子27は、同心円状の
各光検出素子により構成されているので、その分割点(
境目)は集光レンズ25の移動方向に対して2箇所存在
し、各分割点の両光検出素子における検出結果と集光レ
ンズ25の移動方向とは逆になる。
Here, since the two-split concentric photodetecting element 27 is constituted by each concentric photodetecting element, the dividing point (
There are two border points in the direction of movement of the condensing lens 25, and the detection results of both the light detection elements at each dividing point are opposite to the direction of movement of the condensing lens 25.

したがって、集光レンズ25を介して22分割同心円状
光検出素子27に入射される散乱光が、各分割点の一方
のみで検出され集光レンズ25の移動制御方向に混乱が
生じないように、反射ミラー23と集光レンズ25との
間に反射ミラー23に同期して回転する遮蔽板33を設
ける。なお、本実施例では、散乱光の検出位置が反射ミ
ラー23の回転軸に対して光ビームを照射している壁面
と反対側になるように遮蔽板33が設けられる。
Therefore, the scattered light incident on the 22-divided concentric light detection element 27 via the condensing lens 25 is detected only at one of the dividing points, so that the movement control direction of the condensing lens 25 is not confused. A shielding plate 33 that rotates in synchronization with the reflecting mirror 23 is provided between the reflecting mirror 23 and the condensing lens 25. In this embodiment, the shielding plate 33 is provided so that the detection position of the scattered light is on the opposite side of the rotation axis of the reflection mirror 23 from the wall surface onto which the light beam is irradiated.

また、対物レンズ17の開口数N A (Numeri
calAperture、  1 / F )は、0.
1〜0.3程度の低いものとし、焦点深度をできるだけ
広くすることにより内径変動の検出範囲を拡大すること
ができる。
Further, the numerical aperture NA of the objective lens 17 (Numeri
calAperture, 1/F) is 0.
By setting the depth of focus to be as low as about 1 to 0.3 and widening the depth of focus as much as possible, it is possible to expand the detection range of inner diameter fluctuations.

なお、測定する管の内径に応じて、対物レンズ17の径
およびNAを選択する。
Note that the diameter and NA of the objective lens 17 are selected depending on the inner diameter of the tube to be measured.

一般に管10の内径は、本来の内径より狭くなっている
のが普通であり、本来の管lOの内径に合わせて集光レ
ンズ25の位置を設定しておくと、本実施例の構成では
、内径が狭くなっているところで散乱光は2分割同心円
状光検出素子27の外側の光検出素子に多く検出され、
集光レンズ移動量検出部29では各検出信号に応じて散
乱光が下方にずれていることが確定できる。したがって
、集光レンズ移動量検出部29では、駆動部31に対し
て集光レンズ25の位置を上方に移動させ、各光検出素
子に検出される各光強度の差がゼロとなるように制御す
る。
Generally, the inner diameter of the tube 10 is normally narrower than the original inner diameter, and if the position of the condenser lens 25 is set according to the original inner diameter of the tube 10, in the configuration of this embodiment, Where the inner diameter is narrow, most of the scattered light is detected by the outer photodetector of the two-split concentric photodetector 27,
The condensing lens movement amount detection unit 29 can determine that the scattered light is shifted downward according to each detection signal. Therefore, the condensing lens movement amount detecting section 29 moves the condensing lens 25 upward relative to the driving section 31, and performs control so that the difference between the light intensities detected by each photodetecting element becomes zero. do.

集光レンズ25の移動量は、散乱光の発生位置すなわち
管lOの内径の変動量に対応し、また集光レンズ25の
移動量と管内径の変動量とは所定の線形関係があるので
、集光レンズ移動量検出部29から駆動部31に送出さ
れる制御信号(集光レンズ25の移動量)から管10の
内径を求めることができる。
The amount of movement of the condensing lens 25 corresponds to the amount of variation in the position where the scattered light is generated, that is, the inner diameter of the tube lO, and there is a predetermined linear relationship between the amount of movement of the condensing lens 25 and the amount of variation in the inner diameter of the tube. The inner diameter of the tube 10 can be determined from the control signal (the amount of movement of the condenser lens 25) sent from the condenser lens movement amount detection section 29 to the drive section 31.

なお、管10の内径の測定は、本測定装置を管内に挿入
し、モータ19を駆動して反射ミラー21.23を回転
させ、出射される光ビームを管10の内壁に沿ってスキ
ャンし、管10の内径の変動に応じて制御される集光レ
ンズ25の移動量から管IOの内径が求められる。
The inner diameter of the tube 10 can be measured by inserting the measuring device into the tube, driving the motor 19 to rotate the reflecting mirrors 21 and 23, and scanning the emitted light beam along the inner wall of the tube 10. The inner diameter of the tube IO is determined from the amount of movement of the condenser lens 25, which is controlled in accordance with variations in the inner diameter of the tube 10.

第2図は、本発明装置により管IOの内径を実測した結
果を示す図である。
FIG. 2 is a diagram showing the results of actually measuring the inner diameter of the pipe IO using the apparatus of the present invention.

細線は管10の本来の内径を示し、太線は管lOの測定
された内径を示す。
The thin line shows the original inner diameter of the tube 10, and the thick line shows the measured inner diameter of the tube IO.

また、本発明装置は、管内を自走可能なロボットその他
に搭載されるか、その挿入動作によって、管の長手方向
の内径変化を順次(螺旋状に)検出することができ、さ
らにその長手方向の移動と管内のスキャン周期との同期
をとることにより、腐食その他によって変形を起こした
壁面の位置を容易に得ることができる。
In addition, the device of the present invention can sequentially (in a spiral) detect changes in the inner diameter of a tube in the longitudinal direction by being mounted on a robot or other device that can self-propel inside the tube, or by inserting the device into the tube. By synchronizing the movement of the tube with the scan period inside the tube, the position of the wall surface that has been deformed due to corrosion or other causes can be easily determined.

また、本発明装置は小電力で動作可能であるので電池な
どの電力で十分である。
Further, since the device of the present invention can be operated with small electric power, electric power from a battery or the like is sufficient.

なお、管内径に関する情報は、電波あるいは光を用いた
空間伝搬を利用して送信し、管の所定位置(例えばマン
ホール)に設置された受信機に受信し、受信機に接続さ
れたマイクロコンピュータその他を用いてその情報処理
を行うことにより、可視情報としてデイスプレィ上に表
示させることもできる。
Information regarding the inner diameter of the pipe is transmitted using spatial propagation using radio waves or light, received by a receiver installed at a predetermined position of the pipe (for example, a manhole), and then sent to a microcomputer or other device connected to the receiver. By processing the information using , it is possible to display it on a display as visible information.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明は、管の内壁に照射された光ビ
ームの散乱光を集光レンズを介して複数の光検出素子を
有する光検出器で検出し、各光検出素子の検出結果を用
い集光レンズの移動量に対応させて散乱光の発生位置、
すなわち管の内壁の変動量を特定することができるので
、管の内径データを効率よく収集することができる。
As described above, the present invention detects scattered light of a light beam irradiated on the inner wall of a tube with a photodetector having a plurality of photodetecting elements through a condensing lens, and detects the detection results of each photodetecting element. The position of the scattered light is determined according to the amount of movement of the condensing lens used.
That is, since the amount of variation in the inner wall of the tube can be specified, data on the inner diameter of the tube can be efficiently collected.

また、本発明装置は、小型化および軽量化が容易であり
、さらに電力消費量が少なく繰作性に優れているために
、簡単かつ手軽に高精度の管内径の測定を行うことがで
きる。
In addition, the device of the present invention can be easily made smaller and lighter, has low power consumption, and is excellent in repeatability, so it can easily and easily measure the inner diameter of a pipe with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の要部構成を示すブロック図。 第2図は本発明装置により管の内径を実測した結果を示
す図。 10・・・管、11・・・半導体レーザ、13・・・ビ
ーム整形用プリズム、15・・・コリメータレンズ、1
7・・・対物レンズ、19・・・モータ、21.23・
・・反射ミラー、25・・・集光レンズ、27・・・2
分割同心円状光検出素子、29・・・集光レンズ移動量
検出部、31・・・駆動部、33・・・遮蔽板。 −〜
FIG. 1 is a block diagram showing the main configuration of an embodiment of the present invention. FIG. 2 is a diagram showing the results of actually measuring the inner diameter of a tube using the apparatus of the present invention. DESCRIPTION OF SYMBOLS 10... Tube, 11... Semiconductor laser, 13... Beam shaping prism, 15... Collimator lens, 1
7...Objective lens, 19...Motor, 21.23.
...Reflection mirror, 25...Condensing lens, 27...2
Divided concentric light detection element, 29... Condensing lens movement amount detection section, 31... Drive section, 33... Shielding plate. −~

Claims (1)

【特許請求の範囲】[Claims] (1)半導体レーザから出力されるレーザ光をビーム整
形し、さらに平行光ビームとして出射する光源部と、 前記平行光ビームを対物レンズを介して集光し、さらに
回転する反射ミラーで反射させ、集光された光ビームを
管の内壁に所定角度で照射する光ビーム照射部と、 前記集光された光ビームの照射に応じて管の内壁で散乱
した光を移動可能な集光レンズを介して複数の光検出素
子を有する光検出器に取り込み、各光検出素子に検出さ
れる光強度に応じて所定の位置に前記集光レンズを移動
させ、この移動量を前記管の内径の変動量に応じた値と
して検出する内径変動量検出部とを備えたことを特徴と
する光学式管内径測定装置。
(1) a light source unit that beam-shapes the laser light output from the semiconductor laser and further emits it as a parallel light beam; a light source unit that focuses the parallel light beam through an objective lens and further reflects it on a rotating reflecting mirror; A light beam irradiation unit that irradiates a focused light beam onto the inner wall of the tube at a predetermined angle, and a movable condenser lens that directs light scattered on the inner wall of the tube according to the irradiation of the focused light beam. The condenser lens is moved to a predetermined position according to the intensity of light detected by each photodetection element, and the amount of movement is calculated as the amount of variation in the inner diameter of the tube. 1. An optical pipe inner diameter measuring device comprising: an inner diameter variation detecting section that detects a value according to the inner diameter.
JP25859789A 1989-10-03 1989-10-03 Optical tube internal diameter measuring instrument Pending JPH03120406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25859789A JPH03120406A (en) 1989-10-03 1989-10-03 Optical tube internal diameter measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25859789A JPH03120406A (en) 1989-10-03 1989-10-03 Optical tube internal diameter measuring instrument

Publications (1)

Publication Number Publication Date
JPH03120406A true JPH03120406A (en) 1991-05-22

Family

ID=17322481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25859789A Pending JPH03120406A (en) 1989-10-03 1989-10-03 Optical tube internal diameter measuring instrument

Country Status (1)

Country Link
JP (1) JPH03120406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020277A (en) * 2002-06-13 2004-01-22 Hikari:Kk Optical displacement sensor and optical displacement measuring instrument and optical element
CN111721217A (en) * 2020-05-28 2020-09-29 南京航空航天大学 Method and device for measuring inner diameter of pipe shell based on photoelectric sensing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020277A (en) * 2002-06-13 2004-01-22 Hikari:Kk Optical displacement sensor and optical displacement measuring instrument and optical element
CN111721217A (en) * 2020-05-28 2020-09-29 南京航空航天大学 Method and device for measuring inner diameter of pipe shell based on photoelectric sensing

Similar Documents

Publication Publication Date Title
US5125741A (en) Method and apparatus for inspecting surface conditions
US6366690B1 (en) Pixel based machine for patterned wafers
EP0129205A2 (en) Noncontacting ultrasonic flaw detecting method
US6641535B2 (en) Ultrasonic probe, in particular for manual inspections
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
Inari et al. Optical inspection system for the inner surface of a pipe using detection of circular images projected by a laser source
US7342654B2 (en) Detection of impurities in cylindrically shaped transparent media
JP2008008689A (en) Surface inspection device and surface inspection method
JPH03120406A (en) Optical tube internal diameter measuring instrument
JPH02238338A (en) Lens inspecting apparatus
JPH06281593A (en) Method and apparatus for inspecting surface
JPH03115912A (en) Optically measuring instrument for internal diameter of tube
KR101881752B1 (en) defect sensing module based on line-beam and defect sensing device using its arrays for detection of the defects on surface
JPH0375544A (en) Apparatus for inspecting inside of laser tube
JPH09101390A (en) Dimension inspecting device for fuel assembly
JP2000193434A (en) Foreign substance inspecting device
JPH0422444B2 (en)
CN114397373B (en) AUT track calibration device and method based on pipeline welding ultrasonic detection
JPH0626972A (en) Method for detecting gas leak position
JPS6310778B2 (en)
JPS6358134A (en) Pipe inner surface shape measuring apparatus
KR20000034084A (en) Scanner for ultrasonic examination of sloping welded part
JPS62235511A (en) Surface condition inspecting apparatus
JPH03165300A (en) X-ray spectroscope inspecting device
JPS63243845A (en) In-tube inspection device