JPH05242540A - Magneto-optical memory element - Google Patents

Magneto-optical memory element

Info

Publication number
JPH05242540A
JPH05242540A JP29426692A JP29426692A JPH05242540A JP H05242540 A JPH05242540 A JP H05242540A JP 29426692 A JP29426692 A JP 29426692A JP 29426692 A JP29426692 A JP 29426692A JP H05242540 A JPH05242540 A JP H05242540A
Authority
JP
Japan
Prior art keywords
film
magneto
magnetic
rare earth
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29426692A
Other languages
Japanese (ja)
Other versions
JP2609407B2 (en
Inventor
Kenji Ota
賢司 太田
Junji Hirokane
順司 広兼
Hiroyuki Katayama
博之 片山
Akira Takahashi
明 高橋
Hideyoshi Yamaoka
秀嘉 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4294266A priority Critical patent/JP2609407B2/en
Publication of JPH05242540A publication Critical patent/JPH05242540A/en
Application granted granted Critical
Publication of JP2609407B2 publication Critical patent/JP2609407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the magneto-optical memory element having the structure which can increase a Kerr rotating angle and can prevent the deterioration of films constituting the element. CONSTITUTION:A dielectric film 2 consisting of TiO2, a magnetic material film 3 consisting of GdTbFe, a dielectric film 4 consisting of TiO2 and a reflection film 5 are formed on a glass substrate 1. Further, a dielectric film 6 consisting of TiO2 is formed for the purpose of protecting the reflection film 5, by that, the magneto-optical memory element is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光等の熱エネル
ギーで情報を記録あるいは消去し光と磁気の相互作用を
利用して情報を再生する磁気光学記憶素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical storage element for recording or erasing information with heat energy such as laser light and reproducing the information by utilizing the interaction between light and magnetism.

【0002】[0002]

【従来の技術】近年、高密度,大容量,高速アクセスを
狙いとした光メモリ装置の研究開発が精力的に行われて
いる。中でも、情報の消去が可能な光磁気メモリ装置は
文字・画像等のファイルメモリや書き換え可能なビデオ
ディスク等の応用が考えられ光メモリ装置の中でもとり
わけ有望視されているものである。
2. Description of the Related Art In recent years, research and development of optical memory devices aiming at high-density, large-capacity and high-speed access have been vigorously carried out. Among them, a magneto-optical memory device capable of erasing information is considered to be particularly promising among optical memory devices because it can be applied to a file memory for characters and images and a rewritable video disk.

【0003】光磁気メモリ用材料としては1960年代
から1970年代にかけMnBiを中心とする多結晶性
薄膜が検討されたが材料の作成が困難な事、記録エネル
ギーが多くいる事、結晶粒界によるノイズが無視できな
い事等により、現在はGdTbFe,TbDyFe,G
dCo等、希土類と遷移金属の合金薄膜が材料検討の中
心となっている。これらの材料はアモルファスであるた
め、記録に利用するレーザパワーに応じた記録スレッシ
ョルドを有する膜を作ることが可能であること、粒界ノ
イズがないため再生信号の品質が良いこと等の利点があ
る。
As a material for a magneto-optical memory, a polycrystalline thin film centering on MnBi was studied from the 1960s to the 1970s, but it was difficult to prepare the material, the recording energy was large, and the noise due to the crystal grain boundary was found. GdTbFe, TbDyFe, G
Alloy thin films of rare earths and transition metals, such as dCo, are the focus of material studies. Since these materials are amorphous, there are advantages that it is possible to form a film having a recording threshold according to the laser power used for recording, and that the quality of the reproduced signal is good because there is no grain boundary noise. .

【0004】[0004]

【発明が解決しょうとする課題】しかし、この種の希土
類と遷移金属の合金薄膜は希土類が酸化しやすく最初所
定の組成比を有する膜を作っても時間と伴に希土類の酸
化が進み遷移金属リッチの組成に移り、極端な場合は高
密度メモリに必要な垂直異方性がなくなり、又そうでな
い場合でも保磁力の変化により記録特性が変化する等酸
化の点で問題がある。
However, in this type of alloy thin film of a rare earth and a transition metal, the rare earth is easily oxidized, and even if a film having a predetermined composition ratio is first formed, the oxidation of the rare earth progresses with time and the transition metal. When the composition shifts to a rich composition, the vertical anisotropy required for high-density memory disappears in an extreme case, and even if it does not exist, there is a problem in that the recording characteristics change due to a change in coercive force, such as oxidation.

【0005】また、カー回転角が小さく、信号の再生が
困難であるという問題がある。
Further, there is a problem that the Kerr rotation angle is small and it is difficult to reproduce a signal.

【0006】そこで、本発明は上述の問題点に鑑みてな
されたものであって、希土類と遷移金属の合金薄膜で構
成される磁性体膜の酸化を防止することができると共
に、カー回転角を増大することのできる構成を備えた磁
気光学記憶素子を提供することを目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems, and it is possible to prevent the oxidation of a magnetic film formed of an alloy thin film of a rare earth and a transition metal, and to reduce the Kerr rotation angle. An object of the present invention is to provide a magneto-optical storage element having a structure that can be increased.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め、本発明は透明基板と、希土類と遷移金属の合金から
なる膜面に垂直な方向に磁気異方性を有する記録媒体と
しての磁性体膜と、反射膜と、誘電体膜とがこの順で形
成されていることを特徴とする磁気光学記憶素子であ
る。
In order to achieve the above object, the present invention provides a magnetic material as a transparent substrate and a recording medium having magnetic anisotropy in a direction perpendicular to a film surface made of an alloy of a rare earth and a transition metal. The magneto-optical storage element is characterized in that a body film, a reflective film, and a dielectric film are formed in this order.

【0008】また、前記誘電体膜の膜厚は50nm以上
であることが好ましい。
The thickness of the dielectric film is preferably 50 nm or more.

【0009】[0009]

【作用】反射膜と誘電体膜とを有しているので、カー回
転角の増加とともに、反射膜の劣化を防止することがで
きる。
Since it has the reflection film and the dielectric film, it is possible to prevent the deterioration of the reflection film as the Kerr rotation angle increases.

【0010】[0010]

【実施例】以下、本発明の具体的な実施例を図面を参照
しながら詳説する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は本発明の磁気光学記憶素子の一実施
例の一部側面断面図である。図中1はソーダライム石英
等のガラス板であり、該ガラス板1には巾0.5〜1.
5μm,ピッチ1.0〜3.0μm,深さ40〜90n
mの案内溝が形成されている。この案内溝は記録・消去
時に光ビームを所定位置に案内する為に必要なものであ
る。
FIG. 1 is a partial side sectional view of an embodiment of the magneto-optical storage element of the present invention. In the figure, 1 is a glass plate such as soda lime quartz, and the glass plate 1 has a width of 0.5-1.
5 μm, pitch 1.0 to 3.0 μm, depth 40 to 90 n
m guide grooves are formed. This guide groove is necessary for guiding the light beam to a predetermined position during recording / erasing.

【0012】2はTiO2 の誘電体膜である。該誘電体
膜2は屈折率が2,4で上記ガラス板1の屈折率より大
きい。該誘電体膜2はカー回転角を増大する為に設けら
れるものである。3はGdTbFe磁性体膜であり希土
類と遷移金属の合金からなる膜面に垂直な方向に磁気異
方性を有する磁性体膜である。
Reference numeral 2 is a dielectric film of TiO 2 . The dielectric film 2 has a refractive index of 2, 4 and is larger than that of the glass plate 1. The dielectric film 2 is provided to increase the Kerr rotation angle. Reference numeral 3 denotes a GdTbFe magnetic film, which is a magnetic film made of an alloy of a rare earth and a transition metal and having magnetic anisotropy in a direction perpendicular to the film surface.

【0013】4はTiO2 の誘電体膜である。該誘電体
膜4はカー回転角を増大するため、及び上記磁性体膜3
と後述する反射膜5の間の断熱、及び上記磁性体膜3と
後述する反射膜5の間の原子,電子の移動を防ぐ為等に
設けられるものである。
Reference numeral 4 is a dielectric film of TiO 2 . The dielectric film 4 increases the Kerr rotation angle, and the magnetic film 3 is used.
Is provided for the purpose of heat insulation between the reflection film 5 and the reflection film 5 to be described later, and to prevent the movement of atoms and electrons between the magnetic film 3 and the reflection film 5 to be described later.

【0014】5はGdTbFe磁性体膜であり希土類と
遷移金属の合金からなる磁性体(即ち上記磁性体膜3と
同一材質)から構成される反射膜である。この反射膜5
はカー回転角を増大させる作用(例えば特願昭55−8
5695を参照)と上記磁性体膜3の酸化を防ぐ作用と
を合わせ持つ。即ちこの反射膜5の成分であるGd,T
bの希土類金属は極めて酸化されやすいので外部から侵
入した酸素が上記磁性体膜3に達する前に反射膜5が先
に酸化され、よって磁性体膜3に達する酸素の量を極力
減少せしめるものである。6は上記反射膜5の保護のた
めのTiO2 の誘電体膜である。
Reference numeral 5 denotes a GdTbFe magnetic substance film, which is a reflection film made of a magnetic substance made of an alloy of rare earth and a transition metal (that is, the same material as the magnetic substance film 3). This reflective film 5
Has the effect of increasing the car rotation angle (for example, Japanese Patent Application No. 55-8).
(See 5695) and the function of preventing the magnetic film 3 from being oxidized. That is, Gd, T which are the components of the reflective film 5
Since the rare earth metal of b is very easily oxidized, the reflection film 5 is first oxidized before the oxygen invading from the outside reaches the magnetic film 3, and thus the amount of oxygen reaching the magnetic film 3 can be reduced as much as possible. is there. Reference numeral 6 is a dielectric film of TiO 2 for protecting the reflection film 5.

【0015】次に上述した磁気光学記憶素子の一実施例
の製法について説明する。上記ガラス板1は円板形状で
厚さは0.5〜2mm程度であり、このガラス板1にレ
ジスト膜を塗布し、該塗布状態にてガラス板1を回転さ
せながらArレーザ,HeCdレーザ等のレーザを用い
てレジスト膜に所定の巾の案内溝を潜像として記録レジ
スト膜を現像後CCl4,CF4+H2 等のガスによりド
ライエッチングする事により上記所定形状の案内溝をガ
ラス板1に形成する。
Next, a manufacturing method of one embodiment of the above-mentioned magneto-optical storage element will be described. The glass plate 1 has a disk shape and a thickness of about 0.5 to 2 mm. A resist film is applied to the glass plate 1 and an Ar laser, a HeCd laser or the like is applied while rotating the glass plate 1 in the applied state. Of the glass plate 1 by using the laser of FIG. 3 as a latent image with a guide groove having a predetermined width in the resist film and developing the recording resist film by dry etching with a gas such as CCl 4 , CF 4 + H 2 or the like. To form.

【0016】以上の案内溝形成方法によれば案内溝形成
後に基板を構成するものはガラス板のみであるので湿気
等に対して強い。以上の案内溝形成方法以外に基板の材
質をPMMAやポリカーボネート等の樹脂材料とし射出
成形や圧縮成形によって案内溝を形成する方法、あるい
はガラスやPMMA樹脂の基板上に紫外線硬化樹脂を用
いて案内溝を形成する方法(2P法)があるがこれらの
形成方法はいずれも樹脂材料を仲立ちとしている為、そ
の樹脂材料の透湿性あるいは吸湿性あるいは酸素透過性
により樹脂材料を通じて酸素が侵入し記録媒体である希
土類・遷移金属合金薄膜が酸化されることによって特性
劣化する現象があった。
According to the above guide groove forming method, since only the glass plate constitutes the substrate after forming the guide groove, it is resistant to moisture and the like. In addition to the above guide groove forming method, a method for forming a guide groove by injection molding or compression molding using a resin material such as PMMA or polycarbonate for the substrate, or a guide groove using an ultraviolet curable resin on a glass or PMMA resin substrate Although there is a method (2P method) of forming a recording medium, all of these forming methods use a resin material as an intermediary. Therefore, oxygen penetrates through the resin material due to the moisture permeability, the hygroscopicity, or the oxygen permeability of the resin material. There was a phenomenon that characteristics were deteriorated by oxidation of a rare earth / transition metal alloy thin film.

【0017】次に上記案内溝を形成したガラス板1上に
上述したTiO22,GdTbFe3,FiO24,Gd
TbF5,TiO26を順に被覆する。これらの各膜の
被覆形成は蒸着,スパッタリング,イオンプレーチィン
グ等の手段によって行い得るが、GdTbFe3は膜面
に垂直な方向に磁気異方性を有することが必要であり、
このGdTbFe希土類・遷移金属合金膜に垂直磁気異
方性を持たせる容易さ、及び膜形成の再現象性、均一性
の得やすさから高周波スパッタリングにて上記各膜の形
成を行なうのが良い。
Next, on the glass plate 1 in which the guide groove is formed, the above-mentioned TiO 2 2, GdTbFe 3, FiO 2 4, Gd.
TbF5 and TiO 2 6 are sequentially coated. The coating of each of these films can be performed by means such as vapor deposition, sputtering, and ion plating, but GdTbFe3 must have magnetic anisotropy in the direction perpendicular to the film surface.
It is preferable to form each of the above films by high frequency sputtering because of the ease of providing the GdTbFe rare earth / transition metal alloy film with perpendicular magnetic anisotropy, and the reproducibility of film formation and the ease of obtaining uniformity.

【0018】この際上記多層膜構造の場合、TiO
22,GdTbFe3,TiO24,GdTbFe5,T
iO26の各膜を形成するものであるからスパッタリン
グターゲットとしてTiO2,GdTbFeの2種類だ
けでよいのでスパッタリング装置の小型簡略化を計る事
ができる。尚、GdTbFe3の層は記録媒体であるの
でこの膜は膜面に垂直な方向に磁化容易軸を持たねばな
らないが一方GdTbFe5の層は反射膜であるので記
録ヒットの安定性から垂直磁化膜でない方が良い。この
GdTbFe3とGdTbFe5の膜の違いを持たせる
為に次の方法を採る。図2はターゲットを一定の組成の
GdTbFeとしスパッタリング時のAr圧力を変化さ
せた時の形成膜の保磁力の変化を示している。同図に示
される様にターゲットが一定の組成のGdTbFeであ
ってもAr圧力を変化させるだけで保磁力が変化(即ち
膜の組成が変化)するものである。実際にはAr圧の低
い時にはFeリッチ(A部分)に、Ar圧の高い時には
希土類(Gd,Tb)リッチ(B部分)になっている。
更に図示していないがAr圧のかなり低い所では垂直磁
気異方性の無いFeリッチの組成膜が出来、Ar圧のか
なり高い所では垂直磁気異方性の無い希土類(Gd,T
b)リッチの組成膜が出来る。反射膜5としては希土類
リッチの方が酸化防止の点から好ましい。
At this time, in the case of the above-mentioned multilayer film structure, TiO 2
2 2, GdTbFe3, TiO 2 4, GdTbFe5, T
Since each film of iO 2 6 is formed, only two kinds of sputtering targets, TiO 2 and GdTbFe, are required, so that the sputtering apparatus can be downsized and simplified. Since the GdTbFe3 layer is a recording medium, this film must have an easy axis of magnetization in the direction perpendicular to the film surface, while the GdTbFe5 layer is a reflective film, so that it is not a perpendicular magnetic film because of the stability of recording hits. Is good. The following method is adopted in order to make the films of GdTbFe3 and GdTbFe5 different. FIG. 2 shows changes in the coercive force of the formed film when the target is GdTbFe having a constant composition and the Ar pressure during sputtering is changed. As shown in the figure, even if the target is GdTbFe having a constant composition, the coercive force changes (that is, the composition of the film changes) only by changing the Ar pressure. Actually, when the Ar pressure is low, it is rich in Fe (A portion), and when the Ar pressure is high, it is rich in rare earth (Gd, Tb) (B portion).
Further, although not shown, a Fe-rich composition film having no perpendicular magnetic anisotropy is formed at a place where the Ar pressure is considerably low, and a rare earth (Gd, T
b) A rich composition film is formed. The rare earth-rich reflective film 5 is preferable from the viewpoint of preventing oxidation.

【0019】こうして上記TiO22,GdTbFe
3,TiO24,GdTbFe5,TiO26 の多層膜
の形成時にはスパッタリングターゲットとしてTi
2,GdTbFeの2種類のみを用いAr圧を適宜調
整して膜面に垂直な方向に磁化容易軸を持つGdTbF
e3,及び膜面に平行な方向に磁化容易軸を持つGdT
bFe5を作成する。尚TiO22 の膜厚は50〜10
0nm,GdTbFe3の膜厚は10〜30nm、Ti
24 の膜厚は30〜100nm、GdTbFe5の膜
厚は100nm以上、TiO26 の膜厚は50nm以上
であれば適切な素子構造を得る。
Thus, the above TiO 2 2, GdTbFe
When a multilayer film of 3, TiO 2 4, GdTbFe 5, and TiO 2 6 is formed, Ti is used as a sputtering target.
GdTbF having an easy axis of magnetization in a direction perpendicular to the film surface by appropriately adjusting the Ar pressure using only two kinds of O 2 and GdTbFe
e3, and GdT having an easy axis of magnetization in a direction parallel to the film surface
Create bFe5. The thickness of TiO 2 2 is 50 to 10
0 nm, GdTbFe3 film thickness is 10-30 nm, Ti
An appropriate element structure is obtained if the film thickness of O 2 4 is 30 to 100 nm, the film thickness of GdTbFe 5 is 100 nm or more, and the film thickness of TiO 2 6 is 50 nm or more.

【0020】以上の実施形態以外に次の実施形態が可能
である。即ち上記誘電体膜2の材質としてSi34,S
iO,ZnS,CeO2,ZrO2,Sb23,Nd
23,CeF3 の何れかを用いる。これらは屈折率が
1.7〜2.5とTiO2(屈折率2.4)と同程度の
ため膜厚は上記の値と同等である。又上記磁性体膜3及
び反射膜5の材質としてGdTbDyFe,TbDyF
e,GdCo等他の希土類−遷移金属合金あるいはこれ
らの希土類−遷移金属合金に不純物元素が加わったもの
を用いてもよい。
In addition to the above embodiments, the following embodiments are possible. That is, the material of the dielectric film 2 is Si 3 N 4 , S
iO, ZnS, CeO 2 , ZrO 2 , Sb 2 O 3 , Nd
Either 2 O 3 or CeF 3 is used. Since these have a refractive index of 1.7 to 2.5, which is about the same as TiO 2 (refractive index 2.4), the film thickness is equivalent to the above value. Further, GdTbDyFe and TbDyF are used as materials for the magnetic film 3 and the reflection film 5.
Other rare earth-transition metal alloys such as e and GdCo, or these rare earth-transition metal alloys to which an impurity element is added may be used.

【0021】又図3に示すように案内溝を形成したガラ
ス板1の上面にPMMAの樹脂基板7を貼り合わせても
よい。これによりガラス板1の割れ等が防止できるので
素子の取り扱いが容易になる。上記樹脂基板7はフォト
ポリマー法によって形成してもよい。この場合同図に示
す如く裏面にも上記樹脂基板7と同様の製法にて樹脂基
板8を形成すればより効果的である。又本発明の要旨は
透明基板と、希土類と遷移金属の合金からなる膜面に垂
直な方向に磁気異方性を有する磁性体膜と、該磁性体膜
と同一材質からなる反射膜とがこの順に積層されて構成
される磁気光学記憶素子にあり、この構成によって裏面
よりの酸素及び水分の透過を防止する事を可能としたも
のである。
Further, as shown in FIG. 3, a PMMA resin substrate 7 may be attached to the upper surface of the glass plate 1 in which guide grooves are formed. As a result, the glass plate 1 can be prevented from cracking, so that the device can be easily handled. The resin substrate 7 may be formed by a photopolymer method. In this case, it is more effective to form the resin substrate 8 on the back surface by the same manufacturing method as that of the resin substrate 7 as shown in FIG. Further, the gist of the present invention is to provide a transparent substrate, a magnetic film having magnetic anisotropy in a direction perpendicular to a film surface made of an alloy of rare earth and a transition metal, and a reflective film made of the same material as the magnetic film. This is a magneto-optical storage element formed by stacking layers in order, and this configuration makes it possible to prevent oxygen and moisture from permeating from the back surface.

【0022】従ってこの要旨を逸脱する事なく様々な構
成をとる事ができる。例えば図1,図3に示される誘電
体膜2が無い構造の磁気光学記憶素子の構成であっても
よいのである。
Therefore, various configurations can be adopted without departing from the gist. For example, the structure of the magneto-optical storage element having the structure without the dielectric film 2 shown in FIGS. 1 and 3 may be used.

【0023】[0023]

【発明の効果】以上のように、本発明によればカー回転
角を増大することができるとともに、反射膜を効果的に
保護することができる。
As described above, according to the present invention, the Kerr rotation angle can be increased and the reflection film can be effectively protected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気光学記憶素子の一実施例の一部側
面断面図である。
FIG. 1 is a partial side sectional view of an embodiment of a magneto-optical storage element of the present invention.

【図2】製膜時のアルゴン圧と磁性体膜の保磁力との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between an argon pressure during film formation and a coercive force of a magnetic film.

【図3】本発明の磁気光学記憶素子の他の実施例の一部
側面断面図である。
FIG. 3 is a partial side sectional view of another embodiment of the magneto-optical storage element of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス板 2,4,6 誘電体膜 3 磁性体膜 5 反射膜 7,8 樹脂基板 1 glass plate 2,4,6 dielectric film 3 magnetic film 5 reflective film 7,8 resin substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 明 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山岡 秀嘉 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Takahashi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Corporation (72) Hideka Yamaoka 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside the company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透明基板と、 希土類と遷移金属の合金からなる膜面に垂直な方向に磁
気異方性を有する記録媒体としての磁性体膜と、 反射膜と、 誘電体膜と、 が、この順で形成されていることを特徴とする磁気光学
記憶素子。
1. A transparent substrate, a magnetic film as a recording medium having magnetic anisotropy in a direction perpendicular to a film surface made of an alloy of a rare earth and a transition metal, a reflective film, and a dielectric film, A magneto-optical storage element, which is formed in this order.
【請求項2】 前記誘電体膜の膜厚が50nm以上であ
ることを特徴とする請求項1記載の磁気光学記憶素子。
2. The magneto-optical storage element according to claim 1, wherein the dielectric film has a film thickness of 50 nm or more.
JP4294266A 1992-11-02 1992-11-02 Magneto-optical storage element Expired - Lifetime JP2609407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294266A JP2609407B2 (en) 1992-11-02 1992-11-02 Magneto-optical storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294266A JP2609407B2 (en) 1992-11-02 1992-11-02 Magneto-optical storage element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15200782A Division JPS5942577A (en) 1982-08-31 1982-08-31 Magnetooptic storage element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7063942A Division JP2788717B2 (en) 1995-03-23 1995-03-23 Magneto-optical storage element

Publications (2)

Publication Number Publication Date
JPH05242540A true JPH05242540A (en) 1993-09-21
JP2609407B2 JP2609407B2 (en) 1997-05-14

Family

ID=17805493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294266A Expired - Lifetime JP2609407B2 (en) 1992-11-02 1992-11-02 Magneto-optical storage element

Country Status (1)

Country Link
JP (1) JP2609407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254177A (en) * 1995-03-23 1995-10-03 Sharp Corp Magneto-optical memory element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712428A (en) * 1980-06-23 1982-01-22 Sharp Corp Magnetooptic storage element
JPS5766549A (en) * 1980-10-09 1982-04-22 Sharp Corp Magnetooptical storage element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712428A (en) * 1980-06-23 1982-01-22 Sharp Corp Magnetooptic storage element
JPS5766549A (en) * 1980-10-09 1982-04-22 Sharp Corp Magnetooptical storage element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254177A (en) * 1995-03-23 1995-10-03 Sharp Corp Magneto-optical memory element

Also Published As

Publication number Publication date
JP2609407B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US7161876B2 (en) Magneto-optical recording medium, and method for recording information in a recording layer
JP2609407B2 (en) Magneto-optical storage element
JPH0519213B2 (en)
JPH07130027A (en) Magneto-optical recorder
US7399539B2 (en) DWDD-type magneto-optic recording medium including buffer regions between recording track regions and method of producing the same
JP2788717B2 (en) Magneto-optical storage element
US5710746A (en) Magneto-optical recording medium and reading method with magnetic layers of different coercivity
JPH0375948B2 (en)
US20090103401A1 (en) Magnetic recording medium, production method for the same, and recording/reproducing method for magnetic medium
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
JP3977238B2 (en) Magneto-optical recording medium
US6120921A (en) Magneto-optical recording medium
JP2606729B2 (en) Magneto-optical recording medium
JP2555245B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS5857645A (en) Disk medium for vertical magnetic recording
JPH10134437A (en) Production of magneto-optical recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same
KR19980033331A (en) Method of manufacturing magneto-optical recording medium
JP2900957B2 (en) Method for manufacturing magneto-optical recording medium
JP3074104B2 (en) Magneto-optical recording medium
KR0137444B1 (en) Magneto optical recording medium and manufacturing method
JPS5960745A (en) Photomagnetic recording medium
KR100209584B1 (en) Magneto-optical disk
JPH06333280A (en) Magneto-optical recording medium which enables overwriting
JPS623449A (en) Optical magnetic recording media