JPH01172599A - Method for electrolytically descaling annealed band stainless steel - Google Patents

Method for electrolytically descaling annealed band stainless steel

Info

Publication number
JPH01172599A
JPH01172599A JP32747687A JP32747687A JPH01172599A JP H01172599 A JPH01172599 A JP H01172599A JP 32747687 A JP32747687 A JP 32747687A JP 32747687 A JP32747687 A JP 32747687A JP H01172599 A JPH01172599 A JP H01172599A
Authority
JP
Japan
Prior art keywords
current density
stainless steel
descaling
polarization curve
anode polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32747687A
Other languages
Japanese (ja)
Inventor
Hideko Yasuhara
英子 安原
Tatsuo Kawasaki
川崎 龍夫
Kanji I
井 莞爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32747687A priority Critical patent/JPH01172599A/en
Publication of JPH01172599A publication Critical patent/JPH01172599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To descale an annealed band stainless steel with high current efficiency by carrying out constant-current electrolysis at the current density fulfilling specified conditions. CONSTITUTION:When an annealed band stainless steel is electrolytically descaled, constant-current electrolysis is carried out (1) at the current density higher than the current density corresponding to 1.8V potential in the anode polarization curve and (2) at the current density exceeding the maximum current density of the active state only in the overpassive region, namely, on the anode polarization curve, and the stainless steel is descaled. For the purpose, the anode polarization curve is obtained in accordance with the kind, concn., composition, and temp. condition of the scale and electrolyte based on the kind of the band stainless steel or annealing condition, and the treating condition is determined. When descaling is carried out, the conditions of the various electrolytes are appropriately changed and combined with the kind of steel, the various electrolyte conditions and current density are predetermined by model tests, the operating conditions are selected from the data, and electrolytic descaling is carried out.

Description

【発明の詳細な説明】 r産業上の利用分野】 本発明は、ステンレス焼鈍鋼帯の電解脱スケール方法に
係り、特にステンレス鋼帯の焼鈍後の表面スケールを、
短時間に極めて効果的に電解脱スケールする方法に関し
、ステンレス鋼帯の製造分野で利用される。
[Detailed description of the invention] r Industrial application field] The present invention relates to a method for electrolytic descaling of stainless steel annealed steel strip, and in particular, the method for electrolytic descaling of stainless steel strip after annealing.
This invention relates to a method of electrolytic descaling that is very effective in a short period of time and is used in the field of manufacturing stainless steel strips.

〔従来の技術1 従来、焼鈍後のステンレス鋼帯の脱スケール方法として
は、ソルト浸漬後、各種酸に浸漬する方法が採られてい
る。この方法によれば、高温のソルト(一般にはNaO
HとNaNO3の溶融塩)を用い、その後に硫酸中で電
解を行ったり、硝弗酸中に浸漬し、最終的に硝酸中で浸
漬または電解処理がなされている。このような複雑な方
法では脱スケール工程のラインスピードを上げて生産能
率を高めることが極めて困難である。
[Prior Art 1] Conventionally, as a method for descaling a stainless steel strip after annealing, a method has been adopted in which the stainless steel strip is immersed in salt and then immersed in various acids. According to this method, a hot salt (generally NaO
(molten salt of H and NaNO3), followed by electrolysis in sulfuric acid, immersion in nitric-fluoric acid, and finally immersion or electrolytic treatment in nitric acid. With such a complicated method, it is extremely difficult to increase the line speed of the descaling process and increase production efficiency.

電解脱スケール方法として、特開昭59−59900、
特公昭38−12162等が知られているが、これらは
電解のみで完全に脱スケールするには長時間を要し、む
しろ電解はその後行われる酸浸漬の補助手段として、す
なわち、ソルトバスの代替を果たしているのみである。
As an electrolytic descaling method, JP-A-59-59900,
Japanese Patent Publication No. 38-12162 is known, but it takes a long time to completely descale with electrolysis alone, and rather, electrolysis is used as an auxiliary means for the subsequent acid immersion, that is, as an alternative to a salt bath. It is only fulfilling this purpose.

定電流電解法による脱スケール法として、例えば特公昭
55−9079等が知られている。この方法ではスレン
レス鋼の酸洗速度が素地鋼の溶解速度によって決定され
るとし、鋼の活性溶解あるいは不働態領域の電位におい
てのみアノード分極曲線と一点のみで交差するような溶
液中で電解処理を行うものである。この方法では完全脱
スケールに要する電気量が10クローン以上を必要とし
、500mA/crn’の電流密度に対して20秒以上
の時間がかかり、ステンレス鋼板の生産能率を高めるの
に役立たない。また、ステンレス本来の光沢ある表面を
得ることが困難で実用的ではない。
As a descaling method using a constant current electrolysis method, for example, Japanese Patent Publication No. 55-9079 is known. In this method, the pickling rate of stainless steel is determined by the dissolution rate of the base steel, and electrolytic treatment is performed in a solution that intersects the anode polarization curve at only one point only at the potential in the active dissolution or passive region of the steel. It is something to do. This method requires more than 10 clones of electricity for complete descaling, takes more than 20 seconds at a current density of 500 mA/crn', and is not useful for increasing the production efficiency of stainless steel sheets. Furthermore, it is difficult to obtain the glossy surface inherent to stainless steel, making it impractical.

[発明が解決しようとする問題点] 脱スケール性を保持しつつ、ライン速度を上げるには、
上記のごとく溶融アルカリ塩および各種の酸への浸漬時
間、電解時間を確保するため、各種浸漬槽電解槽を長大
化する必要がある。それには多額の設備投資と、それを
設置するための広大な屋内スペースが必要である。従っ
て現実には低い通板速度で対処されていた。
[Problems to be solved by the invention] In order to increase the line speed while maintaining descaling performance,
As mentioned above, in order to secure the immersion time in the molten alkali salt and various acids and the electrolysis time, it is necessary to increase the length of the various immersion tanks and electrolytic cells. This requires a large amount of capital investment and a large indoor space to install it. Therefore, in reality, a low threading speed has been used.

また多種類の塩類や酸類を用いるため、その濃度管理等
も負荷の大きいものである。
Furthermore, since many types of salts and acids are used, controlling their concentrations is a heavy burden.

このように、ステンレス焼鈍鋼帯の脱スケールは、従来
、いずれの方法によっても完全でなく問題があった。
As described above, descaling of stainless annealed steel strips has conventionally been incomplete and problematic by any method.

本発明の目的は、このような事情に鑑み、ステンレス焼
鈍鋼帯の脱スケールにおける上記従来技術の問題点、す
なわち、 ■ 生産性が低い。
In view of these circumstances, the object of the present invention is to address the problems of the prior art described above in descaling stainless annealed steel strips, namely: (1) Low productivity.

■ 工程管理が繁雑である。■ Process management is complicated.

■ 肌荒れを起こし易い。■ Easy to cause skin irritation.

■ 良好な表面状態が得にくい。■ It is difficult to obtain a good surface condition.

■ 大きな電気量を必要とする。■ Requires a large amount of electricity.

等を解消して脱スケールを極めて効果的に行う方法を提
案しようとするものである。
The purpose of this paper is to propose a method for extremely effective descaling by eliminating the above problems.

〔問題点を解決するための手段1 本発明はこのような問題点を解決するために。[Means to solve the problem 1 The present invention aims to solve these problems.

ステンレス焼鈍鋼帯を電解脱スケールする際、(1)ア
ノード分極曲線における電位1.8V(飽和カロメル電
極基準、以下VS、SCEと表わす)に相当する電流密
度以上の電流密度、(2)かつ過不働態域でのみ、すな
わちアノード分極曲線上の活性態の最高電流密度を越え
る電流密度 の2条件を満足する電流密度で定電流電解を行い、脱ス
ケールを行う。
When electrolytically descaling a stainless annealed steel strip, (1) a current density higher than the current density corresponding to a potential of 1.8 V in the anode polarization curve (saturated calomel electrode standard, hereinafter referred to as VS, SCE), (2) and Descaling is carried out by performing constant current electrolysis only in the passive state region, that is, at a current density that satisfies two conditions: a current density that exceeds the highest current density of the active state on the anode polarization curve.

〔作用1 表面に酸化スケールのついたステンレス鋼のアノード分
極特性の例を第1図に示した。前述したように従来は、
一般に第1図中の活性態あるいは不働態といわれる領域
において脱スケールを行っており、この場合ステンレス
鋼素地を溶解するので、ステンレス本来の光沢のある表
面が得られない。
[Effect 1 Figure 1 shows an example of the anode polarization characteristics of stainless steel with oxide scale on its surface. As mentioned above, conventionally,
Generally, descaling is performed in the region called the active state or passive state in FIG. 1, and in this case, the stainless steel substrate is dissolved, so the shiny surface inherent to stainless steel cannot be obtained.

そこで本発明者らはステンレス鋼の電解脱スケール機構
に関して、電気化学的に詳細に検討した結果、ステンレ
ス鋼素地を溶解することなく、スケールのみを迅速に電
解除去するためには第1図に示す過不働態領域であって
、かつアノード分極曲線i、= g ケル電位1.8V
 (VS、5CE)4.1m対応する電流密度以上の電
流密度を用いることが極めて好ましい結果を得ると言う
画期的な知見を得、本発明を完成するに至った。
Therefore, the present inventors conducted a detailed electrochemical study on the electrolytic descaling mechanism of stainless steel, and found that the mechanism shown in Fig. 1 is necessary for rapid electrolytic removal of scale without dissolving the stainless steel base. Hyperpassive region and anode polarization curve i, = g Kel potential 1.8V
(VS, 5CE) The present invention was completed based on the breakthrough finding that extremely favorable results can be obtained by using a current density higher than that corresponding to 4.1 m.

従来、過不働態領域で電解を行うとガスが発生し電流効
率が低くなるので不可であるとするのが常識であった。
Conventionally, it has been common knowledge that electrolysis cannot be performed in the overpassive region because gas is generated and the current efficiency is lowered.

しかし、過不働態領域であって、かつアノード分極曲線
における電位1.8V(VS、5CE)に対応する電流
密度以上の条件で脱スケールを行うと、短時間で表面性
状が良好なステンレス鋼が得られる。
However, if descaling is carried out in the overpassive region and at a current density higher than that corresponding to a potential of 1.8V (VS, 5CE) in the anode polarization curve, stainless steel with good surface quality can be produced in a short time. can get.

ここで、電解脱スケール条件として、単に電流密度の値
を指定するのみでは、鋼種および電解質の組合せにより
過不働態域での電位と電流密度の関係が異なるため不可
である。
Here, simply specifying the value of current density as the electrolytic descaling condition is not possible because the relationship between potential and current density in the overpassive region differs depending on the combination of steel type and electrolyte.

電流密度を1.8V (VS、5CE) に対応する電
流密度以上としたのは、反応電位が1.8V以上の領域
においてスケール(酸化鉄、酸化クロム)が優先的に電
解されて3価の鉄イオンおよび6価のクロムイオンとな
り、ステンレス鋼素地の電解が進行しないことによる。
The reason why the current density was set higher than the current density corresponding to 1.8V (VS, 5CE) is that in the region where the reaction potential is 1.8V or higher, scale (iron oxide, chromium oxide) is preferentially electrolyzed and trivalent This is because iron ions and hexavalent chromium ions are formed, and electrolysis of the stainless steel base does not proceed.

反応電位が1.8V(VS、5CE)より低いと、スケ
ールの電解は十分に起こらず、短時間での脱スケールが
できないばかりでなく、たとえ長時間をかけて脱スヶ一
ルしたとしてもステンレス鋼素地の電解が進むため肌荒
れが起こり、ステンレス鋼としての価値が低下してしま
う。
If the reaction potential is lower than 1.8V (VS, 5CE), electrolysis of the scale will not occur sufficiently, and not only will it be impossible to descale in a short time, but even if it takes a long time to descale. As electrolysis progresses on the stainless steel base, the surface becomes rough, reducing its value as a stainless steel.

以下にこのことを図を用いて詳しく説明する。This will be explained in detail below using figures.

鋼と種々の電解質との組み合わせ条件において第2図、
第3図に示すようなそれぞれのアノード分極曲線が得ら
れる。例えば第2図においては、1.8V (VS、5
CE) に相当する電流密度はアノード分極曲線とA点
でのみ交差するが、第3図ニオイテハ、1.8V (V
S、5CE)に相当する電流密度はアノード分極曲線と
点1、点2、点3の3点で交差する。点1、点2は活性
態領域での溶解に当り、点3の過不働態領域での溶解と
は異なる。従って、このような場合においては過不働態
領域でのみアノード分極曲線と交差するB点の電流密度
以上の電流密度で脱スケールを行う必要がある。
Figure 2 under the combination conditions of steel and various electrolytes.
Each anode polarization curve as shown in FIG. 3 is obtained. For example, in Figure 2, 1.8V (VS, 5
The current density corresponding to CE) intersects the anode polarization curve only at point A;
The current density corresponding to S, 5CE) intersects the anode polarization curve at three points: point 1, point 2, and point 3. Points 1 and 2 correspond to dissolution in the active region, and are different from point 3, which is dissolution in the hyperpassive region. Therefore, in such a case, it is necessary to perform descaling at a current density higher than the current density at point B, which intersects the anode polarization curve only in the overpassive region.

このように本発明では、脱スケールを行うステンレス鋼
帯の鋼種あるいは焼鈍条件に基づくスケールおよび電解
質の種類、濃度組成や温度条件に応じてアノード分極曲
線を求めて処理条件を決定する。この場合、能率を高め
るためには電流密度は高いほうが良いことから、できれ
ば100m A / c rri″以上での条件とする
ことが望ましい。
As described above, in the present invention, the treatment conditions are determined by determining the anode polarization curve in accordance with the steel type of the stainless steel strip to be descaled, the type of scale and electrolyte based on the annealing conditions, the concentration composition, and the temperature conditions. In this case, since it is better to have a higher current density in order to increase efficiency, it is desirable to set the current density to 100 mA/c rri'' or more if possible.

以上の実施のために、種々の電解質の条件を適宜変更し
て鋼種と組合せ、モデル実験により予め種々の電解質条
件および電流密度を決定しておき、これ等から選択して
実工程にて操業し、電解脱スケールを行うのが実際的で
ある。
In order to implement the above, various electrolyte conditions and current densities are determined in advance through model experiments by changing the various electrolyte conditions as appropriate and combining them with the steel type, and then selecting from these and operating in the actual process. , it is practical to perform electrolytic descaling.

なお本発明の電解液としては酸溶液のばか従来の硫酸ナ
トリウム、硝酸ナトリウム等の中性塩溶液を用いても、
本発明により同様の電解脱スケールを行うことが可能で
ある。
Note that even if the electrolyte of the present invention is an acid solution or a conventional neutral salt solution such as sodium sulfate or sodium nitrate,
Similar electrolytic descaling can be performed according to the present invention.

〔実施例1 以下、実施例に基づいて本発明を説明する。[Example 1 Hereinafter, the present invention will be explained based on Examples.

供試材料としては、5UH409および5US304で
、連続焼鈍設備(CAL)を通板した鋼帯、および5U
S430の冷延板(1,2mm厚)を通常のAPライン
を通板(ただし、PICラインはバイパス)したものを
採取して用いた。これらの供試材の焼鈍条件および生成
したスケールの状態を第1表に示す。
The test materials were steel strips passed through continuous annealing equipment (CAL) with 5UH409 and 5US304, and 5U
A cold-rolled S430 plate (1.2 mm thick) passed through a normal AP line (however, the PIC line was bypassed) was sampled and used. Table 1 shows the annealing conditions for these test materials and the state of the scale produced.

これらの連続焼鈍した供試材をモデル電解槽において電
解脱スケールを行った。すなわち、第2表、第3表、第
4表に、それぞれ示す電解液組成、電解液温度、電流密
度および電解時間でそれぞれ5US430.5UH40
9,5US304の電解脱スケールを行い、脱スケール
の判定結果を示した。
These continuously annealed test materials were subjected to electrolytic descaling in a model electrolytic cell. That is, the electrolyte composition, electrolyte temperature, current density, and electrolysis time shown in Tables 2, 3, and 4 are 5US430.5UH40, respectively.
Electrolytic descaling of No. 9,5 US304 was performed, and the results of descaling were shown.

第4図は第2表に対応する5US430のアノード分極
曲線、第5図、第6図は第3表に対応する5UH409
のアノード分極曲線、第7図は第4表に対応する5US
304のアノード分極曲線であって、第2表〜第4表中
のNoと、第5図〜第7図中に記入されている数字とは
条件を対応させて記載しである。ここでNo、 7、N
o、 l 9、No、 20に示した電解液組成、電解
液温度、電流密度および電解時間は従来の電解脱スケー
ル条件に相当する例である。
Figure 4 shows the anode polarization curve of 5US430 corresponding to Table 2, Figures 5 and 6 show the anode polarization curve of 5UH409 corresponding to Table 3.
The anode polarization curve of Figure 7 is 5US corresponding to Table 4.
In the anode polarization curve of No. 304, the No. in Tables 2 to 4 and the numbers written in FIGS. 5 to 7 are written in correspondence with the conditions. Here No, 7, N
The electrolyte composition, electrolyte temperature, current density, and electrolysis time shown in No. 9, No. 20 are examples corresponding to conventional electrolytic descaling conditions.

この条件は、アノード分極曲線上の活性態域でのみ交差
する一定電流を用いて、活性溶解のみによる電解反応に
よって、脱スケールを行なったものである。
Under these conditions, descaling was carried out by an electrolytic reaction based only on active dissolution using a constant current that crossed only in the active region on the anode polarization curve.

脱スケール判定結果は次に示す基準によって、完全に脱
スケールした代表サンプルと対比して目視判定によって
実施した。
The descaling determination results were determined by visual judgment in comparison with a representative sample that had been completely descaled according to the following criteria.

Xニスケール残り △:微微少スケ−ルウ ○:完全に脱スケール 0:完全に脱スケール(光沢良好) 実施例No、 5、No、 13に基づきライン速度2
0mpmの実工程において、整流器を用いて板厚0、8
 m m、板幅1000mmのステンレス鋼板を電解脱
スケールしたところ、モデル実験と同様に短時間で表面
性状の良好なステンレス鋼を得ることができた。
X Ni scale remaining △: Slight scale ○: Completely descaled 0: Completely descaled (good gloss) Line speed 2 based on Examples No. 5, No. 13
In the actual process of 0mpm, the plate thickness is 0, 8 using a rectifier.
When a stainless steel plate with a width of 1000 mm and a width of 1000 mm was subjected to electrolytic descaling, stainless steel with good surface quality could be obtained in a short time as in the model experiment.

なお、この場合の電圧を測定したところ、9■となった
。これは電極と叛との間が大きいため、モデル実験より
液抵抗が大きいこと、及びコイルの発熱等によるもので
ある。
In addition, when the voltage in this case was measured, it was 9■. This is due to the fact that the distance between the electrode and the insulator is large, so the liquid resistance is higher than in the model experiment, and the coil generates heat.

〔発明の効果〕〔Effect of the invention〕

本発明方法は、過不働態領域であって、かつアノード分
極曲線における電位1.8V (VS、5CE)に対応
する電流密度以上の条件で脱スケールを行う、このため
には、例えば、同一電解質条件であっても温度条件を適
正化することにより、あるいは同一電解条件であっても
電解液温度、濃度、組成の若干の変更することにより高
能率の一定電流電解を行うことができ、これにより高い
電流効率で脱スケールすることが可能となった。
In the method of the present invention, descaling is carried out under conditions that are in the hyperpassive region and at a current density higher than the current density corresponding to a potential of 1.8 V (VS, 5CE) in the anode polarization curve. Highly efficient constant current electrolysis can be performed by optimizing the temperature conditions, or by slightly changing the electrolyte temperature, concentration, and composition even under the same electrolytic conditions. It became possible to descale with high current efficiency.

本発明によれば、電解のみで完全に脱スケールすること
ができるが、発明の主旨からして従来のような、酸洗法
との併用によっても行い得ることは明らかである。
According to the present invention, complete descaling can be carried out by electrolysis alone, but it is clear from the gist of the invention that it can also be carried out in combination with a conventional pickling method.

本発明による電解脱スケール法はステンレス鋼の全ての
鋼種に適用することができ、上記のように極めて少ない
電気量で高能率の脱スケールができるばかりでなく、ス
テンレス鋼の美麗な表面をいささかも減殺することがな
いと言う優れた効果を奏する。
The electrolytic descaling method according to the present invention can be applied to all types of stainless steel, and not only can highly efficient descaling be performed with an extremely small amount of electricity as described above, but it can also be applied to all types of stainless steel. It has an excellent effect of not causing any loss of life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するアノード分極曲線の例
を示す模式図、第2図、第3図は異なる形のアノード分
極曲線の例を示す模式図、第4図〜第7図はそれぞれ各
種ステンレス焼鈍鋼の各種電解質に対するアノード分極
曲線である。
FIG. 1 is a schematic diagram showing an example of an anode polarization curve to explain the present invention in detail, FIGS. 2 and 3 are schematic diagrams showing examples of different types of anode polarization curve, and FIGS. These are anode polarization curves for various electrolytes of various stainless annealed steels.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス焼鈍鋼帯を電解脱スケールするに当り、
該ステンレス鋼種及び電解質の条件によって定まるアノ
ード分極曲線を求め、該アノード分極曲線上の活性態の
最高電流密度を越え、かつ電位1.8V(飽和カロメル
電極基準)に対応する電流密度以上の一定電流を用いて
過不働態域で電解を行うことを特徴とするステンレス焼
鈍鋼帯の電解脱スケール方法。
1 When electrolytically descaling stainless steel annealed steel strip,
Determine the anode polarization curve determined by the stainless steel type and electrolyte conditions, and find a constant current that exceeds the highest current density of the active state on the anode polarization curve and is equal to or higher than the current density corresponding to a potential of 1.8 V (saturated calomel electrode reference). A method for electrolytic descaling of stainless annealed steel strip, characterized by carrying out electrolysis in a superpassive region using .
JP32747687A 1987-12-25 1987-12-25 Method for electrolytically descaling annealed band stainless steel Pending JPH01172599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32747687A JPH01172599A (en) 1987-12-25 1987-12-25 Method for electrolytically descaling annealed band stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32747687A JPH01172599A (en) 1987-12-25 1987-12-25 Method for electrolytically descaling annealed band stainless steel

Publications (1)

Publication Number Publication Date
JPH01172599A true JPH01172599A (en) 1989-07-07

Family

ID=18199582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32747687A Pending JPH01172599A (en) 1987-12-25 1987-12-25 Method for electrolytically descaling annealed band stainless steel

Country Status (1)

Country Link
JP (1) JPH01172599A (en)

Similar Documents

Publication Publication Date Title
KR0173975B1 (en) Method of descaling stainless steel and apparatus for the same
KR100650961B1 (en) Process for electrolytic pickling using nitric acid-free solutions
US2197653A (en) Method of electrically pickling and cleaning stainless steel and other metals
US6391187B1 (en) Method for treating a metal product
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
US4711707A (en) Method for removal of scale from hot rolled steel
JP2721053B2 (en) Pickling method for high-grade steel
JPH01172599A (en) Method for electrolytically descaling annealed band stainless steel
EP1358367A1 (en) Continuous electrolytic pickling and descaling of carbon steel and stainless
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JPH0548317B2 (en)
JPS6160920B2 (en)
JPH01162786A (en) Method for pickling high strength austenitic stainless steel
US3450610A (en) Process for removing an oxide layer from the surface of hardened strip steel by an electrolytical method
JP4132973B2 (en) Manufacturing method of stainless steel plate with smooth surface
JPH05247700A (en) Electrolytic descaling method for stainless annealed steel strip
JPH0534439B2 (en)
JPH0241599B2 (en)
JP2585444B2 (en) Method and apparatus for descaling stainless steel strip
JPH0534438B2 (en)
JPH03207899A (en) Electrolytic descaling method for annealed stainless steel strip
JP2640565B2 (en) Continuous production equipment for stainless steel sheets
JPH0711080B2 (en) High-speed electrolytic melting method for steel metal
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate
JPS6386899A (en) Method for electrolytically pickling cold rolled and annealed stainless steel strip