JPH05247699A - Neutral salt electrolyzing method for descaling from stainless steel strip and device therefor - Google Patents

Neutral salt electrolyzing method for descaling from stainless steel strip and device therefor

Info

Publication number
JPH05247699A
JPH05247699A JP4082996A JP8299692A JPH05247699A JP H05247699 A JPH05247699 A JP H05247699A JP 4082996 A JP4082996 A JP 4082996A JP 8299692 A JP8299692 A JP 8299692A JP H05247699 A JPH05247699 A JP H05247699A
Authority
JP
Japan
Prior art keywords
stainless steel
steel strip
strip
neutral salt
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4082996A
Other languages
Japanese (ja)
Other versions
JP2989067B2 (en
Inventor
Kazuo Sakurai
一生 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP4082996A priority Critical patent/JP2989067B2/en
Publication of JPH05247699A publication Critical patent/JPH05247699A/en
Application granted granted Critical
Publication of JP2989067B2 publication Critical patent/JP2989067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To reduce the electrodeposition of molten metal in a bath at the electrolized part in the cathode of a stainless steel strip even in the case of an indirect conducting system, at the time of neutral salt electrolyzing treatment in which the removal of scales formed on the surface of a stainless steel strip is executed by annealing treatment, and to manufacture the stainless steel strip of excellent quantity from the economical viewpoint. CONSTITUTION:The sheet width and sheet passing rate of a stainless steel strip S passed through a neutral salt electrolyzing stage in which descaling from the stainless steel strip S is executed are respectively detected by a sheet width detector 3 and a sheet passing rate detector 2. By using a computing element 9 computing electrolyzing current value from both detected value and objective electric quantity for subjecting the stainless steel strip S to electrolyzing treatment, a DC power unit 7 is controlled to automatically regulate the electrolyzing current value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼鈍処理によりステン
レス鋼帯表面に生じたスケールの脱スケールを行う中性
塩電解処理に際して、ステンレス鋼帯の陰極電解部での
浴中溶解金属の電析が少なくして経済的に且つ品質の優
れたステンレス鋼帯を製造することが可能なステンレス
鋼帯脱スケール用の中性塩電解処理方法及びこの方法を
実施するための装置に関するものである。
FIELD OF THE INVENTION The present invention relates to electrodeposition of molten metal in a bath at the cathodic electrolysis section of a stainless steel strip during the neutral salt electrolysis treatment for descaling the scale produced on the surface of the stainless steel strip by the annealing treatment. TECHNICAL FIELD The present invention relates to a neutral salt electrolytic treatment method for descaling a stainless steel strip, which is capable of producing a stainless steel strip that is economical and excellent in quality, and an apparatus for carrying out this method.

【0002】[0002]

【従来の技術】冷間圧延後のステンレス鋼帯に対して行
われる焼鈍処理方法の一つとして、大気雰囲気炉内で燃
料をバーナー燃焼させて直火熱処理する大気焼鈍方法が
ある。この大気焼鈍処理においては、大気中の酸素の作
用を受けてステンレス鋼帯の表面に金属酸化物(以下、
単にスケールと言う)が生成するので、これを除去し良
好な品質のステンレス鋼帯を製造するために、焼鈍処理
後に脱スケール処理が行われる。そして一般にステンレ
ス鋼帯の脱スケール処理は、前工程の焼鈍処理と共に一
連のラインにて連続的に行われている。
2. Description of the Related Art As one of the annealing treatment methods performed on a cold rolled stainless steel strip, there is an atmospheric annealing method in which a fuel is burner-burned in an atmospheric atmosphere furnace to perform a direct flame heat treatment. In this atmospheric annealing treatment, metal oxide (hereinafter,
Descaling treatment is performed after the annealing treatment in order to remove this and produce a stainless steel strip of good quality. In general, the descaling process of the stainless steel strip is continuously performed in a series of lines together with the annealing process of the previous process.

【0003】この脱スケール処理方法としては、硫酸ソ
ーダ水溶液中での電解処理(以下、単に中性塩電解処理
と言うことがある)や、苛性ソーダと硝酸ソーダとの混
合溶融塩中での浸漬処理(以下、単にソルト浸漬処理と
言う)等の前処理を行った後に、硝弗酸に浸漬したり硝
酸水溶液中で電解処理を行ったり、更にこれらを組み合
わせることが広く行われている。これらの処理方法のう
ち、中性塩電解処理は特公昭38−12162号公報に
開示されて以来、近年広く採用されるに至ったものであ
る。
As the descaling method, electrolytic treatment in an aqueous solution of sodium sulfate (hereinafter sometimes simply referred to as neutral salt electrolytic treatment) or immersion treatment in a mixed molten salt of caustic soda and sodium nitrate is performed. It is widely practiced to perform pretreatment such as (hereinafter, simply referred to as salt dipping treatment) and the like, followed by dipping in nitric hydrofluoric acid, electrolytic treatment in a nitric acid aqueous solution, or a combination thereof. Among these treatment methods, the neutral salt electrolytic treatment has been widely adopted in recent years since it was disclosed in Japanese Patent Publication No. 38-12162.

【0004】この中性塩電解処理の特徴として、ソルト
浸漬処理に比較して美麗な表面性状を得易いこと、水溶
液のpHが中性に近いためその取扱いが容易であるこ
と、作業環境が良いことなどが挙げられる。また、中性
塩電解処理における電解は、ステンレス鋼帯の通板方向
に対して非接触に陽極と陰極とを交互に設置してステン
レス鋼帯に陰極電解と陽極電解とを順次施す間接電解が
広く行われている。従来、この中性塩電解処理の作用
は、特公昭38−12162号公報に開示されて如く、
スケールを有するステンレス鋼帯は陽極電解時にはスケ
ールの溶解作用を受け、陰極電解処理時には特に作用は
受けず水素発生を行うのみであると考えられていたが、
特開昭63−161194号公報はステンレス鋼帯の陰
極電解処理時には浴中に溶解したCrやFeなどの金属
イオンが還元されるのでステンレス鋼帯表面にこれらが
析出してスケール状の物質を生成して後続の硝弗酸浸漬
処理を行ってもその脱スケールが充分でなくなることを
開示し、この析出を防止するために浴中溶解金属濃度に
応じて陰極電解時の電流密度を制限することを提案して
いる。また特開平1−96398号公報には浴中の6価
クロムイオン濃度とpHとを制限することを、特開平1
−96399号公報及び特開平1−96400号公報に
は陽極電解部と陰極電解部とを分離し且つ分離した各浴
条件を制限することを、特開平2−173300号公報
には浴中に還元剤を添加して6価クロムイオンを還元変
化させることを、それぞれ提案している。しかし、これ
らの方法はいずれも設備的改造を要し、しかも電解処理
に際しての電流密度の調整は作業負荷の増加等があるの
で実際的ではない欠点があった。
The features of this neutral salt electrolysis treatment are that it is easy to obtain a beautiful surface texture as compared with the salt dipping treatment, that the pH of the aqueous solution is close to neutral, and that it is easy to handle, and that the working environment is good. There are things like that. Further, the electrolysis in the neutral salt electrolysis treatment is an indirect electrolysis in which the anode and the cathode are alternately placed in a non-contact manner with respect to the passing direction of the stainless steel strip and the cathodic electrolysis and the anodic electrolysis are sequentially performed on the stainless steel strip. It is widely practiced. Conventionally, the action of this neutral salt electrolytic treatment is as disclosed in Japanese Patent Publication No. 38-12162.
It was thought that the stainless steel strip having a scale was subjected to the dissolution action of the scale during the anodic electrolysis, and was not particularly affected during the cathodic electrolysis treatment to generate hydrogen.
In JP-A-63-161194, metal ions such as Cr and Fe dissolved in the bath are reduced during cathodic electrolysis of stainless steel strips, and these are deposited on the surface of the stainless steel strips to form scale-like substances. Therefore, it is disclosed that the descaling is not sufficient even after the subsequent nitric hydrofluoric acid immersion treatment, and in order to prevent this precipitation, the current density during cathodic electrolysis is limited according to the concentration of dissolved metal in the bath. Is proposed. Further, JP-A-1-96398 discloses that the concentration of hexavalent chromium ions and the pH in a bath are limited.
-96399 and Japanese Patent Application Laid-Open No. 1-96400 disclose that an anode electrolysis part and a cathode electrolysis part are separated and that the conditions of each of the separated baths are limited. In JP-A-2-173300, reduction is performed in the bath. It is proposed to add a chemical agent to reduce and change hexavalent chromium ions. However, all of these methods have a drawback that they are not practical because they require facility modification and the adjustment of the current density during the electrolytic treatment increases the work load.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記従来技
術の欠点を解消し、設備的な大改造を必要とせずに、間
接通電方式であるにも拘らずステンレス鋼帯の陰極電解
部での浴中溶解金属の電析が少なく且つ適正な中性塩電
解作用を維持してステンレス鋼帯の脱スケール用の中性
塩電解処理を行うことを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art and requires a cathodic electrolysis section of a stainless steel strip in spite of the indirect energization method without requiring major facility modification. It is an object of the present invention to carry out a neutral salt electrolysis treatment for descaling of a stainless steel strip while maintaining a proper electrolysis action of the neutral salt with less electrodeposition of the dissolved metal in the bath.

【0006】[0006]

【課題を解決するための手段】本発明者は前記課題を解
決すべく鋭意研究の結果、中性塩電解処理において間接
通電方式の電解装置でのステンレス鋼帯の陰極電解部で
の浴中溶解金属の電析について調査をし、表1に示すよ
うな結果から次の結論を得た。即ち、模擬的に調整した
溶解金属濃度(ここでは6価クロムとしてクロム酸を添
加)の異なる硫酸ソーダ水溶液中に陽極として硬鉛(鉛
アンチモン合金)を使用し、陰極として白金線を浸漬し
てこの電極間を直流電源装置と接続し、電流密度を5A
/dm2一定の下で電解時間を変化させて陰極である白金
線に電析した金属重量を測定し、電析に及ぼす電解電気
量の影響を調査したのである。なお、pHの影響を調査
するため水溶液のpHを苛性ソーダで調整した。この調
査結果からは、6価クロム濃度及びpHと電析との因果
関係までは明らかにできなかったが、少なくとも電解時
間が23秒という短い場合は、各条件共に電析は生じな
かった。
Means for Solving the Problems As a result of intensive research to solve the above problems, the present inventor has found that in neutral salt electrolysis treatment, dissolution of a stainless steel strip in a cathodic electrolysis section in a bath in an indirect current electrolysis apparatus is dissolved in a bath. The electrodeposition of metal was investigated, and the following conclusions were obtained from the results shown in Table 1. That is, hard lead (lead antimony alloy) was used as an anode in a sodium sulfate aqueous solution having a simulated adjusted dissolved metal concentration (here, chromic acid was added as hexavalent chromium), and a platinum wire was immersed as a cathode. Connect a direct current power supply between these electrodes and set the current density to 5A.
The amount of metal deposited on the platinum wire serving as the cathode was measured by varying the electrolysis time under a constant / dm 2 and the effect of the electrolysis quantity on the electrodeposition was investigated. The pH of the aqueous solution was adjusted with caustic soda to investigate the effect of pH. From the results of this investigation, the causal relationship between hexavalent chromium concentration and pH and electrodeposition could not be clarified, but electrodeposition did not occur under each condition when the electrolysis time was as short as 23 seconds.

【0007】[0007]

【表1】 [Table 1]

【0008】そして、本出願人会社の中性塩電解処理装
置では、ステンレス鋼帯が陰極電解処理を受ける合計時
間は4〜20秒であり、これに対応してしかも設備的条
件から必然的に決まる陽極電解時間は12〜60秒であ
る。また、中性塩電解処理の目的とするスケール溶解作
用を決定する陽極電流密度は、一般的には2〜6A/dm
2であり、当社でも基本的にはこの電流密度を採用して
いて、代表的な鋼種であるSUS410,SUS43
0,SUS304では焼鈍条件にもよるが概ね電流密度
と電解時間との積である電気量を50〜100C/dm2
とすれば中性塩電解処理の脱スケール効果が得られるこ
とを確認し、この電気量を維持するように前述の陽極電
解時間の12〜60秒に応じて電流密度を変化させても
脱スケール効果に変化のないことも確認した。以上の結
果より、前記表1に示した調査結果において電析現象が
生じない条件であった鋼帯陰極電流密度5A/dm2で電
解時間の23秒に相当する電気量115C/dm2以下と
することで、浴中溶解金属のステンレス鋼帯表面への電
析がなく且つ必要な脱スケール効果が得られることを究
明したのである。
In the neutral salt electrolytic treatment apparatus of the applicant of the present invention, the total time for the stainless steel strip to undergo the cathodic electrolytic treatment is 4 to 20 seconds, which is inevitable in view of the facility conditions. The determined anode electrolysis time is 12 to 60 seconds. In addition, the anode current density that determines the target scale dissolution action of the neutral salt electrolytic treatment is generally 2 to 6 A / dm.
It is 2 , and our company basically adopts this current density, and the typical steel grades are SUS410, SUS43.
0, SUS304, depending on the annealing conditions, the amount of electricity, which is approximately the product of current density and electrolysis time, is 50 to 100 C / dm 2
If so, it is confirmed that the descaling effect of the neutral salt electrolysis treatment can be obtained, and the descaling is performed even if the current density is changed according to the above-mentioned anodic electrolysis time of 12 to 60 seconds so as to maintain this amount of electricity. It was also confirmed that there was no change in the effect. From the above results, in the investigation results shown in Table 1 above, the electric quantity was 115 C / dm 2 or less corresponding to the electrolysis time of 23 seconds at the steel strip cathode current density of 5 A / dm 2 which was the condition under which the electrodeposition phenomenon did not occur. By doing so, it was clarified that there is no electrodeposition of the molten metal in the bath on the surface of the stainless steel strip and the required descaling effect can be obtained.

【0009】一般に電解作用は処理対象材へ付与する電
流密度と電解時間との積である電気量により決定される
から、最適電気量が決定できればそれを維持するように
電流密度又は電解時間を調整してやれば良いわけであ
る。一般に、ステンレス鋼帯の焼鈍酸洗工程では、通板
材の板厚と板幅とに応じてその通板速度は変えて操業さ
れている。即ち、板厚と板幅とが共に大きい場合には所
定の材料温度を得るためには遅い速度で通板し、板厚と
板幅とが共に小さい場合には速い速度で通板される。こ
れは、焼鈍炉で供給できる熱エネルギー量に限りがある
ために、或る体積を持つステンレス鋼帯を或る温度まで
加熱するのに足る熱量がほぼ同じであるためである。一
方、酸洗工程は焼鈍工程と連続化しているため、焼鈍工
程と同じ通板速度で通板される。従って、酸洗工程に中
性塩電解装置の如き電解処理装置があると、そこでの通
板速度即ち電解時間が板厚と板幅とによって変わること
になる。従来は主として省エネルギーの観点から少なく
とも目標電流密度を維持するように板幅に応じて電解電
流値を人手により変更していたが、通板速度まで見て電
気量が一定となるよう電解電流値を調整することは作業
負荷の問題から実施できない状況にあった。即ち、工業
的電解処理において、ステンレス鋼帯の幅や通板速度が
変わる状況下で電流密度又は電気量をその都度調整する
ことは、労力のかかる作業であったのである。
Generally, the electrolytic action is determined by the amount of electricity, which is the product of the current density applied to the material to be treated and the electrolysis time. Therefore, if the optimal amount of electricity can be determined, the current density or the electrolysis time is adjusted to maintain it. All you have to do is do it. Generally, in the annealing pickling process of a stainless steel strip, the strip running speed is changed according to the strip thickness and strip width of the strip running. That is, when both the plate thickness and the plate width are large, the plate is passed at a low speed to obtain a predetermined material temperature, and when the plate thickness and the plate width are both small, the plate is passed at a high speed. This is because the amount of heat energy that can be supplied by the annealing furnace is limited, so that the amount of heat sufficient to heat a stainless steel strip having a certain volume to a certain temperature is almost the same. On the other hand, since the pickling step is continuous with the annealing step, the strip is passed at the same strip speed as the annealing step. Therefore, if there is an electrolytic treatment device such as a neutral salt electrolysis device in the pickling step, the plate passing speed, that is, the electrolysis time, will change depending on the plate thickness and the plate width. Conventionally, mainly from the viewpoint of energy saving, the electrolytic current value was manually changed according to the plate width so as to maintain at least the target current density. Adjustment was not possible due to work load issues. That is, in the industrial electrolytic treatment, it was a labor-intensive task to adjust the current density or the amount of electricity each time under the circumstances where the width of the stainless steel strip or the strip running speed was changed.

【0010】そこで、本発明者は間接通電方式のステン
レス鋼帯の脱スケール用の中性塩電解処理において、浴
中溶解金属のステンレス鋼帯の陰極電解部での電析を抑
えるため、中性塩電解処理に際して電気量を一定とすれ
ば少なくとも本発明の課題を達成できることを見極め本
発明に至ったのである。即ち、ステンレス鋼帯の脱スケ
ールを行う中性塩電解処理工程に通板されるステンレス
鋼帯の板幅と通板速度とをそれぞれ検出し、両検出値と
該ステンレス鋼帯を電解処理するための目標電気量とか
ら電解電流値を演算する演算器を使用して電解電流値を
自動的に調整すれば、前記本発明の課題を達成できるこ
とを究明したのである。
In view of this, the present inventor has tried to suppress the electrodeposition of the molten metal in the bath at the cathodic electrolysis portion of the stainless steel strip in the neutral salt electrolytic treatment for descaling of the indirect energization type stainless steel strip. The present invention has been made by discovering that at least the object of the present invention can be achieved if the amount of electricity is constant during the salt electrolysis treatment. That is, for detecting the plate width and the plate passing speed of the stainless steel strip which is passed through the neutral salt electrolytic treatment step of descaling the stainless steel strip, both detection values and the electrolytic treatment of the stainless steel strip are performed. It has been clarified that the object of the present invention can be achieved by automatically adjusting the electrolysis current value by using a calculator that calculates the electrolysis current value from the target electricity amount.

【0011】[0011]

【作用】以下、本発明に係るステンレス鋼帯脱スケール
用の中性塩電解処理方法及び装置の詳細について図1に
より説明する。図1は本発明に係るステンレス鋼帯脱ス
ケール用の中性塩電解処理装置の構成を説明する概略説
明図である。図中、Sは焼鈍処理(中性塩電解装置以外
の焼鈍装置等は本発明と直接関係ないためその記載を省
略する)されたステンレス鋼帯であり、ブライドルロー
ル1からデフレクタロールを経て中性塩電解槽4の電解
浴5内に入側の浸漬ロール8を経て導入され、中性塩電
解槽4内で陰極電極板6a及び陽極電極板6bにより陽極電
解及び陰極電解の間接電解が順次施されて出側の浸漬ロ
ール8を経て中性塩電解槽4の電解浴5内から導出さ
れ、デフレクタロールを経て硝弗酸混酸槽又は硝酸電解
槽10内に導入されて酸洗処理を施されるのである。この
際、ステンレス鋼帯Sは中性塩電解槽4へ通板前に板幅
検出装置3でその板幅が検出される。この板幅検出装置
3としては、一般に使用される板幅方向のステンレス鋼
帯Sの下面に設置された光源と上面に設置された受光源
(CdS素子,フォトダイオード等)を利用したもの
や、リニヤーセンサーカメラ(CCD)を使用すること
ができる。また、通板速度検出装置2でステンレス鋼帯
Sの通板速度も検出される。この通板速度検出装置2と
しては、ブライドルロール1に付設された回転ロールの
回転数を検出するパルスゼネレーターの出力を元に計算
されるものでも良いし、超音波やレーザー光のドップラ
ー効果を利用したものでも良い。かくして板幅検出装置
3で検出された板幅の検出値と通板速度検出装置2で検
出された通板速度の検出値とは、設定変更可能な電気量
設定機能を有する演算器9へ入力され、下記式より陽極
電極板6aと陰極電極板6bとに供給される電解電流値を演
算された電解電流値に維持するように直流電源装置7の
電流が制御される。
The details of the neutral salt electrolytic treatment method and apparatus for descaling the stainless steel strip according to the present invention will be described below with reference to FIG. FIG. 1 is a schematic explanatory diagram illustrating the configuration of a neutral salt electrolytic treatment apparatus for descaling a stainless steel strip according to the present invention. In the figure, S is an annealed stainless steel strip (the annealing device other than the neutral salt electrolysis device is not directly related to the present invention, so the description thereof is omitted), and the bridle roll 1 is passed through a deflector roll to be neutral. It is introduced into the electrolytic bath 5 of the salt electrolysis tank 4 through the dipping roll 8 on the entry side, and in the neutral salt electrolysis tank 4, the indirect electrolysis of anodic electrolysis and cathodic electrolysis is sequentially performed by the cathode electrode plate 6a and the anode electrode plate 6b. It is led out from the electrolytic bath 5 of the neutral salt electrolytic bath 4 through the dipping roll 8 on the outlet side, and is introduced into the nitric hydrofluoric acid mixed acid bath or the nitric acid electrolytic bath 10 through the deflector roll and is subjected to pickling treatment. It is. At this time, the strip width of the stainless steel strip S is detected by the strip width detection device 3 before passing through the neutral salt electrolytic bath 4. As the plate width detecting device 3, a device using a light source installed on the lower surface of a generally used stainless steel strip S in the plate width direction and a light receiving light source (CdS element, photodiode, etc.) installed on the upper surface, A linear sensor camera (CCD) can be used. Further, the strip speed of the stainless steel strip S is also detected by the strip speed detecting device 2. The plate passing speed detecting device 2 may be calculated based on the output of a pulse generator that detects the number of rotations of a rotating roll attached to the bridle roll 1, or the Doppler effect of ultrasonic waves or laser light may be calculated. The one used may be used. Thus, the detected value of the plate width detected by the plate width detecting device 3 and the detected value of the plate passing speed detected by the plate passing speed detecting device 2 are input to the calculator 9 having a changeable electric quantity setting function. Then, the current of the DC power supply device 7 is controlled so that the electrolytic current value supplied to the anode electrode plate 6a and the cathode electrode plate 6b is maintained at the calculated electrolytic current value according to the following equation.

【0012】L=(Q×W×P×100)/(P×60
/V) ここで L:電解電流値(A) Q:電気量(C/dm2=A・秒/dm2) W:通板材板幅(m) P:陰極電極長(m) V:通板材速度(m/分)
L = (Q × W × P × 100) / (P × 60
/ V) where L: electrolytic current value (A) Q: quantity of electricity (C / dm 2 = A · sec / dm 2 ) W: plate width (m) P: cathode electrode length (m) V: through Plate speed (m / min)

【0013】前記した式は、電流密度をD(A/dm2)は
電解電流値L(A)をステンレス鋼帯への陰極投影総面積
(dm2)で除したものであるから D=L/(10W×10P)=L/(W×P×100) で表され、ステンレス鋼帯が陰極を通過する電解時間T
(sec)は陰極電極長P(m)を通板速度(m/min)で除した
ものであるから T=P/(V/60) で表され、電気量Q(C/dm2)はD(A/dm2)と電解時間
T(sec)との積であるから Q=D×T で表されるから、これら3つの式から導出できるのであ
る。
In the above formula, the current density D (A / dm 2 ) is the electrolytic current value L (A) and is the total area of the cathode projection on the stainless steel strip.
Since it is divided by (dm 2 ), it is expressed by D = L / (10W × 10P) = L / (W × P × 100), and the electrolysis time T during which the stainless steel strip passes through the cathode T
Since (sec) is the cathode electrode length P (m) divided by the plate speed (m / min), it is expressed as T = P / (V / 60), and the quantity of electricity Q (C / dm 2 ) is Since it is a product of D (A / dm 2 ) and electrolysis time T (sec), it is expressed by Q = D × T, and can be derived from these three equations.

【0014】なお、電気量を115C/dm2に設定した
としても、仮に陽極電解時間1秒で電流密度115A/
dm2とする条件では、中性塩電解処理の脱スケール作用
は得難い。これは浴中での種々のイオンの電気泳動に関
係するからである。本発明者の調査では適正な中性塩電
解処理の脱スケール作用を得るためには、少なくとも陽
極電解時間は電流密度とは別に4秒は必要であることを
確認している。また、本発明方法の如く鋼帯を電解処理
するための目標電気量が一定となるように電解電流値を
自動的に調整する方法は他の電解酸洗方法である硫酸電
解や硝酸電解の電解電流値設定にも利用できるが、これ
らの電解酸洗方法では通常の高珪素鋳鉄に代表される溶
性電極を陽極電極として使用されることが多く、溶性電
極使用下では電極面積が徐々に減少して行くため電流密
度と電解時間とが変化して電気量の一定付与が難しいの
でその採用が難しい。この場合、不溶性電極を採用すれ
ば本発明方法と同様な方法の実施は可能であり、ステン
レス鋼帯の陰極部での浴中溶解金属の電析も抑えられる
と思われる。
Even if the quantity of electricity is set to 115 C / dm 2 , it is assumed that the current density is 115 A / in one second for the anode electrolysis time.
Under the condition of dm 2 , the descaling action of neutral salt electrolysis is difficult to obtain. This is because it relates to the electrophoresis of various ions in the bath. The investigation by the present inventor has confirmed that at least the anode electrolysis time needs to be 4 seconds in addition to the current density in order to obtain a proper descaling effect of the neutral salt electrolysis treatment. Further, as in the method of the present invention, a method of automatically adjusting the electrolytic current value so that the target amount of electricity for electrolytically treating a steel strip is constant is another electrolytic pickling method such as sulfuric acid electrolysis or nitric acid electrolysis. Although it can be used to set the current value, in these electrolytic pickling methods, the soluble electrode typified by ordinary high silicon cast iron is often used as the anode electrode, and the electrode area gradually decreases when the soluble electrode is used. Therefore, the current density and the electrolysis time change, and it is difficult to apply a constant amount of electricity, which is difficult to adopt. In this case, if the insoluble electrode is adopted, it is possible to carry out the same method as the method of the present invention, and it is considered that the electrodeposition of the dissolved metal in the bath at the cathode portion of the stainless steel strip can be suppressed.

【0015】[0015]

【実施例】実ラインで代表的な鋼種のステンレス鋼帯で
あるSUS410,SUS430及びSUS304を対
象に本発明方法を実施した結果を比較例と共に表2から
表4に示す。焼鈍条件(炉温,残存酸素濃度等)や通板
速度は通常条件と変えることなく、脱スケール処理は前
処理として中性塩電解処理のみを行い、最終処理は鋼種
SUS410及びSUS430については硝酸電解処理
とし、SUS304については硝弗酸浸漬処理を行っ
た。なお、本発明方法を実施するに際して最終処理とし
ての硝酸電解処理や硝弗酸浸漬処理の条件をその作用の
低下する方向に変更した。この表2〜4の結果から、本
発明方法の実施により脱スケール処理が容易となること
が判る。
[Examples] Tables 2 to 4 show the results of carrying out the method of the present invention on stainless steel strips SUS410, SUS430, and SUS304, which are typical steel grades in actual lines, together with comparative examples. Annealing conditions (furnace temperature, residual oxygen concentration, etc.) and strip running speed were not changed from normal conditions, descaling treatment was performed only by neutral salt electrolysis as pretreatment, and final treatment was nitric acid electrolysis for steel types SUS410 and SUS430. As the treatment, SUS304 was subjected to a nitric hydrofluoric acid immersion treatment. In carrying out the method of the present invention, the conditions of the nitric acid electrolysis treatment and the nitric hydrofluoric acid dipping treatment as the final treatment were changed so as to reduce the action thereof. From the results of Tables 2 to 4, it can be seen that the descaling treatment is facilitated by carrying out the method of the present invention.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【発明の効果】以上に詳述した如く、本発明に係るステ
ンレス鋼帯脱スケール用の中性塩電解処理方法及び装置
は、以下に列挙するような種々の効果を有しており、そ
の工業的価値は大きなものである。 (1)ステンレス鋼帯の陰極部での浴中溶解金属の電析
を回避してしかも中性塩電解処理本来の脱スケール作用
を付与できる設定電解電気量を維持するように、ステン
レス鋼帯の板幅と通板速度とに応じて電解電流値を自動
的に変えることが可能となったことから、特に電解時間
の長くなり易い板厚の厚いステンレス鋼帯に対して品質
の向上と電解電力コストの低減が容易に実施できるよう
になった。 (2)電解電流値の調整が自動化されたことから、その
調整に要する労力が軽減された。 (3)中性塩電解処理装置におけるステンレス鋼帯の陰
極部での浴中溶解金属の電析が少なくなったことから、
後続の硝弗酸処理による脱スケールが容易となり酸使用
量が低減した。これにより、製造コストの低減と廃酸処
理コストの低減が図られた。この廃酸発生量の低減は地
球環境上も好ましいものである。 (4)従来の中性塩電解処理装置に大掛かりな改造を行
うことなく容易に実施できた。
INDUSTRIAL APPLICABILITY As described above in detail, the method and apparatus for neutral salt electrolytic treatment for descaling of stainless steel strip according to the present invention have various effects as listed below. The target value is great. (1) In order to avoid the electrodeposition of molten metal in the bath at the cathode part of the stainless steel strip and to maintain the set amount of electrolytic electricity that can give the descaling action that is the original neutral salt electrolysis treatment, Since it is possible to automatically change the electrolysis current value according to the strip width and strip passing speed, it is possible to improve the quality and the electrolysis power especially for thick stainless steel strips, where electrolysis time tends to be long. The cost can be reduced easily. (2) Since the adjustment of the electrolytic current value is automated, the labor required for the adjustment is reduced. (3) Since the electrodeposition of the dissolved metal in the bath at the cathode part of the stainless steel strip in the neutral salt electrolytic treatment apparatus was reduced,
Subsequent descaling by nitric hydrofluoric acid treatment became easy and the amount of acid used was reduced. As a result, the manufacturing cost and the waste acid treatment cost were reduced. This reduction in the amount of waste acid generated is preferable in terms of the global environment. (4) It could be easily implemented without major modification to the conventional neutral salt electrolytic treatment apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るステンレス鋼帯脱スケール用の中
性塩電解処理装置の構成を説明する概略説明図である。
FIG. 1 is a schematic explanatory diagram illustrating the configuration of a neutral salt electrolytic treatment apparatus for descaling a stainless steel strip according to the present invention.

【符号の説明】[Explanation of symbols]

S ステンレス鋼帯 1 ブライドルロール 2 通板速度検出装置 3 板幅検出装置 4 中性塩電解槽 5 電解浴 6a 陰極電極板 6b 陽極電極板 7 直流電源装置 8 浸漬ロール 9 演算器 10 硝弗酸混酸槽又は硝酸電解槽 S Stainless steel strip 1 Bridle roll 2 Plate speed detection device 3 Plate width detection device 4 Neutral salt electrolysis tank 5 Electrolysis bath 6a Cathode electrode plate 6b Anode electrode plate 7 DC power supply device 8 Immersion roll 9 Computing unit 10 Nitrofluoric acid mixed acid Bath or nitric acid electrolysis bath

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼帯の脱スケールを行う中性
塩電解処理工程に通板されるステンレス鋼帯の板幅と通
板速度とをそれぞれ検出し、両検出値と該ステンレス鋼
帯を電解処理するための目標電気量とから電解電流値を
演算する演算器を使用して電解電流値を自動的に調整す
ることを特徴とするステンレス鋼帯脱スケール用の中性
塩電解処理方法。
1. A strip width and a strip speed of a stainless steel strip to be stripped in a neutral salt electrolytic treatment step for descaling a stainless steel strip are respectively detected, and both detected values and the stainless strip are electrolyzed. A neutral salt electrolytic treatment method for stainless steel strip descaling, which comprises automatically adjusting an electrolytic current value using a calculator that calculates an electrolytic current value from a target amount of electricity for processing.
【請求項2】 目標電気量を50〜115C/dm2とす
る請求項1に記載のステンレス鋼帯脱スケール用の中性
塩電解処理方法。
2. The neutral salt electrolytic treatment method for descaling a stainless steel strip according to claim 1, wherein the target amount of electricity is 50 to 115 C / dm 2 .
【請求項3】 焼鈍処理されたステンレス鋼帯(S)を中
性塩電解槽(4)の電解浴(5)内に導入し、中性塩電解槽
(4)内で陽極電極板(6a)及び陰極電極板(6b)により陰極
電解及び陽極電解の間接電解を順次施す中性塩電解処理
装置において、中性塩電解槽(4)への通板前にステンレ
ス鋼帯(S)の板幅を検出する板幅検出装置(3)とステン
レス鋼帯(S)の通板速度を検出する通板速度検出装置
(2)とが設けられており、この板幅検出装置(3)で検出
された板幅の検出値と通板速度検出装置(2)で検出され
た通板速度の検出値とが入力される設定変更可能な電気
量設定機能を有する演算器(9)により陽極電極板(6a)と
陰極電極板(6b)とに供給される電解電流値を下式により
演算された電解電流値に維持するように直流電源装置
(7)の電流が制御される構成であることを特徴とするス
テンレス鋼帯脱スケール用の中性塩電解処理装置。 L=(Q×W×P×100)/(P×60/V) ここで L:電解電流値(A) Q:電気量(C/dm2=A・秒/dm2) W:通板材板幅(m) P:陰極電極長(m) V:通板材速度(m/分)
3. The neutralized salt electrolytic cell is introduced by introducing the annealed stainless steel strip (S) into the electrolytic bath (5) of the neutral salt electrolytic cell (4).
In a neutral salt electrolysis treatment device for sequentially performing indirect electrolysis of cathode electrolysis and anodic electrolysis with an anode electrode plate (6a) and a cathode electrode plate (6b) in (4), before passing through the neutral salt electrolysis tank (4). A plate width detection device (3) for detecting the plate width of the stainless steel strip (S) and a plate passing speed detection device for detecting the plate passing speed of the stainless steel strip (S)
(2) is provided, and the detection value of the strip width detected by the strip width detection device (3) and the detection value of the strip passing speed detected by the strip passing speed detection device (2) are input. The electrolytic current value supplied to the anode electrode plate (6a) and the cathode electrode plate (6b) by the calculator (9) having the variable electric quantity setting function can be maintained at the electrolytic current value calculated by the following formula. DC power supply to
A neutral salt electrolytic treatment apparatus for descaling a stainless steel strip, which is characterized in that the current of (7) is controlled. L = (Q × W × P × 100) / (P × 60 / V) where L: electrolytic current value (A) Q: quantity of electricity (C / dm 2 = A · sec / dm 2 ) W: strip material Plate width (m) P: Cathode electrode length (m) V: Plate material speed (m / min)
JP4082996A 1992-03-06 1992-03-06 Neutral salt electrolyzer for descaling stainless steel strip Expired - Lifetime JP2989067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4082996A JP2989067B2 (en) 1992-03-06 1992-03-06 Neutral salt electrolyzer for descaling stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082996A JP2989067B2 (en) 1992-03-06 1992-03-06 Neutral salt electrolyzer for descaling stainless steel strip

Publications (2)

Publication Number Publication Date
JPH05247699A true JPH05247699A (en) 1993-09-24
JP2989067B2 JP2989067B2 (en) 1999-12-13

Family

ID=13789839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082996A Expired - Lifetime JP2989067B2 (en) 1992-03-06 1992-03-06 Neutral salt electrolyzer for descaling stainless steel strip

Country Status (1)

Country Link
JP (1) JP2989067B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020106353A1 (en) 2020-03-09 2021-09-09 Thyssenkrupp Steel Europe Ag Method for descaling a steel strip and plant for descaling a steel strip
CN117226671A (en) * 2023-10-13 2023-12-15 浙江晋椿精密工业股份有限公司 Polishing device and method for removing oxide skin of steel coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020106353A1 (en) 2020-03-09 2021-09-09 Thyssenkrupp Steel Europe Ag Method for descaling a steel strip and plant for descaling a steel strip
EP3879008A1 (en) * 2020-03-09 2021-09-15 ThyssenKrupp Steel Europe AG Method for descaling a steel strip and system for descaling a steel strip
CN117226671A (en) * 2023-10-13 2023-12-15 浙江晋椿精密工业股份有限公司 Polishing device and method for removing oxide skin of steel coil
CN117226671B (en) * 2023-10-13 2024-06-07 浙江晋椿精密工业股份有限公司 Polishing device and method for removing oxide skin of steel coil

Also Published As

Publication number Publication date
JP2989067B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
KR0173975B1 (en) Method of descaling stainless steel and apparatus for the same
US6398876B1 (en) Process for pickling steel
KR100650961B1 (en) Process for electrolytic pickling using nitric acid-free solutions
KR100337038B1 (en) Processing method of cold rolled stainless steel
CA2573988A1 (en) Method and device for pickling metals
EP1342818A2 (en) Method and apparatus for indirect-electrification-type continuous electrolytic etching of metal strip
JP2989067B2 (en) Neutral salt electrolyzer for descaling stainless steel strip
JPH0827600A (en) Descaling method and device for stainless steel strip
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
EP1358367B1 (en) Continuous electrolytic pickling and descaling of carbon steel and stainless steel
US4391685A (en) Process for electrolytically pickling steel strip material
JP3200235B2 (en) Steel surface treatment method and apparatus
JP2517353B2 (en) Descaling method for stainless steel strip
JPH05295600A (en) Continuous descaling method for stainless steel strip and its device
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPS59197596A (en) Phosphate treatment for steel plate
JP3873335B2 (en) Electrolytic descaling method for steel strip
JPH0735598B2 (en) Surface cleaning method for steel sheet
JPS6396300A (en) Method for pickling cold-rolled and annealed band stainless steel
JPH09316699A (en) Electrolytic pickling device for stainless steel strip and method for annealing and pickling stainless steel strip
JPH0445293A (en) Method for removing scale of titanium sheet
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip
JP2003027295A (en) Method for pickling stainless steel strip
JPH0196398A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JPH01172599A (en) Method for electrolytically descaling annealed band stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990928