JPH0523523A - Pressure swing adsorbing method separating and recovering carbon monoxide from gaseous mixture containing carbon monoxide - Google Patents
Pressure swing adsorbing method separating and recovering carbon monoxide from gaseous mixture containing carbon monoxideInfo
- Publication number
- JPH0523523A JPH0523523A JP3181052A JP18105291A JPH0523523A JP H0523523 A JPH0523523 A JP H0523523A JP 3181052 A JP3181052 A JP 3181052A JP 18105291 A JP18105291 A JP 18105291A JP H0523523 A JPH0523523 A JP H0523523A
- Authority
- JP
- Japan
- Prior art keywords
- adsorption tower
- adsorption
- pressure
- carbon monoxide
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、一酸化炭素(CO)を
含む混合ガスからCOを分離回収するための圧力スイン
グ吸着方法(PSA法)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure swing adsorption method (PSA method) for separating and recovering CO from a mixed gas containing carbon monoxide (CO).
【0002】[0002]
【従来の技術】従来、COを含む混合ガスからCOを分
離回収するためのPSA法としては、例えば特公昭61
−37970号公報に示すような方法が知られている。
この方法は、ゼオライト系吸着剤等を備えた2つ以上の
吸着塔を用いるもので、原料ガスで吸着塔内を昇圧する
昇圧工程と、原料ガスを吸着塔内に流して易吸着成分を
吸着剤に吸着させる第1吸着工程と、第1吸着工程終了
後の吸着塔を大気圧近傍まで減圧する減圧工程と、減圧
後の吸着塔に製品ガスを導入して難吸着成分をパージす
るパージ工程と、パージ後の吸着塔を大気圧以下に減圧
して易吸着成分を脱着させ、製品ガスを回収する脱着工
程等からなっている。2. Description of the Related Art Conventionally, as a PSA method for separating and recovering CO from a mixed gas containing CO, there is, for example, Japanese Patent Publication No.
A method as disclosed in Japanese Patent Publication No. 37970 is known.
This method uses two or more adsorption towers equipped with a zeolite-based adsorbent, etc., and a pressure raising step of raising the pressure inside the adsorption tower with the raw material gas and adsorbing easily adsorbed components by flowing the raw material gas into the adsorption tower. The first adsorption step of adsorbing to the agent, the decompression step of decompressing the adsorption tower after completion of the first adsorption step to near atmospheric pressure, and the purging step of introducing the product gas into the adsorption tower after decompression to purge the hard-to-adsorb components And the desorption step of desorbing the easily adsorbed components by depressurizing the adsorption tower after purging to atmospheric pressure or less and collecting the product gas.
【0003】なお、このようなPSA法では一般に各工
程で特に温度管理はなされず、例えば洗浄工程において
はほぼ常温で操作が行われている。In such a PSA method, temperature control is generally not performed in each step, and for example, in the washing step, the operation is performed at almost room temperature.
【0004】[0004]
【発明が解決しようとする課題】近年、上記のようなゼ
オライト系吸着剤等に代え、活性アルミナ担体にCuC
lやCuCl2等の銅化合物を担持させた吸着剤を用い
る方法の開発が進められている。後者の吸着剤では、C
Oと銅イオンとの間で化学吸着が行われるために、CO
の吸着量がCO2やN2等の吸着量をはるかに上回り、従
ってCOだけを選択的に吸着することができる利点があ
る。In recent years, CuC has been used as an active alumina carrier instead of the above zeolite-based adsorbents and the like.
The development of a method using an adsorbent supporting a copper compound such as 1 or CuCl 2 is under way. In the latter adsorbent, C
Due to chemisorption between O and copper ions, CO
The amount of CO adsorbed far exceeds the amount of CO 2 or N 2 adsorbed, and therefore there is an advantage that only CO can be selectively adsorbed.
【0005】しかし、このように活性アルミナ担体に銅
化合物を担持した吸着剤では、COが吸着剤に強く吸着
されるためにCOが脱着しにくく、却って十分なCO回
収量が得られなくなるという問題点が新たに生じてい
る。However, in such an adsorbent in which a copper compound is supported on an activated alumina carrier, CO is strongly adsorbed by the adsorbent, so that it is difficult for CO to be desorbed and a sufficient amount of CO recovery cannot be obtained. New points are emerging.
【0006】このような問題点を解決する手段として
は、脱着回収用の真空ポンプの能力を拡大して脱着時の
圧力を下げることが考えられる。しかしながら、吸着剤
の吸着力が強い場合には、脱着圧力を下げてもすぐには
脱着されず徐々に脱着されるので、脱着工程全体で得ら
れるCO脱着量を飛躍的に増加させることは困難であ
る。そればかりか、脱着圧力をあまり低くすると、難吸
着成分が容易に吸着平衡に達するために不純物の脱着量
も増加してしまい、CO純度が低下する問題が新たに生
じる。また、1サイクル時間を延長してその分脱着工程
の時間を長く取ることも考えられるが、上述の脱着反応
の特性によりCO脱着量は脱着時間に応じて比例的には
増加しないので、結果として単位時間当たりのCO脱着
量は低下することになる。As a means for solving such a problem, it is conceivable to expand the capacity of the vacuum pump for desorption and recovery so as to lower the pressure at the time of desorption. However, when the adsorption force of the adsorbent is strong, it is not immediately desorbed even if the desorption pressure is lowered, and is gradually desorbed, so it is difficult to dramatically increase the CO desorption amount obtained in the entire desorption process. Is. In addition, if the desorption pressure is too low, the amount of impurities desorbed also increases because the difficultly adsorbed components easily reach the adsorption equilibrium, which causes a new problem of lowering the CO purity. It is also conceivable to extend the one cycle time and take the desorption step longer by that amount, but the CO desorption amount does not increase proportionally with the desorption time due to the characteristics of the desorption reaction described above. The CO desorption amount per unit time will be reduced.
【0007】なお従来は、上記のようなPSA法のほ
か、吸着塔内の温度を操作することによって高回収率を
狙う温度スイング吸着方法(TSA法)も知られるに至
っているが、各工程において圧力と温度の双方を変動さ
せるには複雑な操作及び多大な設備投資が必要であり、
コスト高は免れ得ない。Conventionally, in addition to the PSA method as described above, a temperature swing adsorption method (TSA method) aiming at a high recovery rate by operating the temperature in the adsorption tower has been known, but in each step Varying both pressure and temperature requires complex operations and large capital investment,
High costs are inevitable.
【0008】本発明は、このような事情に鑑み、活性ア
ルミナ担体に銅化合物を担持させた吸着剤を用いて、よ
り多くの高純度COを容易かつ確実に脱着回収すること
ができるPSA法を提供することを目的とする。In view of such circumstances, the present invention provides a PSA method capable of easily and surely desorbing and recovering a large amount of high-purity CO by using an adsorbent in which a copper compound is supported on an activated alumina carrier. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するた
め、本発明者等は、脱着工程を行う前の洗浄工程におけ
る吸着塔内温度に着目し、研究を重ねた結果、この洗浄
工程温度を30℃乃至50℃に保つことにより、吸着容
量があまり減少せず、かつ、脱着性が効果的に向上し
て、総CO脱着量が向上することを突き止めた。In order to solve the above problems, the inventors of the present invention paid attention to the temperature inside the adsorption tower in the washing process before performing the desorption process, and as a result of repeated research, It was found that by keeping the temperature at 30 ° C. to 50 ° C., the adsorption capacity did not decrease so much and the desorption property was effectively improved, and the total CO desorption amount was improved.
【0010】すなわち本発明は、活性アルミナ担体に銅
化合物を担持させた吸着剤を備えた吸着塔を用いて原料
ガス中から一酸化炭素を分離回収する圧力スイング吸着
方法であって、一酸化炭素を含む原料ガスを吸着塔の入
口から出口に流して吸着剤に易吸着成分を吸着させる吸
着工程と、吸着工程終了後に吸着塔内の圧力を大気圧近
傍の圧力まで減らし、この吸着塔から排ガスを導出する
減圧工程と、製品ガスの一部を吸着塔内に送り込んで難
吸着成分を除去し、吸着塔から排ガスを導出する洗浄工
程と、吸着塔内を大気圧以下に減圧し、易吸着成分を脱
着して製品ガスを回収する脱着工程と、脱着工程後の吸
着塔内圧力を所定の吸着圧力まで高める昇圧工程とを順
に繰り返すとともに、上記洗浄工程において洗浄工程時
の吸着塔内の温度を30℃以上50℃以下に保つもので
ある(請求項1)。That is, the present invention is a pressure swing adsorption method for separating and recovering carbon monoxide from a raw material gas by using an adsorption tower equipped with an adsorbent in which a copper compound is supported on an activated alumina carrier. An adsorption step of adsorbing a readily adsorbable component on the adsorbent by flowing a raw material gas containing from the inlet to the outlet of the adsorption tower, and reducing the pressure in the adsorption tower to a pressure near atmospheric pressure after the adsorption step, and exhaust gas from this adsorption tower The decompression process for discharging the product gas, the cleaning process for sending a part of the product gas into the adsorption tower to remove the difficultly adsorbed components, and the exhaust gas discharged from the adsorption tower, and the decompression inside the adsorption tower to below atmospheric pressure for easy adsorption. The desorption step of desorbing the components to recover the product gas and the step of increasing the pressure in the adsorption tower after the desorption step to a predetermined adsorption pressure are sequentially repeated, and the temperature in the adsorption tower during the washing step in the above washing step. To keep it at a 30 ° C. or higher 50 ° C. or less (claim 1).
【0011】その具体的な態様としては、4つの吸着塔
を用い、各吸着塔について上記工程を互いに位相をずら
して繰り返すとともに、上記吸着工程として、吸着塔出
口における易吸着成分の濃度が吸着塔入口における易吸
着成分の濃度に達する手前の所定の時点まで、吸着塔出
口から導出した排ガスを系外へ放出する第1吸着工程
と、吸着塔出口における易吸着成分の濃度が吸着塔入口
における易吸着成分の濃度に達する手前の所定の時点に
達した後に上記排ガスを他の吸着塔内に導入してその昇
圧工程に使用する第2吸着工程とを行い、上記減圧工程
において吸着工程終了後の吸着塔の出口と脱着工程終了
後の吸着塔の入口とを接続することにより両塔の圧力を
大気圧近傍の圧力にし、上記洗浄工程において吸着塔出
口から導出された排ガスを他の吸着塔内に導入してその
昇圧工程に使用し、上記昇圧工程として、脱着工程が終
了した吸着塔の入口と吸着工程が終了した吸着塔の出口
とを接続して前者吸着塔を昇圧する第1昇圧工程と、第
1昇圧工程終了後の吸着塔の入口と洗浄工程にある他の
吸着塔の出口とを接続して後者吸着塔からのガスにより
前者吸着塔内を昇圧する第2昇圧工程と、第2昇圧工程
の終了した吸着塔入口と上記第1吸着工程の終了した吸
着塔出口とを接続して前者吸着塔内を昇圧する第3昇圧
工程とを行うものが好ましい(請求項2)。As a specific embodiment, four adsorption towers are used, and the above steps are repeated for each adsorption tower with the phases shifted from each other. As the adsorption step, the concentration of the easily adsorbed component at the outlet of the adsorption tower is increased. The first adsorption step of discharging the exhaust gas derived from the adsorption tower outlet to the outside of the system until a predetermined time before reaching the concentration of the easily adsorbable component at the inlet, and the concentration of the easily adsorbed component at the adsorption tower outlet at the adsorption tower inlet After reaching a predetermined time point before reaching the concentration of the adsorbed component, a second adsorption step of introducing the exhaust gas into another adsorption tower and using it in the pressurization step is performed, and after the adsorption step is completed in the depressurization step. By connecting the outlet of the adsorption tower to the inlet of the adsorption tower after the desorption process, the pressure of both towers is brought to a pressure near atmospheric pressure, and the exhaust gas discharged from the outlet of the adsorption tower in the washing process is Gas is introduced into another adsorption tower and used in the pressure raising step, and as the pressure raising step, the former adsorption tower is connected by connecting the inlet of the adsorption tower after the desorption step and the outlet of the adsorption tower after the adsorption step. Is connected to the inlet of the adsorption tower after the completion of the first raising step and the outlet of another adsorption tower in the washing step to pressurize the inside of the former adsorption tower with gas from the latter adsorption tower. It is preferable to perform the second pressurizing step and the third pressurizing step for pressurizing the inside of the former adsorbing tower by connecting the inlet of the adsorbing tower after the second pressurizing step and the outlet of the adsorbing tower after the first adsorbing step. (Claim 2).
【0012】さらに、上記方法において、上記減圧工程
と洗浄工程との間で、減圧した吸着塔の出口に送風手段
を連結して上記吸着塔内の圧力を所定の洗浄圧力に調整
する予備脱着工程を行うことにより、後述のようなより
優れた効果が得られる(請求項3)。Further, in the above method, a preliminary desorption step of adjusting the pressure in the adsorption tower to a predetermined washing pressure by connecting a blowing means to the outlet of the depressurized adsorption tower between the depressurization step and the washing step. By performing the above, a more excellent effect as described below can be obtained (claim 3).
【0013】[0013]
【作用】上記方法によれば、後記図3でも説明するよう
に、脱着工程前の洗浄工程において吸着塔に導入される
洗浄ガスの温度及び洗浄工程時の吸着塔内の温度を常温
よりも高い30℃以上に設定することにより、吸着剤か
らのCO脱着性が高まる一方、上記温度を50℃以下に
抑えることにより、COの吸着容量は十分に保持され、
結果的にCOの総脱着回収量は従来に比べて確実に増大
することとなる。しかも、後記図4で説明するように、
吸着塔内温度が高いほど製品ガスのCO純度も上がるの
で、常温で操作する場合に比べて製品純度も高まる。According to the above method, as will be described later with reference to FIG. 3, the temperature of the cleaning gas introduced into the adsorption tower in the cleaning step before the desorption step and the temperature in the adsorption tower during the cleaning step are higher than room temperature. By setting the temperature to 30 ° C or higher, the CO desorption property from the adsorbent is enhanced, while by suppressing the temperature to 50 ° C or lower, the CO adsorption capacity is sufficiently maintained,
As a result, the total amount of CO desorbed and recovered will surely increase as compared with the conventional case. Moreover, as explained in FIG. 4 below,
The higher the temperature in the adsorption tower, the higher the CO purity of the product gas, and therefore the higher the product purity as compared with the case of operating at room temperature.
【0014】さらに、請求項3記載のような予備脱着工
程を洗浄工程の前に行うことにより、吸着塔内の圧力を
確実に所定の洗浄圧力にすることができ、この状態で洗
浄ガスをスムーズに導入することができる。Further, by performing the preliminary desorption process as claimed in claim 3 before the cleaning process, the pressure in the adsorption tower can be surely set to a predetermined cleaning pressure, and in this state, the cleaning gas can be smoothly supplied. Can be introduced to.
【0015】[0015]
【実施例】図1は、本発明方法を実施するための装置の
一例を示したものである。FIG. 1 shows an example of an apparatus for carrying out the method of the present invention.
【0016】この装置は、4つの吸着塔A,B,C,D
と、原料ガスを圧縮するための単一の原料圧縮機11と
を備え、各吸着塔A〜Dには、原料ガス中の成分のうち
COを選択的に吸着する吸着剤、詳しくは、活性アルミ
ナ担体もしくはその表面にカーボンを添着したものにC
uClやCuCl2等の銅化合物が担持された吸着剤が
設けられている。上記原料圧縮機11は、共通の原料ガ
ス通路21と、各吸着塔A,B,C,Dについて設けら
れた弁31A,31B,31C,31Dをそれぞれ介し
て4つの吸着塔A,B,C,Dの上部(入口)に各々接
続されている。This apparatus comprises four adsorption towers A, B, C and D.
And a single raw material compressor 11 for compressing the raw material gas. In each of the adsorption towers A to D, an adsorbent that selectively adsorbs CO among the components in the raw material gas, specifically, an activity. C on the alumina carrier or its surface with carbon attached
An adsorbent carrying a copper compound such as uCl or CuCl 2 is provided. The raw material compressor 11 has four adsorption towers A, B, C via a common raw material gas passage 21 and valves 31A, 31B, 31C, 31D provided for the adsorption towers A, B, C, D, respectively. , D are respectively connected to the upper part (inlet).
【0017】各吸着塔A,B,C,Dの下部(出口)
は、各吸着塔A,B,C,Dについて設けられた弁33
A,33B,33C,33Dをそれぞれ介して共通のガ
ス還流通路23に接続され、このガス還流通路23は各
吸着塔A,B,C,Dについて設けられた弁36A,3
6B,36C,36Dをそれぞれ介して各吸着塔A,
B,C,Dの上部に接続されている。また、各吸着塔
A,B,C,Dの下部は、各吸着塔A,B,C,Dにつ
いて設けられた弁37A,37B,37C,37Dをそ
れぞれ介して共通のオフガス通路26に接続されるとと
もに、各吸着塔A,B,C,Dについて設けられた弁3
2A,32B,32C,32Dをそれぞれ介して共通の
ガス放出通路22に接続され、このガス放出通路22に
ブロア(送風手段)13が設けられている。さらに、各
吸着塔A,B,C,Dの下部は、各吸着塔A,B,C,
Dについて設けられた弁35A,35B,35C,35
D、及び共通の回収ガス通路25を介して真空ポンプ1
2の入口側に接続されており、この真空ポンプ12の出
口側にサージタンク4が接続されている。このサージタ
ンク4は、真空ポンプ12で回収された製品ガスを貯留
するためのものであり、このサージタンク4内に適宜製
品ガスが抽出されるようになっている。また、このサー
ジタンク4は共通の洗浄ガス通路24、及び各吸着塔
A,B,C,Dについて設けられた弁34A,34B,
34C,34Dをそれぞれ介して各吸着塔A,B,C,
Dの上部に接続されている。Lower part (exit) of each adsorption tower A, B, C, D
Is a valve 33 provided for each adsorption tower A, B, C, D
A common gas recirculation passage 23 is connected via A, 33B, 33C, and 33D, and this gas recirculation passage 23 is provided with valves 36A and 3 for the adsorption towers A, B, C, and D, respectively.
6B, 36C, 36D through the respective adsorption tower A,
It is connected to the upper part of B, C, and D. The lower portion of each adsorption tower A, B, C, D is connected to a common off-gas passage 26 via valves 37A, 37B, 37C, 37D provided for each adsorption tower A, B, C, D, respectively. And a valve 3 provided for each adsorption tower A, B, C, D
2A, 32B, 32C and 32D are respectively connected to a common gas discharge passage 22, and a blower (blowing means) 13 is provided in this gas discharge passage 22. Furthermore, the lower part of each adsorption tower A, B, C, D
Valves 35A, 35B, 35C, 35 provided for D
Vacuum pump 1 via D and common recovery gas passage 25
2 is connected to the inlet side of the vacuum pump 12, and the surge tank 4 is connected to the outlet side of the vacuum pump 12. The surge tank 4 is for storing the product gas collected by the vacuum pump 12, and the product gas is appropriately extracted into the surge tank 4. The surge tank 4 has a common cleaning gas passage 24 and valves 34A, 34B, provided for the adsorption towers A, B, C, D, respectively.
34C, 34D through the respective adsorption towers A, B, C,
It is connected to the upper part of D.
【0018】さらに、上記原料ガス通路21において原
料圧縮機11の直下流側の位置には、弁16を介して適
宜スチームが導入される加熱器14が配設されるととも
に、上記弁16を開閉制御する温度調整計15が設けら
れている。この温度調整計15は、上記加熱器14の直
下流側のガス温度を検出し、この原料ガス温度が、後記
洗浄工程時に各吸着塔A〜Dに導入される洗浄ガス温度
が30℃以上50℃以下に保たれるような温度となるよ
うに、弁16の開閉を通じて加熱器14の加熱制御を行
うものである。Further, a heater 14 into which steam is appropriately introduced via a valve 16 is arranged at a position immediately downstream of the raw material compressor 11 in the raw material gas passage 21, and the valve 16 is opened and closed. A temperature controller 15 for controlling is provided. The temperature regulator 15 detects the gas temperature on the downstream side of the heater 14, and the raw material gas temperature is 30 ° C. or higher when the cleaning gas temperature introduced into each of the adsorption towers A to D in the cleaning step is 50 ° C. or higher. The heating control of the heater 14 is performed by opening and closing the valve 16 so that the temperature is maintained at a temperature equal to or lower than ° C.
【0019】一方、各吸着塔A〜Dには、これら吸着塔
を加温するための温水管40が螺旋状に設けられている
(図1では便宜上吸着塔Aについてのみ図示)。この温
水管40の入口端部には温水循環ポンプ42を介して温
水タンク44が接続され、温水管40の出口端部は通路
43を通じて直接温水タンク44に接続されており、上
記温水循環ポンプ42の作動で温水タンク44内の温水
が温水管40を循環するようになっている。上記温水タ
ンク44には、弁46を通じて適宜スチームが供給さ
れ、上記弁46は、温水タンク44内の温度を検出する
温度調整計48によって開閉制御されるようになってい
る。温度調整計48は、上記温水管40によって加温さ
れる吸着塔内温度が洗浄工程において30℃以上50℃
以下となるように弁46の開閉制御を行うものである。On the other hand, in each of the adsorption towers A to D, a hot water pipe 40 for heating the adsorption towers is spirally provided (in FIG. 1, only the adsorption tower A is shown for convenience). A hot water tank 44 is connected to an inlet end of the hot water pipe 40 via a hot water circulation pump 42, and an outlet end of the hot water pipe 40 is directly connected to the hot water tank 44 through a passage 43. The hot water in the hot water tank 44 is circulated through the hot water pipe 40 by the operation of. Steam is appropriately supplied to the hot water tank 44 through a valve 46, and the valve 46 is controlled to be opened and closed by a temperature regulator 48 that detects the temperature in the hot water tank 44. The temperature controller 48 has a temperature in the adsorption tower heated by the hot water pipe 40 of 30 ° C. or higher and 50 ° C. or higher in the washing step.
The opening / closing control of the valve 46 is performed as follows.
【0020】次に、この装置において行われるCOの分
離回収工程を説明する。ここでは、吸着塔Aに主眼をお
き、脱着工程が終了した状態から説明を始める。なお、
吸着塔Aにおける工程と他の吸着塔B,C,Dにおける
工程との関係は図2に示す。Next, the CO separation and recovery process performed in this apparatus will be described. Here, the main focus is on the adsorption tower A, and the description will be started from the state where the desorption process is completed. In addition,
The relationship between the steps in the adsorption tower A and the steps in the other adsorption towers B, C and D is shown in FIG.
【0021】1)昇圧工程
まず、第1昇圧工程として、弁33B及び弁36Aを開
くことにより、脱着工程終了後の吸着塔Aの上部と吸着
工程終了後の吸着塔Bの下部とを接続し、減圧工程にお
ける吸着塔Bからの排ガスを、弁33B、ガス循環通路
23、及び弁36Aを通じて吸着塔A内に導入して、吸
着塔A内を大気圧近傍(約0kg/cm2G)まで昇圧する。1) Pressure raising step First, as the first pressure raising step, the valve 33B and the valve 36A are opened to connect the upper portion of the adsorption tower A after the desorption step and the lower portion of the adsorption tower B after the adsorption step. The exhaust gas from the adsorption tower B in the depressurization step is introduced into the adsorption tower A through the valve 33B, the gas circulation passage 23, and the valve 36A, and the inside of the adsorption tower A is brought to near atmospheric pressure (about 0 kg / cm 2 G). Boost.
【0022】次いで、第2昇圧工程として、サージタン
ク4から吸着塔Bに供給された洗浄ガスを弁33B,ガ
ス循環通路23、及び弁36Aを通じて吸着塔Aへ導入
するとともに、弁32Aを開き、吸着塔Aを通過した排
ガスをガス放出通路22を通じて外部へ排出する。Then, in the second pressurizing step, the cleaning gas supplied from the surge tank 4 to the adsorption tower B is introduced into the adsorption tower A through the valve 33B, the gas circulation passage 23, and the valve 36A, and the valve 32A is opened. The exhaust gas that has passed through the adsorption tower A is discharged to the outside through the gas discharge passage 22.
【0023】その後、第3昇圧工程として弁33B,3
2Aを閉じ、弁33D,36Aを開いて、吸着塔Dの吸
着工程後期における吸着排ガスを弁33D、ガス循環通
路23、及び弁36Aを通じて吸着塔Aに供給する。こ
れによって、吸着塔A内の圧力は大気圧近傍の圧力から
所定の吸着圧力(通常1.0〜5.0kg/cm2G程度)まで昇圧
される。After that, the valves 33B, 3 are operated as a third pressure increasing step.
2A is closed, valves 33D and 36A are opened, and the adsorption exhaust gas in the latter stage of the adsorption process of adsorption tower D is supplied to adsorption tower A through valve 33D, gas circulation passage 23, and valve 36A. As a result, the pressure in the adsorption tower A is increased from a pressure near atmospheric pressure to a predetermined adsorption pressure (usually about 1.0 to 5.0 kg / cm 2 G).
【0024】2)吸着工程
まず、第1吸着工程として、弁33D,36Aを閉じる
とともに弁31A,32Aを開き、原料ガス圧縮機11
で加圧した原料ガスを原料ガス通路21及び弁31Aを
通じて吸着塔Aに導き、吸着塔A内を通過した後の排ガ
スを弁37A及びオフガス通路26を通じて系外へ放出
する。ここで、上記原料ガスはCO,CO2,N2,H2
等からなる混合ガスであるが、これらの成分のうち易吸
着成分であるCOが吸着塔A内の吸着剤に加圧下で吸着
され、他の難吸着成分であるN2やH2がオフガス通路2
6及び弁37Aを通じて系外へ放出されることとなる。2) Adsorption Step First, as the first adsorption step, the valves 33D and 36A are closed and the valves 31A and 32A are opened, and the raw material gas compressor 11 is opened.
The raw material gas pressurized in 1 is led to the adsorption tower A through the raw material gas passage 21 and the valve 31A, and the exhaust gas after passing through the inside of the adsorption tower A is discharged to the outside of the system through the valve 37A and the off gas passage 26. Here, the source gases are CO, CO 2 , N 2 , and H 2.
CO, which is an easily adsorbed component of these components, is adsorbed to the adsorbent in the adsorption tower A under pressure, and other hardly adsorbed components such as N 2 and H 2 are mixed in the off-gas passage. Two
6 and the valve 37A to be released to the outside of the system.
【0025】このような第1吸着工程は、吸着塔Aから
の排ガス中のCO濃度が上記原料ガス中の一酸化炭素濃
度と等しくなる手前の所定の時点まで行い、この時点が
経過した後は第2吸着工程を行う。すなわち、弁32A
を閉じる一方で弁33A,36Cを開き、吸着塔Aから
の排ガスを弁33A、ガス循環通路23、及び弁36C
を通じて吸着塔Cへ導き、この吸着塔Cの昇圧に用い
る。The first adsorption step as described above is carried out until a predetermined time point before the CO concentration in the exhaust gas from the adsorption tower A becomes equal to the carbon monoxide concentration in the raw material gas, and after this time point has elapsed, The second adsorption step is performed. That is, the valve 32A
While closing the valve, the valves 33A and 36C are opened to allow the exhaust gas from the adsorption tower A to flow through the valve 33A, the gas circulation passage 23, and the valve 36C.
Through the adsorption tower C and used to raise the pressure of the adsorption tower C.
【0026】3)減圧工程
上記吸着工程を行った後、弁36Cを閉じるとともに弁
33A,36Bを開く。これにより、予定の吸着圧力ま
で昇圧されていた吸着塔A内の原料ガスが、弁33A、
ガス循環通路23、及び弁36Bを通じて吸着塔Bへ導
入され、吸着塔Aがほぼ大気圧まで減圧される一方、吸
着塔Bは真空状態からほぼ大気圧まで昇圧される。3) Depressurizing Step After performing the adsorption step, the valve 36C is closed and the valves 33A and 36B are opened. As a result, the raw material gas in the adsorption tower A, which has been pressurized to the planned adsorption pressure, is supplied to the valve 33A,
It is introduced into the adsorption tower B through the gas circulation passage 23 and the valve 36B, and the adsorption tower A is depressurized to almost atmospheric pressure, while the adsorption tower B is pressurized from the vacuum state to almost atmospheric pressure.
【0027】4)予備脱着工程
上記減圧工程では、吸着塔A内の圧力と吸着塔B内の圧
力とを均等にするだけなので、吸着塔A内の圧力が洗浄
圧力(ここでは0kg/cm2G)まで完全に下がらない場合
がある。そこで、減圧工程終了後、この予備脱着工程に
おいて、弁33Aを閉じるとともに弁32Aを開き、か
つブロア13を作動させることにより、吸着塔A内のガ
スを積極的に系外に逃がし、これによって吸着塔A内の
圧力を確実に洗浄圧力まで降下させる。このような予備
脱着工程の実行によって、次の洗浄工程における洗浄ガ
スの導入が極めてスムーズに進行することとなる。4) Preliminary desorption step In the above depressurization step, since the pressure inside the adsorption tower A and the pressure inside the adsorption tower B are only equalized, the pressure inside the adsorption tower A is the washing pressure (here, 0 kg / cm 2 It may not be completely lowered to G). Therefore, after the depressurization step is completed, in this preliminary desorption step, the valve 33A is closed, the valve 32A is opened, and the blower 13 is actuated to actively release the gas in the adsorption tower A to the outside of the system, thereby adsorbing the gas. Make sure that the pressure in the tower A is lowered to the washing pressure. By performing such a preliminary desorption process, the introduction of the cleaning gas in the next cleaning process proceeds extremely smoothly.
【0028】5)洗浄工程
この洗浄工程では、弁33A,36B,34A,32B
を開き、サージタンク4内に貯留されている製品ガスの
一部を洗浄ガス通路24及び弁34Aを通じて吸着塔A
内に導入する。これにより、この吸着塔A内に残存する
難吸着成分がパージされ、このとき吸着塔Aから導出さ
れた排ガスは、弁33A、ガス循環通路23、及び弁3
6Bを通じて吸着塔Bへ導入され、さらに吸着塔Bを通
過した後に弁32B及び排出通路22を通じて外部へ排
出される。5) Washing process In this washing process, the valves 33A, 36B, 34A, 32B are used.
Open and open a part of the product gas stored in the surge tank 4 through the cleaning gas passage 24 and the valve 34A.
Introduce inside. As a result, the difficult-to-adsorb components remaining in the adsorption tower A are purged, and the exhaust gas discharged from the adsorption tower A at this time includes the valve 33A, the gas circulation passage 23, and the valve 3
It is introduced into the adsorption tower B through 6B, further passed through the adsorption tower B, and then discharged to the outside through the valve 32B and the discharge passage 22.
【0029】この洗浄工程では、上記加熱器14及び温
水管40による温度調節のために、吸着塔A内の温度が
30℃以上50℃以下に保たれた状態で運転されること
となる。In this washing step, the temperature in the adsorption tower A is maintained at 30 ° C. or higher and 50 ° C. or lower in order to control the temperature by the heater 14 and the hot water pipe 40.
【0030】6)脱着工程
上記洗浄工程終了後、弁33A,34A,36Bを閉
じ、吸着塔Dの脱着工程が終了するまで吸着塔Aを休止
させておく。そして、吸着塔Dの脱着工程が終了すると
同時に弁35Aを開き、吸着塔Aにおいて脱着工程を開
始する。この脱着工程においては、真空ポンプ12の作
動により、吸着塔A内に吸着されている易吸着成分(C
O)が減圧脱着され、弁35A及び回収ガス通路25を
通じてサージタンク4内に回収される。この吸着塔Aで
の脱着工程は、他の吸着塔Bで吸着工程、吸着塔Cで減
圧工程、洗浄工程、及び休止工程、吸着塔Dで昇圧工程
がそれぞれ行われている間に引き続いて行うようにす
る。このような脱着工程により、吸着塔A内の圧力は最
終的に約−1kg/cm2Gまで減圧される。6) Desorption process After the washing process is completed, the valves 33A, 34A and 36B are closed, and the adsorption tower A is stopped until the desorption process of the adsorption tower D is completed. Then, at the same time when the desorption process of the adsorption tower D is completed, the valve 35A is opened and the desorption process of the adsorption tower A is started. In this desorption process, the easily adsorbed component (C) adsorbed in the adsorption tower A is activated by the operation of the vacuum pump 12.
O) is desorbed and desorbed under reduced pressure, and is recovered in the surge tank 4 through the valve 35A and the recovery gas passage 25. The desorption process in the adsorption tower A is continuously performed while the adsorption process is performed in another adsorption tower B, the decompression process, the washing process, and the rest process in the adsorption tower C, and the pressurization process is performed in the adsorption tower D. To do so. By such a desorption process, the pressure in the adsorption tower A is finally reduced to about -1 kg / cm 2 G.
【0031】以上、1)〜6)の工程を吸着塔Aについ
て順に繰り返すことにより、COの分離回収を行うこと
ができる。By repeating the above steps 1) to 6) in sequence for the adsorption tower A, CO can be separated and recovered.
【0032】このような方法によれば、洗浄工程時にお
ける吸着塔内温度を30℃以上50℃以下に保つことに
よって、COの脱着量を従来よりも向上させることが可
能である。According to such a method, the desorption amount of CO can be improved more than before by maintaining the temperature in the adsorption tower during the washing step at 30 ° C. or higher and 50 ° C. or lower.
【0033】図3は、上記と同様の装置において同様の
工程を行った時の、洗浄工程時における吸着塔内温度と
吸着剤1cc当たりのCO脱気量との関係を示したもの
である。この図から、洗浄工程温度が約40℃の点でC
O脱気量がピークを迎えることがわかる。これは、洗浄
工程温度が低すぎるとCOが脱着しにくく、逆に洗浄工
程温度が高すぎるとCOの吸着容量が減り、両者のバラ
ンスのとれた温度が約40℃であるためであると考察で
きる。ここで、従来の常温下での運転において得られる
CO脱気量は最高で約9.5cc/ccであるので、上
記図3に示す結果から、洗浄工程温度を30℃以上50
℃以下に保つことにより、従来法と比べてより多くのC
O脱気量を確実に得ることができるという結論に達す
る。FIG. 3 shows the relationship between the temperature in the adsorption tower and the CO degassing amount per 1 cc of the adsorbent during the washing step when the same steps are performed in the same apparatus as described above. From this figure, it can be seen that C
It can be seen that the degassing amount of O reaches its peak. It is considered that this is because if the washing process temperature is too low, CO is difficult to be desorbed, and conversely, if the washing process temperature is too high, the CO adsorption capacity decreases, and the balanced temperature between the two is about 40 ° C. it can. Here, since the maximum amount of CO deaeration obtained in the conventional operation at normal temperature is about 9.5 cc / cc, from the results shown in FIG.
By keeping the temperature below ℃, more C than the conventional method
We come to the conclusion that an O 2 degassing rate can be reliably obtained.
【0034】図4は、上記装置における、各工程での吸
着塔内温度の平均温度と製品ガスにおけるCO純度との
関係を示したものである。吸着塔内の平均温度は洗浄温
度と略等しいので、この図4は洗浄温度とガス純度との
関係を近似的に示したものであるといえる。FIG. 4 shows the relationship between the average temperature of the temperature inside the adsorption tower in each step and the CO purity in the product gas in the above apparatus. Since the average temperature in the adsorption tower is substantially equal to the cleaning temperature, it can be said that this FIG. 4 approximately shows the relationship between the cleaning temperature and the gas purity.
【0035】この図4からわかるように、上記平均温度
が高いほど、製品ガスのCO純度は高くなる。これは、
平均温度の増大に伴って洗浄ガスによる塔内の洗浄効果
が高まり、難吸着成分がより確実に除去されることに起
因すると考察できる。従って、上記のように洗浄工程温
度を常温よりも高い30℃〜50℃に保つことにより、
製品ガス純度も向上することとなる。As can be seen from FIG. 4, the higher the average temperature, the higher the CO purity of the product gas. this is,
It can be considered that this is because the cleaning effect in the tower by the cleaning gas increases with the increase of the average temperature, and the hardly adsorbed components are removed more reliably. Therefore, as described above, by maintaining the cleaning process temperature at 30 ° C to 50 ° C higher than room temperature,
Product gas purity will also be improved.
【0036】なお、上記実施例では原料ガス及び吸着塔
の温度管理を行うことにより洗浄工程時の温度を一定に
保つようにしているが、本発明では温度制御のための手
段を問わない。また本発明では、上記のような4つの吸
着塔A〜Dを用いる方法に限らず、昇圧工程、吸着工
程、減圧工程、洗浄工程、及び脱着工程を順に行うPS
A法について適用できるものである。In the above embodiment, the temperature of the raw material gas and the adsorption tower is controlled to keep the temperature during the cleaning step constant, but the present invention does not require any means for controlling the temperature. Further, in the present invention, the method is not limited to the method using the four adsorption towers A to D as described above, and PS that sequentially performs the pressurizing step, the adsorbing step, the depressurizing step, the washing step, and the desorbing step.
This is applicable to method A.
【0037】[0037]
【発明の効果】以上のように本発明は、昇圧工程、吸着
工程、減圧工程、洗浄工程、及び脱着工程を順に行うと
ともに、上記洗浄工程において、吸着塔に導入される洗
浄ガスの温度及び洗浄工程時の吸着塔内の温度を30℃
以上50℃以下に保つようにしたものであるので、多大
な設備投資を行うことなく、従来法と比べてCOの脱着
回収量を容易にかつ確実に増大させることができる効果
がある。しかも、このような温度管理によって洗浄効果
が増大し、より純度の高いCOを常時安定して回収する
ことができる効果が得られる。As described above, according to the present invention, the pressurizing step, the adsorbing step, the depressurizing step, the washing step, and the desorbing step are carried out in order, and in the washing step, the temperature and the washing of the washing gas introduced into the adsorption tower The temperature in the adsorption tower during the process is 30 ℃
Since the temperature is kept at 50 ° C. or lower, there is an effect that the desorption recovery amount of CO can be easily and surely increased as compared with the conventional method without making a large capital investment. In addition, such temperature control increases the cleaning effect, and the effect that CO of higher purity can be constantly and stably recovered can be obtained.
【0038】さらに、請求項3記載の方法のように、減
圧工程と洗浄工程との間で、減圧した吸着塔の出口に送
風手段を連結して上記吸着塔内の圧力を所定の洗浄圧力
に調整する予備脱着工程を行うことにより、吸着塔内の
圧力を確実に洗浄圧力まで下げることができ、これによ
って洗浄工程での洗浄ガスの導入をよりスムーズに行う
ことができる効果がある。Further, as in the method of claim 3, between the depressurizing step and the washing step, a blowing means is connected to the outlet of the depressurized adsorption tower so that the pressure in the adsorption tower becomes a predetermined washing pressure. By performing the preliminary desorption process to be adjusted, the pressure in the adsorption tower can be surely lowered to the cleaning pressure, which has the effect that the cleaning gas can be smoothly introduced in the cleaning process.
【図1】本発明方法を実施するための装置の一例を示す
フローシートである。FIG. 1 is a flow sheet showing an example of an apparatus for carrying out the method of the present invention.
【図2】上記装置における各吸着塔での工程を示すタイ
ムチャートである。FIG. 2 is a time chart showing steps in each adsorption tower in the above apparatus.
【図3】上記方法における洗浄工程温度とCO脱気量と
の関係を示すグラフである。FIG. 3 is a graph showing a relationship between a cleaning process temperature and a CO degassing amount in the above method.
【図4】上記方法における吸着塔内平均温度と製品ガス
のCO純度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the average temperature in the adsorption tower and the CO purity of the product gas in the above method.
A,B,C,D 吸着塔 4 サージタンク 12 真空ポンプ 13 ブロア(送風手段) 14 加熱器 15,48 温度調節計 21 原料ガス通路 22 ガス放出通路 23 ガス循環通路 24 洗浄ガス通路 25 ガス吸引通路 26 オフガス通路 40 温水管 A, B, C, D adsorption tower 4 surge tank 12 Vacuum pump 13 Blower (Blower) 14 heater 15,48 Temperature controller 21 Raw material gas passage 22 Gas release passage 23 Gas circulation passage 24 Cleaning gas passage 25 gas suction passage 26 Off-gas passage 40 hot water pipe
───────────────────────────────────────────────────── フロントページの続き (72)発明者 糟谷 文彦 兵庫県加古川市加古川町寺家町65−1 701号 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Fumihiko Kasuya 65-1, Teriya-cho, Kakogawa-cho, Kakogawa-shi, Hyogo No. 701
Claims (3)
た吸着剤を備えた吸着塔を用いて原料ガス中から一酸化
炭素を分離回収する圧力スイング吸着方法であって、一
酸化炭素を含む原料ガスを吸着塔の入口から出口に流し
て吸着剤に易吸着成分を吸着させる吸着工程と、吸着工
程終了後に吸着塔内の圧力を大気圧近傍の圧力まで減ら
し、この吸着塔から排ガスを導出する減圧工程と、製品
ガスの一部を吸着塔内に送り込んで難吸着成分を除去
し、吸着塔から排ガスを導出する洗浄工程と、吸着塔内
を大気圧以下に減圧し、易吸着成分を脱着して製品ガス
を回収する脱着工程と、脱着工程後の吸着塔内圧力を所
定の吸着圧力まで高める昇圧工程とを順に繰り返すとと
もに、上記洗浄工程において洗浄工程時の吸着塔内の温
度を30℃以上50℃以下に保つことを特徴とする一酸
化炭素を含む混合ガスから一酸化炭素を分離回収する圧
力スイング吸着方法。1. A pressure swing adsorption method for separating and recovering carbon monoxide from a raw material gas using an adsorption tower equipped with an adsorbent in which a copper compound is supported on an activated alumina carrier, the raw material containing carbon monoxide. An adsorption step of adsorbing an easily adsorbable component on the adsorbent by flowing gas from the inlet to the outlet of the adsorption tower, and reducing the pressure inside the adsorption tower to a pressure near atmospheric pressure after the adsorption step, and deriving exhaust gas from this adsorption tower. Decompression process, a cleaning process in which part of the product gas is sent into the adsorption tower to remove difficultly adsorbed components and exhaust gas is discharged from the adsorption tower, and the adsorption tower is depressurized to atmospheric pressure or less to desorb easily adsorbed components. Then, the desorption step of recovering the product gas and the step of increasing the pressure in the adsorption tower after the desorption step to a predetermined adsorption pressure are sequentially repeated, and the temperature in the adsorption tower during the washing step in the washing step is set to 30 ° C. 50 ° C or above A pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide, which is characterized in that:
スから一酸化炭素を分離回収する圧力スイング吸着方法
において、4つの吸着塔を用い、各吸着塔について上記
工程を互いに位相をずらして繰り返すとともに、上記吸
着工程として、吸着塔出口における易吸着成分の濃度が
吸着塔入口における易吸着成分の濃度に達する手前の所
定の時点まで、吸着塔出口から導出した排ガスを系外へ
放出する第1吸着工程と、吸着塔出口における易吸着成
分の濃度が吸着塔入口における易吸着成分の濃度に達す
る手前の所定の時点に達した後に上記排ガスを他の吸着
塔内に導入してその昇圧工程に使用する第2吸着工程と
を行い、上記減圧工程において吸着工程終了後の吸着塔
の出口と脱着工程終了後の吸着塔の入口とを接続するこ
とにより両塔の圧力を大気圧近傍の圧力にし、上記洗浄
工程において吸着塔出口から導出された排ガスを他の吸
着塔内に導入してその昇圧工程に使用し、上記昇圧工程
として、脱着工程が終了した吸着塔の入口と吸着工程が
終了した吸着塔の出口とを接続して前者吸着塔を昇圧す
る第1昇圧工程と、第1昇圧工程終了後の吸着塔の入口
と洗浄工程にある他の吸着塔の出口とを接続して後者吸
着塔からのガスにより前者吸着塔内を昇圧する第2昇圧
工程と、第2昇圧工程の終了した吸着塔入口と上記第1
吸着工程の終了した吸着塔出口とを接続して前者吸着塔
内を昇圧する第3昇圧工程とを行うことを特徴とする一
酸化炭素を含む混合ガスから一酸化炭素を分離回収する
圧力スイング吸着方法。2. A pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide according to claim 1, wherein four adsorption towers are used, and the steps for each adsorption tower are out of phase with each other. Repeatedly, as the adsorption step, the exhaust gas discharged from the adsorption tower outlet is discharged to the outside of the system until a predetermined time before the concentration of the easily adsorbed ingredient at the adsorption tower outlet reaches the concentration of the easily adsorbed ingredient at the adsorption tower inlet. 1 Adsorption step, and after the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches a predetermined point before reaching the concentration of the easily adsorbed component at the inlet of the adsorption tower, the exhaust gas is introduced into another adsorption tower to increase the pressure. The second adsorption step used for the above, and by connecting the outlet of the adsorption tower after completion of the adsorption step and the inlet of the adsorption tower after completion of the desorption step in the depressurization step, the pressure of both towers To a pressure near the atmospheric pressure, and the exhaust gas derived from the adsorption tower outlet in the cleaning step is introduced into another adsorption tower and used in the pressurizing step, and as the pressurizing step, of the adsorption tower after the desorption step is completed. A first pressurizing step for connecting the inlet and an outlet of the adsorption tower after the adsorption step to pressurize the former adsorption tower, an inlet of the adsorption tower after the completion of the first pressurizing step, and an outlet of another adsorption tower in the washing step And a second pressure raising step for increasing the pressure in the former adsorption tower by gas from the latter adsorption tower, the adsorption tower inlet after the second pressure raising step and the first
A pressure swing adsorption for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide, characterized in that a third pressurizing step for pressurizing the inside of the former adsorption tower by connecting with the outlet of the adsorption tower after the adsorption step is performed. Method.
む混合ガスから一酸化炭素を分離回収する圧力スイング
吸着方法において、上記減圧工程と洗浄工程との間で、
減圧した吸着塔の出口に送風手段を連結して上記吸着塔
内の圧力を所定の洗浄圧力に調整する予備脱着工程を行
うことを特徴とする一酸化炭素を含む混合ガスから一酸
化炭素を分離回収する圧力スイング吸着方法。3. A pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide according to claim 1 or 2, wherein between the depressurizing step and the washing step,
Separation of carbon monoxide from a mixed gas containing carbon monoxide, characterized by performing a preliminary desorption step of connecting a blowing means to the outlet of the depressurized adsorption tower to adjust the pressure in the adsorption tower to a predetermined cleaning pressure. Pressure swing adsorption method to recover.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3181052A JP3015839B2 (en) | 1991-07-22 | 1991-07-22 | Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3181052A JP3015839B2 (en) | 1991-07-22 | 1991-07-22 | Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0523523A true JPH0523523A (en) | 1993-02-02 |
JP3015839B2 JP3015839B2 (en) | 2000-03-06 |
Family
ID=16093937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3181052A Expired - Lifetime JP3015839B2 (en) | 1991-07-22 | 1991-07-22 | Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3015839B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5529970A (en) * | 1994-04-29 | 1996-06-25 | Air Products And Chemicals, Inc. | CO adsorbents with hysteresis |
US5683492A (en) * | 1995-05-24 | 1997-11-04 | Linde Aktiengesellschaft | Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen |
KR101594893B1 (en) * | 2014-12-04 | 2016-02-18 | 재단법인 포항산업과학연구원 | Pressure swing adsorption process using carbon monoxide selective absorbent |
JP2021094490A (en) * | 2019-12-13 | 2021-06-24 | 株式会社豊田中央研究所 | Hydrocarbon production device, hydrocarbon production method, and computer program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101778412B1 (en) | 2015-12-24 | 2017-09-13 | 주식회사 포스코 | Adsorbent for selective adsorption of carbon monoxide and method for preparation thereof |
-
1991
- 1991-07-22 JP JP3181052A patent/JP3015839B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5529970A (en) * | 1994-04-29 | 1996-06-25 | Air Products And Chemicals, Inc. | CO adsorbents with hysteresis |
US5683492A (en) * | 1995-05-24 | 1997-11-04 | Linde Aktiengesellschaft | Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen |
KR101594893B1 (en) * | 2014-12-04 | 2016-02-18 | 재단법인 포항산업과학연구원 | Pressure swing adsorption process using carbon monoxide selective absorbent |
JP2021094490A (en) * | 2019-12-13 | 2021-06-24 | 株式会社豊田中央研究所 | Hydrocarbon production device, hydrocarbon production method, and computer program |
Also Published As
Publication number | Publication date |
---|---|
JP3015839B2 (en) | 2000-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3232003B2 (en) | Reflux in pressure swing adsorption method | |
JP2744596B2 (en) | Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture | |
KR100288568B1 (en) | Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air | |
JP2634138B2 (en) | Separation method of gas components by vacuum swing adsorption method | |
KR100300939B1 (en) | Improved vacuum pressure swing adsorption process | |
KR880000513B1 (en) | Process for removing a nitrogen gas from mixture comprising n2 and co | |
JP3172646B2 (en) | Improved vacuum swing adsorption method | |
JP3215713B2 (en) | Nitrogen gas separation method | |
EP0922481B1 (en) | PSA process using simultaneous top and bottom evacuation of adsorbent bed | |
JPH07194919A (en) | Method of adjusting vacuum pressure swing type adsorber | |
JPS6132243B2 (en) | ||
JPH0244569B2 (en) | ||
JPH07745A (en) | Gas separation | |
JP3015839B2 (en) | Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide | |
JP4895467B2 (en) | Oxygen concentration method and oxygen concentration apparatus | |
JPH07136444A (en) | Pressure swing adsorption method for recovering carbon monoxide from mixed gas | |
JPH0810551A (en) | Method for removing carbon dioxide from raw gas | |
JP2529929B2 (en) | Method for separating and recovering carbon monoxide gas | |
JPH0459358B2 (en) | ||
JP2529928B2 (en) | Method for separating and recovering carbon monoxide gas | |
WO1995033681A1 (en) | Oxygen generating method based on pressure variation adsorption separation | |
JP3889125B2 (en) | Gas separation method | |
JP3561886B2 (en) | Pressure fluctuation adsorption separation method | |
JPH0360524B2 (en) | ||
JPS6219882B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 12 |