JPH03165300A - X-ray spectroscope inspecting device - Google Patents

X-ray spectroscope inspecting device

Info

Publication number
JPH03165300A
JPH03165300A JP30625989A JP30625989A JPH03165300A JP H03165300 A JPH03165300 A JP H03165300A JP 30625989 A JP30625989 A JP 30625989A JP 30625989 A JP30625989 A JP 30625989A JP H03165300 A JPH03165300 A JP H03165300A
Authority
JP
Japan
Prior art keywords
scanner
line sensor
ray
point
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30625989A
Other languages
Japanese (ja)
Other versions
JPH0660959B2 (en
Inventor
Yoshito Ueda
義人 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30625989A priority Critical patent/JPH0660959B2/en
Publication of JPH03165300A publication Critical patent/JPH03165300A/en
Publication of JPH0660959B2 publication Critical patent/JPH0660959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect the twist of a holding base of a spectroscopic crystal and the deviation of the kinetic locus of an outlet slit from the ideal locus by determining the condensing position of the light emitted from a light emitting element from the output signal of a line sensor. CONSTITUTION:The center of curvature 0 of a cylindrical mirror 2 having the curved surface, the radius of which is the diameter of a Rowland circle, the reference position P of the line sensor and the position Q of the outlet slit exist on the circumference of the Rowland circle R and an arc P0=arc Q0 is obtd. from a disposition relation when the cylindrical mirror 2 is disposed and a light emitting element 4 is disposed behind the outlet slit 3 and further, the reference position of the line sensor 1 is disposed in the position to be irradiated with X-rays. The incident light from the light emitting element 4 on a scanner A from the output slit position Q is, therefore, reflected by the cylindrical mirror 2 and is condensed to the reference position P of the line sensor 1. The adjustment of the spectral crystal angle and position of the scanner A, the position adjustment of the outlet slit 3 and the inspection of the positional deviation of the outlet slit 3 in the entire scanning wavelength region are easily executed in this way.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、X線分光器検査装置に関する。 The present invention relates to an X-ray spectrometer inspection device.

【従来の技術】[Conventional technology]

X線マイクロアナライザ(EPMA)や蛍光X線分析装
置等には、分光素子に湾曲結晶を用いた集中型波長走査
式X線分光器(以後スキャナと称す)が用いられている
。このスキャナは、X線のスキャナ入射点Pと円筒状の
分光用湾曲結晶2′とX線出口スリットの位置Qが、第
3図に示すように、分光結晶の湾曲半径を直径とし、分
光結晶2′の中心法線上に中心0′があり、分光結晶の
表面中心0″を通る円(ローランド円)上に、分光結晶
の法線00”を中心として対象に位置させながら、分光
結晶2′と出口スリットの位ffQを駆動させるような
構造となっている。スキャナの駆動精度が、高精度であ
っても、分光結晶の角度及び位置また出口スリットの位
置が全走査波長において適正な配置即ち出口スリットに
X線が集光するように配置されなければならない、また
、出口スリットに集光するように、分光結晶角度及び位
置を成る波長で調節しても、波長が調節した波長と異な
れば、集光位置が出口スリットから若干ずれることが起
きる。これは分光結晶自身の問題であるが、各分光波長
毎に、出口スリットにX線が集光するように、各分光波
長毎に、出口スリットの位置を補正する必要がある。こ
のためスキャナの分光精度検査及び調節が行われるが、
スキャナを空気中において、X線を用いてスキャナの検
査及び調節を行うには、所望の波長のX線を発生する微
小焦点の真空密封型XH管を多数用意するか、波長を切
換えて所望の波長のX線を発生できる微小焦点の真空密
封型X線管を用意しなければならない。これは大変能し
いので、EPMA自身をX線発生装置とする方法がとら
れている。従って、スキャナを装置に取付けてから、装
置内を真空にした上で、検査を行うことになる。従って
、上記検査及び調節を行うためには、分光結晶の角度及
び位置調整及び出口スリットの位置調整を行いながら、
検出器からの信号強度を測定しなければならないために
、その作業時間として、4〜10時間が必要となってく
るので、スキャナの検査と調節に長時間かかると云う問
題があった。
BACKGROUND ART A concentrated wavelength scanning X-ray spectrometer (hereinafter referred to as a scanner) using a curved crystal as a spectroscopic element is used in an X-ray microanalyzer (EPMA), a fluorescent X-ray analyzer, and the like. This scanner has an X-ray scanner entrance point P, a cylindrical curved spectroscopy crystal 2', and a position Q of the X-ray exit slit, with the diameter being the radius of curvature of the spectroscopy crystal, as shown in The center 0' is on the center normal of the spectroscopic crystal 2', and the spectroscopic crystal 2' is positioned symmetrically with the normal line 00'' of the spectroscopic crystal as the center on a circle (Rowland circle) passing through the surface center 0'' of the spectroscopic crystal. The structure is such that ffQ is driven by the exit slit. Even if the driving accuracy of the scanner is high, the angle and position of the spectroscopic crystal and the position of the exit slit must be properly positioned at all scanning wavelengths, that is, the X-rays must be arranged so that they are focused on the exit slit. Furthermore, even if the angle and position of the spectroscopic crystal are adjusted according to a certain wavelength so as to focus the light on the exit slit, if the wavelength is different from the adjusted wavelength, the focusing position may be slightly shifted from the exit slit. Although this is a problem with the spectroscopic crystal itself, it is necessary to correct the position of the exit slit for each spectral wavelength so that the X-rays are focused on the exit slit for each spectral wavelength. For this purpose, the spectral accuracy of the scanner is inspected and adjusted.
To inspect and adjust the scanner using X-rays while the scanner is in the air, you can either prepare a large number of vacuum-sealed XH tubes with minute focuses that generate X-rays of the desired wavelength, or switch the wavelength to obtain the desired wavelength. A vacuum-sealed X-ray tube with a minute focus that can generate X-rays of the same wavelength must be prepared. Since this is very effective, a method has been adopted in which the EPMA itself is used as an X-ray generator. Therefore, after the scanner is attached to the device, the inside of the device is evacuated and then the inspection is performed. Therefore, in order to perform the above inspection and adjustment, while adjusting the angle and position of the spectroscopic crystal and the position of the exit slit,
Since it is necessary to measure the signal intensity from the detector, it requires 4 to 10 hours of work time, so there is a problem in that it takes a long time to inspect and adjust the scanner.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、スキャナの分光結晶角度及び位置の調節や出
口スリットの位置調節及び全走査波長域における出口ス
リットの位置ずれの検査を簡単にできるようにすること
を目的とする。
An object of the present invention is to make it possible to easily adjust the angle and position of the spectroscopic crystal of a scanner, adjust the position of the exit slit, and inspect the positional deviation of the exit slit in the entire scanning wavelength range.

【課題を解決するための手段】[Means to solve the problem]

湾曲結晶を用いた波長走査型X線分光器において、同分
光器のローランド円上のX線入射点或は出射点の何れか
に光を入射させる手段を配置し、湾曲結晶取付位置に上
記X線分光器のローランド円の直径を半径とし、ローラ
ンド円上に曲率中心を有する円筒鏡を取付け、分光器の
ローランド円上で上記光の入射点と対応するX線出射点
或は入射点を中心として光入射量が検出可能で位置分解
能を有するラインセンサを配置し、同ラインセンサの出
力信号から入射光中心点を演算する手段を設け、X線分
光器の各波長位置毎の上記入射光中心点を出力する手段
を設けた6
In a wavelength-scanning X-ray spectrometer using a curved crystal, a means for inputting light to either the X-ray incident point or the X-ray exit point on the Rowland circle of the spectrometer is arranged, and the above-mentioned X A cylindrical mirror whose radius is the diameter of the Rowland circle of the line spectrometer and whose center of curvature is on the Rowland circle is installed, and the center is placed on the Rowland circle of the spectrometer at the X-ray emission point or incidence point that corresponds to the incident point of the light. A line sensor capable of detecting the amount of incident light and having positional resolution is arranged as a line sensor, and a means for calculating the center point of the incident light from the output signal of the line sensor is provided, and the center point of the incident light is calculated for each wavelength position of the X-ray spectrometer. 6 with a means to output points

【作 用】[For use]

本発明は、スキャナをX線マイクロアナライザ等の測定
装置から取り出し、スキャナを光学測定ができる暗室或
は暗箱に取付け、大気中において、スキャナの分光特性
を検査及び調整ができるようにしようとするもので、暗
室或は暗箱に取付けられたスキャナにおいて、分光結晶
の代わりにローランド円の直径を半径とする曲面を有す
る円筒鏡を、また出口スリットの後方に発光素子を、更
にX線照射位置にラインセンサの基準位置を配置した時
、第2図に示すように、円筒鏡2の曲率中心Oとライン
センサ基準位rtPと出口スリット位置Qがローランド
円Rの円周上にあり、又、配置関係から弧PO=弧QO
となることから、上記出ロスリット位IFQからスキャ
ナに入射した発光素子からの光は、円筒M2で反射され
てラインセンサの基準位置Pに集光される。この光路は
、スキャナにおいて、X線がX線入射点から分光結晶で
分光されて出口スリットに至るのと逆の道筋をたどって
おり、円筒鏡を用いた検査用機構による光路がどのよう
な道筋を通るのかを調査することにより、分光結晶を用
いた測定用機構の配置を検査することができる。そこで
本発明は、上記検査用機構にて、発光素子から発せられ
た光の集光位置を、ラインセンサ上の光強度分布の検出
結果から演算することにより、分光結晶の保持台のねじ
れや出口スリットの運動軌跡の理想軌跡からの偏差を求
めることができる。X線の代わりに光を用いるので、−
々真空室を排気しなくてもよいので、スキャナの分光結
晶及び出口スリットを短時間で簡単に移動できるように
なる。なお、光源と受光素子の位置関係を逆にしても良
いことは云うまでもない。
The present invention aims to enable the spectral characteristics of the scanner to be inspected and adjusted in the atmosphere by taking out the scanner from a measuring device such as an X-ray microanalyzer, and installing the scanner in a dark room or dark box where optical measurements can be performed. In a scanner installed in a dark room or dark box, a cylindrical mirror with a curved surface whose radius is the diameter of the Roland circle is used instead of the spectroscopic crystal, a light emitting element is placed behind the exit slit, and a line is placed at the X-ray irradiation position. When the reference position of the sensor is arranged, as shown in FIG. From arc PO = arc QO
Therefore, the light from the light emitting element that enters the scanner from the output loss slit position IFQ is reflected by the cylinder M2 and focused on the reference position P of the line sensor. This optical path follows the opposite path in the scanner, where the X-rays are separated from the X-ray incident point by the spectroscopic crystal and reach the exit slit, and the optical path taken by the inspection mechanism using a cylindrical mirror follows the opposite path. The arrangement of the measuring mechanism using the spectroscopic crystal can be examined by investigating whether the spectroscopic crystal passes through the . Therefore, the present invention uses the above-mentioned inspection mechanism to calculate the condensing position of the light emitted from the light emitting element from the detection results of the light intensity distribution on the line sensor. The deviation of the motion trajectory of the slit from the ideal trajectory can be determined. Since light is used instead of X-rays, -
Since there is no need to evacuate the vacuum chamber every time, the spectroscopic crystal and exit slit of the scanner can be easily moved in a short time. It goes without saying that the positional relationship between the light source and the light receiving element may be reversed.

【実施例】【Example】

第1図に本発明の一実施例を示す、第1図において、1
は測定時に試料をセットする場所に配置したラインセン
サで、シリコンの基板上に12μm角の感光部を一列に
600個を14μmピッチで配列したものであり、位W
wL調整機横に取付けられている。2はスキャナのロー
ランド円の直径を半径とし、ローランド円上に曲率中心
を有する円l!li鏡で、分光結晶保持部(不図示)に
保持されている。3は出口スリット、4は出口スリット
3の後方に配置された発光素子(LED)である。 測定時には発光素子4の代わりにX線検出器が配置され
る。上記円筒鏡2と出口スリット3及びしED4は、」
二連した一定条件下で波長走査駆動する機構上に同定さ
れ、スキャナAを構成している。スキャナA +、t 
X線マイクロアナライザ等の測定装置から取り外されて
、光学測定ができる暗室或は暗箱(不図示)内の大気中
にセットされており、分光特性の検査及び調整が終了し
た後に、測定装置に取付けられる。スキャナAは波長走
査モータ5の駆動により、円筒鏡2及び出口スリット3
L )E D 4が所定の分光波長位ff1s1.52
s3に移動される。6はドライバーで波長走査モータ5
を制御する。7はインターフェイスで、検出信号及び制
御信号を適当に変換して、マイコン10と各接続要素と
の連絡が適正に行われるようにしている。8はラインセ
ンサ1の出力信号をディジタルに変換するA D変換部
である69はビット変換部で、ラインセンサ1の出力信
号のピッ1〜位置を制御する。マイコン10はラインセ
ンサ1の出力信号として、光強度(P)とビット位置(
X値)を組データとして記憶し、図P1に示すような光
強度分布図を表示させる。光強度分布図P1のデータを
マイコン10で統計的に処理し、光強度分布の重心的な
X値を求めることにより、スキャナの要求精度である±
3μm程度の精度で、光源像の位置Xcを求めることが
できる。次に、波長走査モータ5を駆動させてスキャナ
Aを波長走査し、波長λに対する光源像の位置Xcを測
定し、光源像位置と波長との関数関係図(P2)を作成
する。この光源像位置と波長との関数関係図は、波長走
査における集光点の位置ずれを示したものであるから、
スキャナの精度だけでなく、スキャナの不良原因の解析
に利用できる。 上記実施例では、スキャナのX線入射点にラインセンサ
を置き、スキャナのX線出口スリット後方に光源を置い
たが、この配置を逆にしても、上記実施例と同じ効果が
得られる。
FIG. 1 shows an embodiment of the present invention.
is a line sensor placed at the place where the sample is set during measurement, and has 600 12 μm square photosensitive areas arranged in a row at a 14 μm pitch on a silicon substrate.
It is installed next to the wL adjustment machine. 2 is a circle l! whose radius is the diameter of the Rowland circle of the scanner and whose center of curvature is on the Rowland circle. The li mirror is held in a spectroscopic crystal holding part (not shown). 3 is an exit slit, and 4 is a light emitting element (LED) arranged behind the exit slit 3. During measurement, an X-ray detector is placed in place of the light emitting element 4. The cylindrical mirror 2, exit slit 3 and ED4 are
It is identified on the mechanism that performs wavelength scanning drive under two consecutive constant conditions, and constitutes the scanner A. Scanner A +, t
It is removed from a measurement device such as an X-ray microanalyzer and placed in the atmosphere in a dark room or dark box (not shown) where optical measurements can be made, and then installed in the measurement device after the spectral characteristics have been inspected and adjusted. It will be done. The scanner A uses a cylindrical mirror 2 and an exit slit 3 by driving a wavelength scanning motor 5.
L) ED 4 is the predetermined spectral wavelength ff1s1.52
Moved to s3. 6 is a driver and wavelength scanning motor 5
control. Reference numeral 7 denotes an interface that appropriately converts detection signals and control signals so that communication between the microcomputer 10 and each connection element can be properly performed. Reference numeral 8 denotes an A/D converter that converts the output signal of the line sensor 1 into digital data. Reference numeral 69 denotes a bit converter that controls the positions of the output signal of the line sensor 1. The microcomputer 10 receives the light intensity (P) and bit position (
X value) is stored as set data, and a light intensity distribution diagram as shown in Figure P1 is displayed. By statistically processing the data of the light intensity distribution map P1 with the microcomputer 10 and finding the X value at the center of gravity of the light intensity distribution, ± which is the required accuracy of the scanner is obtained.
The position Xc of the light source image can be determined with an accuracy of about 3 μm. Next, the wavelength scanning motor 5 is driven to wavelength scan the scanner A, the position Xc of the light source image with respect to the wavelength λ is measured, and a functional relation diagram (P2) between the light source image position and the wavelength is created. This functional relationship diagram between the light source image position and wavelength shows the positional shift of the focal point in wavelength scanning, so
It can be used not only to check scanner accuracy but also to analyze the cause of scanner failure. In the above embodiment, the line sensor is placed at the X-ray entrance point of the scanner, and the light source is placed behind the X-ray exit slit of the scanner, but even if this arrangement is reversed, the same effect as in the above embodiment can be obtained.

【効 果】【effect】

本発明によれば、スキャナの分光精度を決定する分光結
晶の角度と位置及び出口スリットの位置を全波長域にお
いて光学的に検査することができるので、真空作業なし
でスキャナの調節及び精度検査をすることができるよう
になり、スキャナの分光結晶の角度と位置調節及び波長
走査全域における出口スリットの位置ずれを短時間で簡
単に測定できるようになると共に、スキャナの精度検査
及びスキャナの不良原因の解析も容易にできるようにな
った。
According to the present invention, the angle and position of the spectroscopic crystal and the position of the exit slit, which determine the spectral accuracy of the scanner, can be optically inspected in all wavelength ranges, so scanner adjustment and accuracy inspection can be performed without vacuum work. This makes it possible to quickly and easily measure the angle and position adjustment of the scanner's spectroscopic crystal and the positional deviation of the exit slit over the entire wavelength scan range, as well as to inspect the accuracy of the scanner and identify the causes of scanner defects. Analysis has also become easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は上記実施
例の光路説明図、第3図はスキャナの光路説明図である
。 1・・・ラインセンサ、2・・円筒鏡、3・・・出口ス
リット、4・・LED、5・・・波長走査モータ、6・
・・ドライバー、7・・・インターフェイス、8・・・
A、 D変換部9・・・ビット変換部、10・・・マイ
コン、A・・・スキャナ、SL、S2.S3・・・スキ
ャナの波長走査位置、Pl・・・光強度分布図、P2・
・・光源像位置と波長との関数関係図。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the optical path of the above embodiment, and FIG. 3 is an explanatory diagram of the optical path of the scanner. 1... Line sensor, 2... Cylindrical mirror, 3... Exit slit, 4... LED, 5... Wavelength scanning motor, 6...
...Driver, 7...Interface, 8...
A, D converter 9...Bit converter, 10...Microcomputer, A...Scanner, SL, S2. S3...Scanner wavelength scanning position, Pl...Light intensity distribution diagram, P2.
...Functional relationship diagram between light source image position and wavelength.

Claims (1)

【特許請求の範囲】[Claims] 湾曲結晶を用いた波長走査型X線分光器において、同分
光器のローランド円上のX線入射点或は出射点の何れか
に光を入射させる手段を配置し、湾曲結晶取付位置に上
記X線分光器のローランド円の直径を半径とし、ローラ
ンド円上に曲率中心を有する円筒鏡を取付け、分光器の
ローランド円上で上記光の入射点と対応するX線出射点
或は入射点を中心として光入射量が検出可能で位置分解
能を有するラインセンサを配置し、同ラインセンサの出
力信号から入射光中心点を演算する手段を設け、X線分
光器の各波長位置毎の上記入射光中心点を出力する手段
を設けたことを特徴とするX線分光器検査機構。
In a wavelength-scanning X-ray spectrometer using a curved crystal, a means for inputting light to either the X-ray incident point or the X-ray exit point on the Rowland circle of the spectrometer is arranged, and the above-mentioned X A cylindrical mirror whose radius is the diameter of the Rowland circle of the line spectrometer and whose center of curvature is on the Rowland circle is installed, and the center is placed on the Rowland circle of the spectrometer at the X-ray emission point or incidence point that corresponds to the incident point of the light. A line sensor capable of detecting the amount of incident light and having positional resolution is arranged as a line sensor, and a means for calculating the center point of the incident light from the output signal of the line sensor is provided, and the center point of the incident light is calculated for each wavelength position of the X-ray spectrometer. An X-ray spectrometer inspection mechanism characterized by being provided with means for outputting a point.
JP30625989A 1989-11-24 1989-11-24 X-ray spectrometer inspection device Expired - Lifetime JPH0660959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30625989A JPH0660959B2 (en) 1989-11-24 1989-11-24 X-ray spectrometer inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30625989A JPH0660959B2 (en) 1989-11-24 1989-11-24 X-ray spectrometer inspection device

Publications (2)

Publication Number Publication Date
JPH03165300A true JPH03165300A (en) 1991-07-17
JPH0660959B2 JPH0660959B2 (en) 1994-08-10

Family

ID=17954922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30625989A Expired - Lifetime JPH0660959B2 (en) 1989-11-24 1989-11-24 X-ray spectrometer inspection device

Country Status (1)

Country Link
JP (1) JPH0660959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568505A (en) * 2016-11-03 2017-04-19 上海交通大学 Arc spectrum synchronous real-time scanning linear multichannel acquisition device
CN106568506A (en) * 2016-11-03 2017-04-19 上海交通大学 Synchronous real-time scanning linear multichannel acquisition method for arc spectrum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568505A (en) * 2016-11-03 2017-04-19 上海交通大学 Arc spectrum synchronous real-time scanning linear multichannel acquisition device
CN106568506A (en) * 2016-11-03 2017-04-19 上海交通大学 Synchronous real-time scanning linear multichannel acquisition method for arc spectrum

Also Published As

Publication number Publication date
JPH0660959B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
KR100571863B1 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US6366690B1 (en) Pixel based machine for patterned wafers
US5159412A (en) Optical measurement device with enhanced sensitivity
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JPH03267745A (en) Surface property detecting method
US4605857A (en) Tensile tester
RU2249813C2 (en) Device for taking elementary analysis by means of spectrometry of optical emission on laser-generated plasma
JP4641143B2 (en) Surface inspection device
JP3511826B2 (en) X-ray fluorescence analyzer
GB2404980A (en) Goniospectrophotometer for the simultaneous measurement of the angular spectrum of a source
JPH05113418A (en) Surface analyzing apparatus
JPH03165300A (en) X-ray spectroscope inspecting device
JP2002529699A (en) X-ray diffractometer with x-ray optical reference channel
JPH0221553A (en) Electron ray length-measuring device
JP2921910B2 (en) Total reflection X-ray fluorescence analyzer
CN116379974B (en) Device and method for detecting surface characteristics of optical element by using multi-wavelength light source
JPH0795040B2 (en) Micro foreign matter inspection device
US11092490B2 (en) Method and apparatus for calibrating spectrometers
JP3740530B2 (en) Aligner for total internal reflection X-ray fluorescence analysis
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP2001004544A (en) Raman spectrometric apparatus
JP2002181710A (en) Fluorescence detecting and measuring instrument
JP4365687B2 (en) Analysis method and analyzer
JPH1164253A (en) Fluorescent x-ray analyzer
JP2002039972A (en) Fluorescent x-ray analyzing apparatus