JPH05240996A - Coolant purification system for boiling water reactor - Google Patents

Coolant purification system for boiling water reactor

Info

Publication number
JPH05240996A
JPH05240996A JP4039557A JP3955792A JPH05240996A JP H05240996 A JPH05240996 A JP H05240996A JP 4039557 A JP4039557 A JP 4039557A JP 3955792 A JP3955792 A JP 3955792A JP H05240996 A JPH05240996 A JP H05240996A
Authority
JP
Japan
Prior art keywords
coolant
pipe
condensate
reactor
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4039557A
Other languages
Japanese (ja)
Other versions
JP3075627B2 (en
Inventor
Shiyouichirou Kinoshita
詳一郎 木下
Hidefumi Araki
荒木秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04039557A priority Critical patent/JP3075627B2/en
Publication of JPH05240996A publication Critical patent/JPH05240996A/en
Application granted granted Critical
Publication of JP3075627B2 publication Critical patent/JP3075627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To reduce the construction cost of a plant and the generation of radioactive waste, simplify operation action, improve plant heat efficiency and lower the possibility of occurrence of malfunction. CONSTITUTION:High pressure coolant including impurity ion, suspension and the like driven by the pressure difference from a low pressure water condenser system passes a pipe drawn out of the reactor vessel 1 and a high temperature filtering and demineralizing device 2 capable of eliminating positive ion and suspension at high temperature which is provided in the middle of the pipe and flows in the condenser system. The coolant flow rate is controlled by a flow control valve 8 provided in the piping. To prevent flashing phenomenon due to sudden pressure drop of the coolant, a heat exchanger for cooling at upstream of the flow control valve 8 or a flash tank 9 at downstream is placed. The coolant is eliminated of impurities including negative ion by filtering demineralizing devices 15, 16, heated and pressurized by a heat exchanger and a pump in the condensed water and supply water system and sent into the reactor vessel 1 together with the condensed water from the main steam system side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は沸騰水型原子炉内での冷
却材の蒸発に伴って原子炉内に蓄積する不純物イオン、
浮遊物などを除去し、冷却材循環系を正常に保つための
冷却材浄化系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to impurity ions accumulated in a nuclear reactor as the coolant evaporates in the boiling water reactor.
The present invention relates to a coolant purification system for removing suspended matters and the like and keeping the coolant circulation system normal.

【0002】[0002]

【従来の技術】沸騰水型原子炉の原子炉圧力容器内で
は、冷却材の蒸発にともなって、冷却材中に混入した不
純物が蓄積する。このような不純物は、炉心から発生す
る大量の放射線によって放射化され、原子炉設備内の機
器を汚染したり、配管の狭窄やポンプ類の破損などの機
械的な悪影響をもたらす。これを防ぐため、従来、沸騰
水型原子力プラントでは、直接炉心から、あるいは冷却
材の再循環系の配管から冷却材を分岐して取り出し、再
生熱交換器、非再生熱交換器、低温ろ過・脱塩装置およ
びポンプなどからなる冷却材浄化系に通すことによって
原子炉冷却材の浄化を行っている。
2. Description of the Related Art In a reactor pressure vessel of a boiling water reactor, impurities mixed in the coolant accumulate as the coolant evaporates. Such impurities are activated by a large amount of radiation generated from the core, which contaminates the equipment in the nuclear reactor facility and causes mechanical adverse effects such as narrowing of pipes and breakage of pumps. In order to prevent this, conventionally, in boiling water nuclear power plants, the coolant is branched and taken out directly from the core or from the pipe of the coolant recirculation system, and the regenerated heat exchanger, non-regenerated heat exchanger, low-temperature filtration / The reactor coolant is purified by passing it through a coolant purification system consisting of a desalination device and a pump.

【0003】冷却材浄化系によるプラントの熱効率の低
下をより少なくするために、上記のような冷却材浄化系
統と並列的に高温脱塩装置を使用した系統を配置し、こ
こで部分的に陽イオンのみの除去を行うという方法が、
特開昭53−118696号公報に示されている。この
方法を図5に示す。1は沸騰水型原子炉である。51は
高温脱塩装置であって、ポンプ52、非再生熱交換器5
3、低温脱塩装置54を含む低温冷却材浄化系に並列に
接続されている。55は給水加熱器、56は給水ポンプ
である。この方法では高温脱塩装置51の系統には熱交
換器を用いる必要がないため、プラントの熱効率が部分
的に向上する。
In order to further reduce the decrease in the thermal efficiency of the plant due to the coolant purification system, a system using a high temperature demineralizer is arranged in parallel with the coolant purification system as described above, and a part of the system is used here. The method of removing only ions is
It is disclosed in Japanese Patent Laid-Open No. 53-186696. This method is shown in FIG. 1 is a boiling water reactor. Reference numeral 51 is a high-temperature desalination device, which includes a pump 52 and a non-regenerative heat exchanger 5
3. Connected in parallel to the low temperature coolant purification system including the low temperature desalination device 54. 55 is a feed water heater and 56 is a feed pump. In this method, since it is not necessary to use a heat exchanger in the system of the high temperature desalination apparatus 51, the thermal efficiency of the plant is partially improved.

【0004】[0004]

【発明が解決しようとする課題】上記の最後に述べた公
知例では、高温脱塩装置の系統を別に設置することによ
り、プラントの熱効率の改善が期待できるが、高温脱塩
装置では除去することが難しい陰イオンを除去するため
には、従来どうりの再生、非再生熱交換器、低温ろ過・
脱塩装置および冷却材の駆動力を得るためのポンプ等よ
りなる冷却材浄化系も必要となる。
In the publicly known example described at the end of the above, it is expected that the thermal efficiency of the plant will be improved by separately installing the system of the high temperature demineralizer, but it should be removed by the high temperature demineralizer. In order to remove difficult anions, conventional regeneration, non-regeneration heat exchanger, low temperature filtration
A coolant purification system including a desalting device and a pump for obtaining driving force for the coolant is also required.

【0005】ポンプ等の動的機器を用いる際は、故障時
に備えて予備機を備えるのが通常であり、これに伴い、
機器の保守、点検の必要性が増える。また、ろ過・脱塩
装置に用いられる助材は消耗品であるため、定期的に放
射性廃棄物として排出され、また、その交換作業時の被
曝量なども増加させる。さらに、冷却材浄化系の多数の
熱交換器及び配管、弁は、プラントの構成を複雑化し、
運転操作を難しくするとともに、漏洩などの潜在的な故
障の可能性を含んでいる。
When a dynamic device such as a pump is used, it is usual to provide a standby machine in case of failure, and accordingly,
Increased need for equipment maintenance and inspection. In addition, since the auxiliary material used in the filtration / desalination device is a consumable item, it is regularly discharged as radioactive waste, and the amount of radiation exposure during replacement work also increases. Furthermore, a large number of heat exchangers, pipes, and valves of the coolant purification system complicate the configuration of the plant,
Not only does it make driving difficult, but it also contains potential failures such as leaks.

【0006】よって、本発明は、沸騰水型原子炉の冷却
材浄化系の必要な機能を維持しながら、冷却材浄化系統
を構成するのに必要な機器を減らすことにより、プラン
トの建設コストと不要な放射性廃棄物を減らし、運転操
作をより単純化し、故障の起こる可能性をより小さくす
ることが可能な原子炉冷却材浄化系を提供することを目
的とする。
Therefore, the present invention reduces the equipment required for constructing the coolant purification system while maintaining the necessary functions of the coolant purification system of the boiling water reactor, thereby reducing the cost of plant construction. An object of the present invention is to provide a reactor coolant purification system capable of reducing unnecessary radioactive waste, simplifying operation and reducing the possibility of failure.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、原子炉圧力容器内の冷却材が存在する部分に一端
が接続され他端が復水・給水系の復水ろ過・脱塩装置の
上流側の部分に接続された配管を設ける。原子炉圧力容
器内の放射化された不純物イオンや浮遊物等が上記配管
を通って比較的清浄な復水・給水系に流入することを防
止するために、高温で作用する高温ろ過・脱塩装置を上
記の配管の途中部分に設置する。また、上記配管内を流
れる冷却材の流量を調整するため、該配管に流量調整弁
を設ける。この配管を通って上記の如く復水・給水系に
流入する冷却材が原子炉容器内の高圧状態から、流量調
整弁によって急減圧することによって起こるフラッシン
グを防止するためには、流量調整弁の上流に冷却材を冷
却する熱交換器または流量調整弁の下流にフラッシュタ
ンクを上記配管中に設ける。
[Means for Solving the Problems] In order to achieve the above-mentioned object, one end is connected to a portion where a coolant exists in a reactor pressure vessel and the other end is condensate / condensate filtration / desalination of a water supply system. Provide piping connected to the upstream part of the equipment. High-temperature filtration / desalination that operates at high temperature to prevent activated impurity ions and suspended solids in the reactor pressure vessel from flowing into the relatively clean condensate / water supply system through the above piping. Install the device in the middle of the above piping. Further, in order to adjust the flow rate of the coolant flowing in the pipe, a flow rate adjusting valve is provided in the pipe. In order to prevent flushing that occurs when the coolant flowing into the condensate / feedwater system through this pipe as described above is suddenly decompressed by the flow control valve from the high pressure state in the reactor vessel, the flow control valve A flash tank is provided upstream of the heat exchanger for cooling the coolant or downstream of the flow rate adjusting valve in the pipe.

【0008】[0008]

【作用】原子炉圧力容器内に蓄積された不純物イオン、
浮遊物などを含む高圧の冷却材は、原子炉圧力容器内の
高圧力と復水・給水系中の復水ろ過・脱塩装置の上流側
の部分の低圧力との圧力差を駆動力として、原子炉圧力
容器から上記配管を通り、復水・給水系に流入する。こ
の場合、復水・給水系の清浄度を保つために、冷却材は
上記の配管の途中に設置した高温で作用するろ過・脱塩
装置を通過せしめられ、このろ過・脱塩装置中で、少な
くとも陽イオンと浮遊物が冷却材から除去される。この
作用により、冷却材の清浄度は、復水・給水系の復水ろ
過・脱塩装置の上流側に放出しても復水・給水系を汚染
あるいは破損しない程度となる。上記配管中の該ろ過・
脱塩装置の上流または下流側に設けた流量調整弁によ
り、該配管を流れる冷却材の流量を調整することが可能
である。さらにこの流量調整弁による冷却材の急激な圧
力降下によって起こるフラッシング現像を防止するため
に、流量調整弁の上流側に設置した冷却材冷却用の熱交
換器、あるいは流量調整弁の下流側に設置したフラッシ
ュタンクによって、冷却材の飽和圧力を低下させる。こ
のような経路を経て復水・給水系の復水ろ過・脱塩装置
の上流側に流入した冷却材は、該復水ろ過・脱塩装置に
よって陰イオンを含めた不純物が取り除かれ、主蒸気系
側からの復水とともに復水・給水系の熱交換器(給水加
熱器)とポンプによって加熱・加圧され、原子炉圧力容
器内に給送される。
[Operation] Impurity ions accumulated in the reactor pressure vessel,
High-pressure coolant containing suspended matter, etc., uses the pressure difference between the high pressure in the reactor pressure vessel and the low pressure in the upstream part of the condensate filtration / desalination device in the condensate / feedwater system as the driving force. , From the reactor pressure vessel, through the above piping, flows into the condensate / water supply system. In this case, in order to maintain the cleanliness of the condensate / water supply system, the coolant is allowed to pass through a filtration / desalination device that operates at high temperature installed in the middle of the above pipe, and in this filtration / desalination device, At least cations and suspensions are removed from the coolant. Due to this action, the cleanliness of the coolant is such that the condensate / water supply system is not contaminated or damaged even if it is discharged to the upstream side of the condensate / water supply system condensate filtration / desalination system. The filtration in the above piping
It is possible to adjust the flow rate of the coolant flowing through the pipe by using a flow rate adjusting valve provided upstream or downstream of the desalination device. Furthermore, in order to prevent flushing development that occurs due to a sudden pressure drop of the coolant due to this flow control valve, a heat exchanger for cooling the coolant installed upstream of the flow control valve or downstream of the flow control valve was installed. The flash tank reduces the saturation pressure of the coolant. The coolant that has flowed into the upstream side of the condensate filtration / desalination system of the condensate / water supply system through such a route has impurities such as anions removed by the condensate filtration / desalination system, and the main steam is removed. Along with the condensate from the system side, it is heated and pressurized by a condensate / feed water heat exchanger (feed water heater) and a pump, and then fed into the reactor pressure vessel.

【0009】[0009]

【実施例】請求項2による本発明の1実施例を図1によ
り説明する。本実施例では、沸騰水型原子炉の原子炉圧
力容器1から引き出した配管5に高温ろ過・脱塩装置2
(例えば、コバルト吸着合金を用いたフィルタ、又は電
磁フィルタ)を接続し、高温ろ過・脱塩装置2の下流側
に流量調整弁8を接続し、さらに流量調整弁8の下流側
にフラッシュタンク9を接続し、さらにフラッシュタン
ク9の液相部を配管6により復水ろ過・脱塩装置の上流
部分の配管に接続してある。7は逆止弁である。図示の
如く、蒸気タービン(不図示)からの蒸気を復水する復
水器11からは、順に、低圧復水ポンプ12、復水ろ過
装置15、復水脱塩装置16、高圧復水ポンプ17、低
圧給水加熱器18、給水ポンプ19、高圧給水加熱器2
0を経て原子炉圧力容器1に至る復水・給水系が設けて
あることは従来の沸騰水型原子炉プラントと同様であ
る。前記の配管6は、この復水・給水系の復水ろ過装置
15の上流側配管に合流点Aにて接続されている。な
お、前記配管5は、原子炉圧力容器1から直接引き出し
たものに限らず、原子炉の再循環系の配管または残留熱
除去系の配管から分岐したものでもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention according to claim 2 will be described with reference to FIG. In this embodiment, a high temperature filtration / desalination apparatus 2 is installed in a pipe 5 drawn from a reactor pressure vessel 1 of a boiling water reactor.
(For example, a filter using a cobalt adsorption alloy or an electromagnetic filter) is connected, the flow rate adjusting valve 8 is connected to the downstream side of the high temperature filtration / desalination apparatus 2, and the flash tank 9 is further provided to the downstream side of the flow rate adjusting valve 8. , And the liquid phase portion of the flash tank 9 is connected to a pipe at an upstream portion of the condensate filtration / desalination apparatus by a pipe 6. 7 is a check valve. As shown in the figure, from the condenser 11 for condensing steam from a steam turbine (not shown), a low-pressure condensate pump 12, a condensate filter 15, a condensate demineralizer 16, and a high-pressure condensate pump 17 in that order. , Low pressure feed water heater 18, feed water pump 19, high pressure feed water heater 2
As in the conventional boiling water reactor plant, a condensate / water supply system that goes from 0 to the reactor pressure vessel 1 is provided. The pipe 6 is connected to the upstream pipe of the condensate filter 15 of the condensate / water supply system at a confluence A. The pipe 5 is not limited to the one directly drawn out from the reactor pressure vessel 1, and may be a pipe branched from a recirculation system pipe or a residual heat removal system pipe of the nuclear reactor.

【0010】本実施例の原子炉冷却材浄化系は、原子炉
圧力容器1から配管5、高温ろ過・脱塩装置2、調整弁
8、フラッシュタンク9、配管6を経て復水・給水系と
の合流点Aに至るまでの系と、さらに、合流点Aから、
復水・給水系との共通の部分としての、復水ろ過装置1
5、復水脱塩装置16、高圧復水ポンプ17、低圧給水
加熱器18、給水ポンプ19を経て原子炉圧力容器に至
る系と、から構成される。
The reactor coolant purification system of this embodiment is connected to a condensate / water supply system from the reactor pressure vessel 1 through a pipe 5, a high temperature filtration / desalination device 2, a regulating valve 8, a flash tank 9 and a pipe 6. From the confluence point A to the confluence point A of
Condensate filter 1 as a common part of the condensate / water supply system
5, a condensate demineralizer 16, a high-pressure condensate pump 17, a low-pressure feed water heater 18, and a system leading to a reactor pressure vessel via a feed water pump 19.

【0011】図1により本実施例の動作を説明する。原
子炉圧力容器1内の不純物を含有した高圧の冷却材は、
低圧の復水系との圧力差を駆動源として配管5を通っ
て、高温で作用する高温ろ過・脱塩装置2へ流入する。
配管5を通って高温ろ過・脱塩装置2に流入する冷却材
の流量を調整するには、調整弁8を操作する。高温ろ過
・脱塩装置2では、放射化した金属イオンなどの陽イオ
ンおよび浮遊物等の異物を冷却材中から除去する。調整
弁8の下流側に設置したフラッシュタンク9において冷
却材に断熱変化を起こさせることによって、温度と圧力
を低下させる。この時、フラッシュタンク9内で発生し
た蒸気は配管10で復水器11に導いて凝縮させ、他
方、フラッシュタンク9の液相部からは液状の冷却材が
配管6、逆止弁7を通って復水ろ過装置15の上流側配
管に合流点Aから流入する。フラッシュタンク9におい
て冷却材の温度と圧力を低下させているため、調整弁8
によって減圧されても冷却材は復水系との合流点Aでは
フラッシング現象を発生せず、液の状態にて復水系に流
入する。
The operation of this embodiment will be described with reference to FIG. The high-pressure coolant containing impurities in the reactor pressure vessel 1 is
The pressure difference from the low-pressure condensate system is used as a drive source, passes through the pipe 5, and flows into the high-temperature filtration / desalination apparatus 2 that operates at high temperature.
To adjust the flow rate of the coolant flowing into the high temperature filtration / desalination apparatus 2 through the pipe 5, the adjustment valve 8 is operated. In the high temperature filtration / desalination apparatus 2, cations such as activated metal ions and foreign matters such as suspended matter are removed from the coolant. The temperature and pressure are lowered by causing adiabatic change in the coolant in the flash tank 9 installed downstream of the adjusting valve 8. At this time, the steam generated in the flash tank 9 is guided to the condenser 11 through the pipe 10 to be condensed, while the liquid coolant from the liquid phase portion of the flash tank 9 passes through the pipe 6 and the check valve 7. From the confluence A into the upstream pipe of the condensate filter 15. Since the temperature and pressure of the coolant are lowered in the flash tank 9, the adjustment valve 8
Even if the pressure is reduced by, the coolant does not cause the flushing phenomenon at the confluence A with the condensate system, and flows into the condensate system in a liquid state.

【0012】逆止弁7、配管6を通って復水ろ過装置1
5に流入した上記冷却材は、該復水ろ過装置15で再び
異物が除去され、続いて復水脱塩装置16に流入し、こ
こで陰イオンも含めた不純物イオンが除去される。この
ように浄化された冷却材は、高圧復水ポンプ17と低圧
給水加熱器18、および給水ポンプ19と高圧給水加熱
器20によって二段階に亘る加圧と加熱を受け、再び原
子炉圧力容器1内に給送される。
Condensate filter 1 through check valve 7 and pipe 6.
In the condensate filtering device 15, foreign substances are removed again from the coolant that has flowed into No. 5, and then into the condensate demineralizing device 16, where impurity ions including anions are removed. The coolant thus purified is pressurized and heated in two stages by the high-pressure condensate pump 17, the low-pressure feed water heater 18, and the feed water pump 19 and the high-pressure feed water heater 20, and the reactor pressure vessel 1 again. Delivered in.

【0013】図1に示した実施例の変形実施例として、
図2のように、高温ろ過・脱塩装置2の温度特性によっ
ては、フラッシュタンク9を高温ろ過・脱塩装置2の上
流側に配置してもよい。さらに、図2の如く、調整弁8
も高温ろ過・脱塩装置2の上流側に配置することによ
り、高温ろ過・脱塩装置2の設計圧力を低くすることが
可能である。実際に高圧力となる部分は、原子炉圧力容
器1から調整弁8の位置までであるから、調整弁8を上
流側に配置することにより、従来のように冷却材浄化系
全体を高圧の冷却材が流れる場合と比較して、高圧力仕
様の機器や配管の長さを大幅に減らすことが可能であ
る。
As a modification of the embodiment shown in FIG. 1,
As shown in FIG. 2, the flash tank 9 may be arranged upstream of the high temperature filtration / desalination apparatus 2 depending on the temperature characteristics of the high temperature filtration / desalination apparatus 2. Further, as shown in FIG. 2, the adjusting valve 8
It is possible to lower the design pressure of the high temperature filtration / desalination apparatus 2 by arranging the high temperature filtration / desalination apparatus 2 on the upstream side. The portion that actually becomes high pressure is from the reactor pressure vessel 1 to the position of the adjusting valve 8. Therefore, by arranging the adjusting valve 8 on the upstream side, it is possible to cool the entire coolant purification system with high pressure as in the conventional case. Compared to the case where material flows, the length of equipment and piping with high pressure specifications can be significantly reduced.

【0014】次に請求項3による本発明の1実施例を図
3により説明する。本実施例では、前記の請求項2によ
る本発明の実施例におけるフラッシュタンク9の代わり
に、調整弁8の上流側に、補機冷却系によって冷却され
る非再生熱交換器3を配置し、これにより、冷却材の温
度を低下させる。この結果として、冷却材の飽和圧力が
下がり、調整弁8によって急な減圧が起こってもフラッ
シング現象が発生せず、合流点Aには液状の冷却材が流
入する。
Next, an embodiment of the present invention according to claim 3 will be described with reference to FIG. In the present embodiment, instead of the flash tank 9 in the embodiment of the present invention according to claim 2, a non-regenerative heat exchanger 3 cooled by an auxiliary equipment cooling system is arranged upstream of the regulating valve 8. This reduces the temperature of the coolant. As a result, the saturation pressure of the coolant is reduced, the flushing phenomenon does not occur even when the regulating valve 8 suddenly reduces the pressure, and the liquid coolant flows into the confluence A.

【0015】この実施例においても、変形実施例とし
て、調整弁8と非再生熱交換器3の位置を高温ろ過・脱
塩装置2の上流側に配置してもよい。それによって、高
温ろ過・脱塩装置2や非再生熱交換器3の動作圧力を下
げることが可能である。
Also in this embodiment, as a modified embodiment, the positions of the regulating valve 8 and the non-regenerative heat exchanger 3 may be arranged on the upstream side of the high temperature filtration / desalination apparatus 2. Thereby, the operating pressure of the high temperature filtration / desalination device 2 and the non-regenerative heat exchanger 3 can be lowered.

【0016】請求項4による本発明の1実施例を図4に
より説明する。本実施例は、前記の図3に示した実施例
において、更に熱回収用の再生熱交換器30を非再生熱
交換器3の上流側あるいは下流側に設置したものであ
る。この再生熱交換器30は、制御棒駆動系の水圧制御
ユニット32へ供給する制御棒駆動水の加熱器として用
いることができる。この場合、制御棒駆動水の流量や加
熱温度によっては非再生熱交換器3を削除してよい。こ
のように制御棒駆動水の加熱によって熱を回収して原子
炉圧力容器1内に戻すことにより、プラントの熱効率の
改善を図ることができる。
An embodiment of the present invention according to claim 4 will be described with reference to FIG. In this embodiment, a regenerative heat exchanger 30 for heat recovery is further installed on the upstream side or the downstream side of the non-regenerated heat exchanger 3 in the embodiment shown in FIG. The regenerative heat exchanger 30 can be used as a heater for the control rod drive water supplied to the water pressure control unit 32 of the control rod drive system. In this case, the non-regeneration heat exchanger 3 may be deleted depending on the flow rate of the control rod driving water and the heating temperature. By recovering the heat by heating the control rod driving water and returning it to the inside of the reactor pressure vessel 1, the thermal efficiency of the plant can be improved.

【0017】[0017]

【発明の効果】本発明においては、原子炉圧力容器内の
冷却材は、該圧力容器内の高圧と復水・給水系の復水ろ
過・脱塩装置上流側の低圧との圧力差を駆動力として、
原子炉圧力容器から配管を通り、その途中にて高温ろ過
・脱塩装置で陽イオンと浮遊物が除去された後、復水・
給水系に流入し、復水ろ過・脱塩装置で陰イオンを含め
た不純物が除去され、復水ポンプ、給水ポンプおよび給
水加熱器で加圧と加熱を受けて原子炉圧力容器に戻る。
それ故に、本発明によれば、少なくとも原子炉冷却材浄
化系専用のポンプ、加熱用熱交換器、陰イオンを除去可
能なろ過・脱塩器およびそれらを接続する配管類を必要
としなくなる。しかも、蒸気タービンの復水器から復水
・給水系に流れる復水・給水の流量に比べて、前記配管
および高温ろ過脱塩装置を通って復水・給水系に流入す
る冷却材の流量は1%程度であり、従って、復水・給水
系は従来のものと同じでよい。結果として下記のような
効果が期待できる。
According to the present invention, the coolant in the reactor pressure vessel drives the pressure difference between the high pressure in the pressure vessel and the low pressure on the upstream side of the condensate filtration / desalination system of the condensate / water supply system. As a force
After passing through the piping from the reactor pressure vessel and removing cations and suspended matter with a high temperature filtration / desalination unit, condensate /
It flows into the water supply system, impurities such as anions are removed by the condensate filtration / desalination device, and pressurized and heated by the condensate pump, the water supply pump, and the water supply heater, and then returned to the reactor pressure vessel.
Therefore, according to the present invention, at least a pump dedicated to the reactor coolant purification system, a heat exchanger for heating, a filter / desalinator capable of removing anions, and pipes connecting them are not required. Moreover, compared with the flow rate of the condensate / feed water flowing from the condenser of the steam turbine to the condensate / feed water system, It is about 1%, so the condensate / water supply system may be the same as the conventional one. As a result, the following effects can be expected.

【0018】(1)設置機器が少なくなり、プラントの
建設コストが低減する。
(1) The number of installed equipment is reduced, and the construction cost of the plant is reduced.

【0019】(2)従来の原子炉冷却材浄化系よりも構
成が単純となり、運転操作、保守作業が容易になり、ま
た、プラント熱効率も向上する。
(2) The structure is simpler than that of the conventional reactor coolant purification system, the operation and maintenance work is facilitated, and the plant thermal efficiency is also improved.

【0020】(3)本発明では、従来の原子炉冷却材浄
化系に用いられている低温ろ過・脱塩装置が無いので、
そこから発生する放射性廃棄物は無く、また、本発明で
は高温ろ過・脱塩装置を前記配管中に設けているが、高
温ろ過・脱塩装置は一般に寿命が長いので放射性廃棄物
(使用済ろ過助材)の発生量は少い。従って、本発明で
は、従来の原子炉冷却材浄化系から発生する放射性廃棄
物に比べて放射性廃棄物が少くなり、また、ろ過助材の
交換作業時の被曝量が少くなる。
(3) In the present invention, since there is no low-temperature filtration / desalination device used in the conventional reactor coolant purification system,
There is no radioactive waste generated from it, and in the present invention, a high temperature filtration / desalination device is provided in the pipe. However, since a high temperature filtration / desalination device generally has a long life, radioactive waste (used filtration The amount of auxiliary materials) is small. Therefore, in the present invention, the amount of radioactive waste is less than that of the conventional radioactive waste produced by the reactor coolant purification system, and the amount of radiation exposure during the replacement work of the filter aid is small.

【0021】(4)本発明では、従来のように系全体を
高圧の冷却材が流れる原子炉冷却材浄化系と比較して、
圧力の低い復水系へ冷却材を流入させるので、高圧仕様
の配管部分が短くなることにより、設計条件が緩和し、
配管部分や該配管に設ける機器の建設コストが下がると
いう効果が期待できる。特に、該配管中の流量調整弁を
上流側に設置する場合には、この効果は顕著になる。
(4) In the present invention, the whole system is compared with a conventional reactor coolant purification system in which high-pressure coolant flows,
Since the coolant flows into the condensate system with low pressure, the design condition is eased by shortening the piping part for high pressure specifications.
The effect of reducing the construction cost of the piping portion and the equipment provided in the piping can be expected. In particular, this effect becomes remarkable when the flow rate adjusting valve in the pipe is installed on the upstream side.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項2の本発明による一実施例の概略図。FIG. 1 is a schematic view of an embodiment according to the present invention of claim 2.

【図2】請求項2の本発明による別の実施例の概略図。2 is a schematic view of another embodiment according to the present invention of claim 2; FIG.

【図3】請求項3の本発明による一実施例の概略図。FIG. 3 is a schematic diagram of an embodiment according to the present invention of claim 3;

【図4】請求項4の本発明による一実施例の概略図。FIG. 4 is a schematic diagram of an embodiment according to the present invention of claim 4;

【図5】高温フィルタを用いた冷却材浄化系の公知例の
概略図。
FIG. 5 is a schematic view of a known example of a coolant purification system using a high temperature filter.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器 2…高温ろ過・
脱塩装置 7…逆止弁 8…調整弁 9…フラッシュタンク 11…復水器 12…低圧復水ポンプ 15…復水ろ過
装置 16…復水脱塩装置 17…高圧復水
ポンプ 18…低圧給水加熱器 19…給水ポン
プ 20…高圧給水加熱器
1 ... Reactor pressure vessel 2 ... High temperature filtration
Desalination device 7 ... Check valve 8 ... Regulator valve 9 ... Flash tank 11 ... Condenser 12 ... Low pressure condensate pump 15 ... Condensate filtering device 16 ... Condensate desalination device 17 ... High pressure condensate pump 18 ... Low pressure water supply Heater 19 ... Water supply pump 20 ... High pressure water heater

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発電用蒸気タービンからの蒸気を復水す
る復水器と、その下流に接続された、復水ポンプ、復水
ろ過・脱塩装置、給水ポンプおよび給水加熱器を含む復
水・給水系とを備えた沸騰水型原子炉において、一端が
原子炉圧力容器内部の冷却材が存在する部分に接続され
他端が前記復水・給水系の復水ろ過・脱塩装置の上流側
の部分に接続された配管を設け、上記配管の途中には、
上記配管内を流れる高温の冷却材中から陽イオンと浮遊
物を除去可能な高温ろ過・脱塩装置と、上記配管内を流
れる冷却材の流量を調整可能な流量調整弁とを設けたこ
とを特徴とする沸騰水型原子炉の冷却材浄化系。
1. Condensate for condensing steam from a steam turbine for power generation, and condensate including a condensate pump, a condensate filtration / desalination device, a water supply pump and a water supply heater connected downstream of the condenser. -In a boiling water reactor equipped with a water supply system, one end is connected to the part where the coolant exists inside the reactor pressure vessel and the other end is upstream of the condensate / condensate filtration / desalination device of the water supply system. Provide a pipe connected to the side part, and in the middle of the above pipe,
A high temperature filtration / desalination device capable of removing cations and suspended solids from the high temperature coolant flowing in the pipe, and a flow rate adjusting valve capable of adjusting the flow rate of the coolant flowing in the pipe are provided. Characteristic boiling water reactor coolant purification system.
【請求項2】 上記流量調整弁の下流側にて上記配管の
途中にフラッシュタンクを備えた請求項1の沸騰水型原
子炉の冷却材浄化系。
2. The coolant purification system for a boiling water reactor according to claim 1, further comprising a flash tank provided on the downstream side of the flow rate adjusting valve in the middle of the pipe.
【請求項3】 上記流量調整弁の上流側にて上記配管の
途中に上記配管内を流れる冷却材からの熱除去が可能な
熱交換器を備えた請求項1または2の沸騰水型原子炉の
冷却材浄化系。
3. The boiling water nuclear reactor according to claim 1, further comprising a heat exchanger capable of removing heat from a coolant flowing in the pipe in the middle of the pipe upstream of the flow control valve. Coolant purification system.
【請求項4】 上記配管の途中に、上記配管内を流れる
冷却材からの熱回収用の熱交換器を備えた請求項1、2
又は3の沸騰水型原子炉の冷却材浄化系。
4. A heat exchanger for recovering heat from a coolant flowing in the pipe is provided in the middle of the pipe.
Or, the coolant purification system of the boiling water reactor of 3.
JP04039557A 1992-02-26 1992-02-26 Coolant purification system for boiling water reactor Expired - Fee Related JP3075627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04039557A JP3075627B2 (en) 1992-02-26 1992-02-26 Coolant purification system for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04039557A JP3075627B2 (en) 1992-02-26 1992-02-26 Coolant purification system for boiling water reactor

Publications (2)

Publication Number Publication Date
JPH05240996A true JPH05240996A (en) 1993-09-21
JP3075627B2 JP3075627B2 (en) 2000-08-14

Family

ID=12556376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04039557A Expired - Fee Related JP3075627B2 (en) 1992-02-26 1992-02-26 Coolant purification system for boiling water reactor

Country Status (1)

Country Link
JP (1) JP3075627B2 (en)

Also Published As

Publication number Publication date
JP3075627B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US3976541A (en) Secondary coolant purification system with demineralizer bypass
EP0078499B1 (en) Method and apparatus for purifying liquid
JPS6323519B2 (en)
CN109979635B (en) Pressurized water reactor nuclear power plant steam generator sewage treatment system
EP0546798B1 (en) Reactor water cleanup and cooling system
JPH05240996A (en) Coolant purification system for boiling water reactor
JP4896527B2 (en) Control rod water supply system for nuclear power plant
JP5357943B2 (en) Method for removing iron components from heater drain water in power plants
JP3664759B2 (en) Flash prevention device
JP2597594B2 (en) Feed water heater drain injection device
JP5513846B2 (en) Nuclear power plant and method for operating the same
JPH01218611A (en) Apparatus for purifying feed water
JPS60101204A (en) Cleanup method in thermal power plant
JPH0425798A (en) Condensate purification system
JPS61262509A (en) Flow controller for drain filter of feedwater heater
JPH0652310B2 (en) Control rod drive water supply device
JP2963788B2 (en) Control rod drive
JPS6379099A (en) Feedwater dissolved oxygen regulator
JPH04270995A (en) Purification system of nuclear reactor coolant
JP2953752B2 (en) Control rod drive
JPH01182798A (en) Boiling water type nuclear power plant
JPH0679073B2 (en) Reactor coolant purification system
JPS6235033B2 (en)
JPH06170361A (en) Condensation purification device
JPH06100671B2 (en) Reactor coolant purification system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees