JPH05234799A - Manufacture of single-crystal magnetic film - Google Patents

Manufacture of single-crystal magnetic film

Info

Publication number
JPH05234799A
JPH05234799A JP5471892A JP5471892A JPH05234799A JP H05234799 A JPH05234799 A JP H05234799A JP 5471892 A JP5471892 A JP 5471892A JP 5471892 A JP5471892 A JP 5471892A JP H05234799 A JPH05234799 A JP H05234799A
Authority
JP
Japan
Prior art keywords
substrate
film
single crystal
magnetic
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5471892A
Other languages
Japanese (ja)
Inventor
Atsuhito Sawabe
厚仁 澤邊
Hiromi Fukuya
ひろみ 福家
Tetsuhiko Mizoguchi
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH05234799A publication Critical patent/JPH05234799A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to manufacture a single-crystal magnetic film with a high productivity by setting the energy of a charged beam to a specific range and maintaining the temperature of a substrate within a specific range when an Fe-based or Fe-Co-based single-crystal magnetic film is manufactured on a substrate by sputtering a target with a charged beam. CONSTITUTION:A substrate holder 2 is disposed within a vacuum chamber 1, and a substrate 3 is mounted on this substrate holder 2. A target holder 4 is rotatably positioned within the vacuum chamber 1, and targets 5 are mounted on this target holder 4. A charged beam generating source 6 is placed within the chamber 1 in such a manner as to be opposite to the target 5. In order to produce an Fe-based or Fe-Co-based single-crystal magnetic film over the substrate, the temperature of the substrate is set within a range between a room temperature and 500 deg.C, and the energy of the charged beam is set within a range between 300 and 500 eV, whereby a single crystal possessing a superior magnetic property can be obtained with a high productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種平面型磁気素子の磁
性膜として用いられるFe系またはFe−Co系の単結
晶磁性膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an Fe-based or Fe-Co-based single crystal magnetic film used as a magnetic film of various planar magnetic elements.

【0002】[0002]

【従来の技術】近年、LSIなどに代表される集積回路
技術の進歩に伴い、各種電子機器の小型化が盛んに進め
られている。これに伴い、機器全体に占める電源部の容
積率が増大する傾向が顕著になってきた。これは、他の
部品と比較して、電源部に必須のインダクタやトランス
などの磁気部品の小型・集積化が遅れているためであ
る。この課題を解決するために、平面コイルと磁性体と
を組み合わせた平面型の磁気素子が提案され、その高性
能化が検討されている。これらの平面型磁気素子は、薄
膜作製技術、微細加工技術など、薄膜プロセスを用いて
製造されるようになってきている。超小型の平面型磁気
素子を製造する場合、磁性薄膜の磁気特性が重要であ
る。
2. Description of the Related Art In recent years, with the progress of integrated circuit technology represented by LSI and the like, miniaturization of various electronic devices has been actively promoted. Along with this, the tendency that the volume ratio of the power supply unit in the entire device increases has become remarkable. This is because miniaturization and integration of magnetic components such as inductors and transformers essential for the power supply unit are delayed as compared with other components. In order to solve this problem, a planar magnetic element in which a planar coil and a magnetic body are combined has been proposed, and its performance improvement is being studied. These plane type magnetic elements have come to be manufactured using a thin film process such as a thin film manufacturing technique and a fine processing technique. The magnetic characteristics of the magnetic thin film are important when manufacturing an ultra-small planar magnetic element.

【0003】まず、高周波電力用素子としての応用を考
えた場合、直流重畳電流によって発生する磁界による磁
性膜の飽和が問題となる。したがって、磁性膜は飽和磁
化が高いことが要求される。また、図2(a)に示すよ
うなスパイラルコイル11に交流電流が流されると、図
中矢印で示す方向に磁界が発生する。この場合、コイル
を挟む磁性膜12の磁化ベクトルが図2(b)に示すよ
うな方向であり、90度磁壁に囲まれたような磁区構造
を有しているならば、この磁性膜12の磁化過程は回転
磁化のみとなる。その結果、高周波特性に優れた低損失
インダクタを得ることができる。
First, when the application as a high frequency power element is considered, the saturation of the magnetic film due to the magnetic field generated by the DC superimposed current becomes a problem. Therefore, the magnetic film is required to have high saturation magnetization. Further, when an alternating current is applied to the spiral coil 11 as shown in FIG. 2A, a magnetic field is generated in the direction indicated by the arrow in the figure. In this case, if the magnetization vector of the magnetic film 12 sandwiching the coil is in the direction as shown in FIG. 2B and has a magnetic domain structure surrounded by 90 degree domain walls, the magnetic film 12 has The only magnetization process is rotational magnetization. As a result, a low loss inductor having excellent high frequency characteristics can be obtained.

【0004】各種の超小型の平面型磁気素子に、パーマ
ロイ、センダスト、Co系アモルファス合金などの従来
の軟磁性薄膜を用いると、飽和磁化が不十分であること
が多い。そこで、平面型磁気素子の高性能化・高集積化
を実現するためには、2テスラ級の飽和磁化を有する磁
性体薄膜を用いることが検討されている。Fe系および
Fe−Co系の磁性体は、3d遷移金属系の磁性体のな
かでも自発磁化の値が最も大きく、飽和磁化が2テスラ
を超え得ることから、新しい磁性薄膜材料として有望視
されている。しかし、これらの材料系は、磁気異方性K
および磁歪λが大きく、軟磁性薄膜化が困難である。ま
た、動作周波数が高周波化するに伴って低損失化が要求
されるため、磁性膜の単結晶化により図2(b)に示す
ように磁区を制御すること、および単結晶磁性膜と絶縁
膜、非磁性金属膜または半導体膜との組み合わせによる
多層化が重要になる。
When conventional soft magnetic thin films such as permalloy, sendust, and Co type amorphous alloy are used for various ultra-small plane type magnetic elements, saturation magnetization is often insufficient. Therefore, in order to realize high performance and high integration of the planar magnetic element, it has been considered to use a magnetic thin film having a saturation magnetization of 2 Tesla class. Fe-based and Fe-Co-based magnetic materials have the largest spontaneous magnetization value among 3d transition metal-based magnetic materials, and their saturation magnetization can exceed 2 tesla. Therefore, they are regarded as promising new magnetic thin film materials. There is. However, these material systems have a magnetic anisotropy K
Also, the magnetostriction λ is large, and it is difficult to form a soft magnetic thin film. Further, as the operating frequency becomes higher, lower loss is required. Therefore, the magnetic domains are controlled by single crystallization of the magnetic film as shown in FIG. 2B, and the single crystal magnetic film and the insulating film are controlled. It is important to form a multilayer by combining with a non-magnetic metal film or a semiconductor film.

【0005】現在までに、Fe系単結晶膜は分子線エピ
タキシー(MBE)などの真空蒸着法を用いて作製され
ている。この方法を用いることにより、Fe単結晶膜を
作製することができるが、スループットが低いという問
題がある。したがって、Fe系およびFe−Co系の単
結晶膜を、より生産性の高いスパッタリングなどの方法
により作製できることが好ましい。
To date, Fe-based single crystal films have been produced using a vacuum deposition method such as molecular beam epitaxy (MBE). By using this method, an Fe single crystal film can be produced, but there is a problem of low throughput. Therefore, it is preferable that the Fe-based and Fe-Co-based single crystal films can be produced by a method such as sputtering with higher productivity.

【0006】[0006]

【発明が解決しようとする課題】以上のように従来は超
小型の平面型磁気素子を製造する際にMBE法によりF
e単結晶膜を作製する例が知られているが、生産性が低
いという問題がある。本発明の目的は、超小型の平面型
磁気素子に適用されるFe系またはFe−Co系単結晶
膜を、高い生産性で製造できる方法を提供することにあ
る。
As described above, in the past, when manufacturing an ultra-small planar magnetic element, the F
Although an example of producing an e single crystal film is known, there is a problem of low productivity. An object of the present invention is to provide a method capable of producing a Fe-based or Fe-Co-based single crystal film applied to a microminiature planar magnetic element with high productivity.

【0007】[0007]

【課題を解決するための手段と作用】本発明の単結晶磁
性膜の製造方法は、荷電ビームによりターゲットをスパ
ッタリングして基板上にFe系またはFe−Co系の単
結晶磁性膜を製造するにあたり、荷電ビームのエネルギ
ーを300〜5000eVの範囲に設定し、基板温度を
室温〜500℃の範囲に保持することを特徴とするもの
である。
The method for producing a single crystal magnetic film of the present invention is to produce a Fe-based or Fe-Co-based single crystal magnetic film on a substrate by sputtering a target with a charged beam. The energy of the charged beam is set in the range of 300 to 5000 eV, and the substrate temperature is kept in the range of room temperature to 500 ° C.

【0008】図1に本発明において用いられる単結晶薄
膜製造装置を示す。真空槽1内には基板ホルダ2が設け
られ、この基板ホルダ2上に基板3が載置される。基板
ホルダ2はヒータにより昇温可能な構造になっている。
真空槽1内にはターゲットホルダ4が回転可能に設置さ
れ、このターゲットホルダ4上にターゲット5が載置さ
れる。真空槽1にはターゲット5に対向するように、荷
電ビーム発生源6が設けられる。また、真空槽1には質
量分析器7が取り付けられている。
FIG. 1 shows a single crystal thin film manufacturing apparatus used in the present invention. A substrate holder 2 is provided in the vacuum chamber 1, and a substrate 3 is placed on the substrate holder 2. The substrate holder 2 has a structure that can be heated by a heater.
A target holder 4 is rotatably installed in the vacuum chamber 1, and a target 5 is placed on the target holder 4. A charged beam generating source 6 is provided in the vacuum chamber 1 so as to face the target 5. A mass spectrometer 7 is attached to the vacuum chamber 1.

【0009】真空槽の材質は特に限定されない。真空槽
は1×10-6Torr以下まで真空排気できることが望
ましい。真空排気の具体的な方法については特に限定さ
れない。ただし、真空槽内の雰囲気に含まれるH2 Oお
よびO2 の分圧を10-9Torr以下に抑えることが好
ましい。このため、真空槽はAl合金、内部を鏡面処理
したステンレス合金などで作製することが好ましい。ま
た、スパッタリングガス、パージガスなどの配管内も鏡
面仕上げすることが好ましい。真空槽内におけるH2
の絶対量を管理する方法は特に限定されないが、排気側
で露点をモニターすることが有効である。
The material of the vacuum chamber is not particularly limited. It is desirable that the vacuum chamber can be evacuated to 1 × 10 −6 Torr or less. The specific method of evacuation is not particularly limited. However, it is preferable to suppress the partial pressure of H 2 O and O 2 contained in the atmosphere in the vacuum chamber to 10 -9 Torr or less. For this reason, it is preferable that the vacuum chamber is made of an Al alloy, a stainless alloy having a mirror-finished interior, or the like. Further, it is preferable that the inside of the piping for sputtering gas, purge gas, etc. is also mirror-finished. H 2 O in a vacuum chamber
The method of managing the absolute amount of is not particularly limited, but it is effective to monitor the dew point on the exhaust side.

【0010】基板としては、MgO、Si、CaF2
GaAs、各種金属などからなる単結晶基板が挙げられ
るが、特に限定されない。基板温度は室温〜500℃の
範囲に保持される。ただし、基板によって数値が異なる
が、基板が室温では500nm以上の膜厚において単結
晶を得ることは困難である。例えば単結晶MgO基板で
は150〜350℃の間が最適である。この際、基板面
内における結晶性の均一化を図るために、基板ホルダの
面内温度分布を5%以下に抑えることが好ましい。その
方法として、ヒータをいくつかのブロックに分割し、そ
れぞれのブロックに温度センサを取り付けて温度を制御
する方法が挙げられるが、これに限定されない。また、
単結晶磁性膜を多層化する場合の層間膜の材料は、磁性
薄膜と反応しにくい材料であることが重要であるが、特
に限定されない。具体的には、Si、Ge、SiO2
GaAs、GaAlAs、MgO、Al2 3 、Six
y 、Alx y 、SiC、ダイヤモンド、CaF2
Ta2 5 などが挙げられる。ターゲットとしては、基
板上に形成しようとする単結晶膜とほぼ同一組成のFe
系またはFe−Co系のターゲットが用いられる。
As the substrate, MgO, Si, CaF 2 ,
A single crystal substrate made of GaAs, various metals, etc. may be mentioned, but it is not particularly limited. The substrate temperature is kept in the range of room temperature to 500 ° C. However, it is difficult to obtain a single crystal with a film thickness of 500 nm or more at room temperature, although the numerical values vary depending on the substrate. For example, in the case of a single crystal MgO substrate, the optimum temperature is 150 to 350 ° C. At this time, it is preferable to suppress the in-plane temperature distribution of the substrate holder to 5% or less in order to make the crystallinity uniform in the in-plane of the substrate. As a method thereof, there is a method of dividing the heater into some blocks and attaching a temperature sensor to each block to control the temperature, but the method is not limited to this. Also,
It is important that the material of the interlayer film when the single crystal magnetic film is formed into multiple layers is a material that does not easily react with the magnetic thin film, but is not particularly limited. Specifically, Si, Ge, SiO 2 ,
GaAs, GaAlAs, MgO, Al 2 O 3 , Si x
N y , Al x N y , SiC, diamond, CaF 2 ,
Ta 2 O 5 or the like can be mentioned. As the target, Fe having almost the same composition as the single crystal film to be formed on the substrate is used.
Based or Fe-Co based targets are used.

【0011】スパッタリングガスとしてはArが代表的
であるが、希ガスであるNe、Krなどを用いてもよ
い。ガスの純度は99.9999%以上の超高純度であ
ることが好ましい。
Ar is typically used as the sputtering gas, but rare gases such as Ne and Kr may be used. The purity of the gas is preferably 99.9999% or more and an ultrahigh purity.

【0012】荷電ビーム発生源としては、カウフマン
型、サドルフィールド型、ホローカソード型、ECRプ
ラズマ型(強磁場を用いるタイプを含む)など種々のイ
オン源が挙げられるが、特に限定されない。荷電ビーム
のエネルギーは、それぞれのイオン源で異なるが、30
0〜5000eVの範囲に設定される。特に、カウフマ
ン型またはECRプラズマ型のイオン源では、常用運転
領域として荷電ビームのエネルギーが300〜1000
eVの範囲に設定されることが多い。この範囲をはずれ
ると、良好な磁気特性を有する単結晶膜を作製すること
は困難である。さらに、飽和磁化2テスラ以上、保磁力
1Oe以上の特性を有する磁性膜を得るために特に好ま
しい範囲は、400〜800eVである。
Examples of the charged beam generating source include various ion sources such as a Kauffman type, a saddle field type, a hollow cathode type, an ECR plasma type (including a type using a strong magnetic field), but are not particularly limited. The energy of the charged beam is different for each ion source,
It is set in the range of 0 to 5000 eV. In particular, in the Kaufman type or ECR plasma type ion source, the energy of the charged beam is 300 to 1000 as the normal operation region.
It is often set in the range of eV. Outside this range, it is difficult to produce a single crystal film having good magnetic properties. Further, a particularly preferable range for obtaining a magnetic film having a saturation magnetization of 2 tesla or more and a coercive force of 1 Oe or more is 400 to 800 eV.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。なお、以
下の実施例では、イオン源の加速電圧を記載している。
ただし、イオン源の加速電圧の値と、これを荷電ビーム
のエネルギーに換算した値とは、数値的にはほぼ等価で
ある。 実施例1
EXAMPLES Examples of the present invention will be described below. In the examples below, the acceleration voltage of the ion source is described.
However, the value of the acceleration voltage of the ion source and the value obtained by converting this into the energy of the charged beam are numerically almost equivalent. Example 1

【0014】基板として表面が(100)面であるMg
O単結晶基板を用いた。ターゲットとして純度99.9
99%のFeを用いた。荷電ビーム発生源としてカウフ
マン型イオン源を用いた。
Mg having a (100) surface as a substrate
An O single crystal substrate was used. Purity 99.9 as target
99% Fe was used. A Kauffman type ion source was used as a charged beam source.

【0015】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-4Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −4 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0016】カウフマン型イオン源を作動させ、加速電
圧500V、ビーム電流30mAの条件でArイオンビ
ームを発生させ、Feターゲットをスパッタした。この
間、MgO基板を20rpmで回転させ、基板温度を3
00℃に設定した。
A Kauffman type ion source was operated, an Ar ion beam was generated under the conditions of an acceleration voltage of 500 V and a beam current of 30 mA, and an Fe target was sputtered. During this period, the MgO substrate was rotated at 20 rpm and the substrate temperature was set to 3
It was set to 00 ° C.

【0017】この条件で平均膜厚1μmのFe膜を作製
した。この膜について、RHEED、TEM、X線回折
により結晶性を調べ、VSMにより磁気特性を調べた。
その結果、多少の転位は含まれているが、ほぼ単結晶に
近いbcc相のFe薄膜が得られていることが確認され
た。飽和磁化は2.1T、保磁力は100mOeであっ
た。 実施例2
Under these conditions, an Fe film having an average film thickness of 1 μm was produced. The crystallinity of this film was examined by RHEED, TEM and X-ray diffraction, and the magnetic characteristics were examined by VSM.
As a result, it was confirmed that an Fe thin film having a bcc phase, which is close to a single crystal, was obtained although it contained some dislocations. The saturation magnetization was 2.1 T and the coercive force was 100 mOe. Example 2

【0018】基板として表面が(100)面であるMg
O単結晶基板を用いた。ターゲットとして純度99.9
9%のFe0.75Co0.25合金を用いた。荷電ビーム発生
源としてカウフマン型イオン源を用いた。
Mg having a (100) surface as a substrate
An O single crystal substrate was used. Purity 99.9 as target
A 9% Fe 0.75 Co 0.25 alloy was used. A Kauffman type ion source was used as a charged beam source.

【0019】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-4Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −4 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0020】カウフマン型イオン源を作動させ、加速電
圧600V、ビーム電流30mAの条件でArイオンビ
ームを発生させ、Fe0.75Co0.25ターゲットをスパッ
タした。この間、MgO基板を50rpmで回転させ、
基板温度を400℃に設定した。
A Kauffman type ion source was operated, an Ar ion beam was generated under the conditions of an acceleration voltage of 600 V and a beam current of 30 mA, and an Fe 0.75 Co 0.25 target was sputtered. During this period, the MgO substrate is rotated at 50 rpm,
The substrate temperature was set to 400 ° C.

【0021】この条件で平均膜厚1μmのFe0.75Co
0.25膜を作製した。この膜について、RHEED、TE
M、X線回折により結晶性を調べ、VSMにより磁気特
性を調べた。その結果、多少の転位は含まれているが、
ほぼ単結晶に近いbcc相のFe0.75Co0.25合金薄膜
が得られていることが確認された。飽和磁化は2.4
T、保磁力は100mOeであった。 実施例3
Under these conditions, Fe 0.75 Co having an average film thickness of 1 μm
A 0.25 film was prepared. About this film, RHEED, TE
Crystallinity was examined by M and X-ray diffraction, and magnetic characteristics were examined by VSM. As a result, although some dislocations are included,
It was confirmed that a bcc-phase Fe 0.75 Co 0.25 alloy thin film having a nearly single crystal structure was obtained. Saturation magnetization is 2.4
T, coercive force was 100 mOe. Example 3

【0022】基板として表面が(100)面であるMg
O単結晶基板を用いた。ターゲットとして純度99.9
99%のFe0.75Co0.25合金を用いた。荷電ビーム発
生源としてECRプラズマによるイオン源を用いた。
Mg having a (100) surface as a substrate
An O single crystal substrate was used. Purity 99.9 as target
A 99% Fe 0.75 Co 0.25 alloy was used. An ion source using ECR plasma was used as a charged beam generation source.

【0023】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-4Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −4 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0024】ECRプラズマイオン源を作動させ、加速
電圧400V、ビーム電流30mAの条件でArイオン
ビームを発生させ、Fe0.75Co0.25ターゲットをスパ
ッタした。この間、MgO基板を40rpmで回転さ
せ、基板温度を200℃に設定した。
An ECR plasma ion source was operated, an Ar ion beam was generated under the conditions of an acceleration voltage of 400 V and a beam current of 30 mA, and a Fe 0.75 Co 0.25 target was sputtered. During this period, the MgO substrate was rotated at 40 rpm and the substrate temperature was set to 200 ° C.

【0025】この条件で平均膜厚1μmのFe0.75Co
0.25膜を作製した。この膜について、RHEED、TE
M、X線回折により結晶性を調べ、VSMにより磁気特
性を調べた。その結果、多少の転位は含まれているが、
ほぼ単結晶に近いbcc相のFe0.75Co0.25合金薄膜
が得られていることが確認された。飽和磁化は2.4
T、保磁力は10mOeであった。 実施例4
Under these conditions, Fe 0.75 Co having an average film thickness of 1 μm
A 0.25 film was prepared. About this film, RHEED, TE
Crystallinity was examined by M and X-ray diffraction, and magnetic characteristics were examined by VSM. As a result, although some dislocations are included,
It was confirmed that a bcc-phase Fe 0.75 Co 0.25 alloy thin film having a nearly single crystal structure was obtained. Saturation magnetization is 2.4
T, coercive force was 10 mOe. Example 4

【0026】基板として表面が(100)面であるMg
O単結晶基板を用いた。ターゲットとして、純度99.
9999%のCuおよび純度99.999%のFe0.75
Co0.25合金を用いた。荷電ビーム発生源としてECR
プラズマによるイオン源を用いた。
Mg having a (100) surface as a substrate
An O single crystal substrate was used. Purity of 99.
9999% Cu and 99.999% pure Fe 0.75
A Co 0.25 alloy was used. ECR as a charged beam source
A plasma ion source was used.

【0027】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-5Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −5 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0028】ECRプラズマイオン源を作動させ、加速
電圧500V、ビーム電流30mAの条件でArイオン
ビームを発生させた。まず、Cuターゲットをスパッタ
した。この際、MgO基板を20rpmで回転させ、基
板温度を300℃に設定した。成長したCu膜の方位
は、Cu(100)がMgO(100)に対して平行、
Cu<100>がMgO<100>に対して平行であっ
た。次に、Fe0.75Co0.25ターゲットをスパッタし
た。この際、MgO基板を20rpmで回転させ、基板
温度を150℃に設定した。
The ECR plasma ion source was activated to generate an Ar ion beam under the conditions of an acceleration voltage of 500 V and a beam current of 30 mA. First, a Cu target was sputtered. At this time, the MgO substrate was rotated at 20 rpm and the substrate temperature was set to 300 ° C. As for the orientation of the grown Cu film, Cu (100) is parallel to MgO (100),
Cu <100> was parallel to MgO <100>. Next, a Fe 0.75 Co 0.25 target was sputtered. At this time, the MgO substrate was rotated at 20 rpm and the substrate temperature was set to 150 ° C.

【0029】この条件でCu単結晶膜表面に平均膜厚1
μmのFe0.75Co0.25膜を作製した。この膜につい
て、RHEED、TEM、X線回折により結晶性を調
べ、VSMにより磁気特性を調べた。その結果、多少の
転位は含まれているが、ほぼ単結晶に近いfcc相のF
0.75Co0.25合金薄膜が得られていることが確認され
た。飽和磁化は3.5T、保磁力は10mOeであっ
た。 実施例5
Under this condition, the average film thickness of 1 on the Cu single crystal film surface.
A Fe 0.75 Co 0.25 film having a thickness of μm was prepared. The crystallinity of this film was examined by RHEED, TEM and X-ray diffraction, and the magnetic characteristics were examined by VSM. As a result, although some dislocations are included, the Fcc phase F that is almost a single crystal is obtained.
It was confirmed that an e 0.75 Co 0.25 alloy thin film was obtained. The saturation magnetization was 3.5 T and the coercive force was 10 mOe. Example 5

【0030】基板として表面が(100)面であるMg
O単結晶基板を用いた。ターゲットとして純度99.9
99%のFeを用いた。荷電ビーム発生源としてカウフ
マン型イオン源を用いた。
Mg having a (100) surface as a substrate
An O single crystal substrate was used. Purity 99.9 as target
99% Fe was used. A Kauffman type ion source was used as a charged beam source.

【0031】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-4Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −4 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0032】カウフマン型イオン源を作動させ、加速電
圧700V、ビーム電流30mAの条件でArイオンビ
ームを発生させ、Feターゲットをスパッタした。この
際、MgO基板を10rpmで回転させ、基板温度を3
00℃に設定した。この条件で平均膜厚500nmのF
e膜を作製した。この膜について、RHEED、TE
M、X線回折により結晶性を調べた。その結果、単結晶
膜であることが確認された。次に、SiH4 とO2 を原
料とするプラズマCVD法により、Fe単結晶膜上に2
00nmの単結晶SiO2 膜を形成した。この操作を5
回繰り返して積層構造を形成した。
A Kauffman type ion source was operated, an Ar ion beam was generated under the conditions of an acceleration voltage of 700 V and a beam current of 30 mA, and an Fe target was sputtered. At this time, the MgO substrate was rotated at 10 rpm and the substrate temperature was set to 3
It was set to 00 ° C. Under these conditions, F with an average film thickness of 500 nm
An e film was prepared. About this film, RHEED, TE
Crystallinity was examined by M and X-ray diffraction. As a result, it was confirmed that the film was a single crystal film. Next, by a plasma CVD method using SiH 4 and O 2 as raw materials, 2 is formed on the Fe single crystal film.
A 00 nm single crystal SiO 2 film was formed. Do this operation 5
Repeated times to form a laminated structure.

【0033】RHEED、TEM、X線回折により結晶
性を調べ、VSMにより磁気特性を調べた。その結果、
多少の転位は含まれているが、ほぼ単結晶に近いbcc
相のFe薄膜が得られていることが確認された。飽和磁
化は2.1T、保磁力は100mOeであった。さら
に、この薄膜を平面型インダクタの磁性膜として適用し
たところ、常用周波数帯の上限は10MHzであった。 実施例6
Crystallinity was examined by RHEED, TEM and X-ray diffraction, and magnetic properties were examined by VSM. as a result,
Although it contains some dislocations, it has a bcc close to that of a single crystal.
It was confirmed that a phase Fe thin film was obtained. The saturation magnetization was 2.1 T and the coercive force was 100 mOe. Furthermore, when this thin film was applied as a magnetic film of a planar inductor, the upper limit of the common frequency band was 10 MHz. Example 6

【0034】基板として表面が(100)面であるGa
As単結晶基板を用いた。ターゲットとして純度99.
999%のFeおよび単結晶GaAlAsを用いた。荷
電ビーム発生源としてECRプラズマ型イオン源を用い
た。
As a substrate, Ga whose surface is a (100) plane
An As single crystal substrate was used. Purity as target 99.
999% Fe and single crystal GaAlAs were used. An ECR plasma type ion source was used as a charged beam generation source.

【0035】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-5Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −5 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0036】ECRプラズマ型イオン源を作動させ、加
速電圧500V、ビーム電流20mAの条件でArイオ
ンビームを発生させ、Feターゲットをスパッタした。
この際、GaAs基板を20rpmで回転させ、基板温
度を250℃に設定した。この条件で平均膜厚50nm
のFe膜を作製した。この膜について、RHEEDによ
り結晶性を調べた。その結果、単結晶膜であることが確
認された。次に、加速電圧500V、ビーム電流20m
Aの条件で、Fe単結晶膜上に20nmの単結晶GaA
lAs膜を形成した。この際、基板を30rpmで回転
させ、基板温度を150℃に設定した。この操作を20
回繰り返して積層構造を形成した。
An ECR plasma type ion source was operated, an Ar ion beam was generated under the conditions of an acceleration voltage of 500 V and a beam current of 20 mA, and an Fe target was sputtered.
At this time, the GaAs substrate was rotated at 20 rpm and the substrate temperature was set to 250 ° C. Under this condition, the average film thickness is 50 nm
Fe film was prepared. The crystallinity of this film was examined by RHEED. As a result, it was confirmed that the film was a single crystal film. Next, acceleration voltage 500V, beam current 20m
Under the condition of A, a 20 nm single crystal GaA is formed on the Fe single crystal film.
An lAs film was formed. At this time, the substrate was rotated at 30 rpm and the substrate temperature was set to 150 ° C. Do this operation 20
Repeated times to form a laminated structure.

【0037】RHEED、TEM、X線回折により積層
膜の表面性、断面構造、結晶性を調べ、VSMにより磁
気特性を調べた。その結果、多少の転位は含まれている
が、ほぼ単結晶に近いbcc相のFe薄膜とGaAlA
s膜の積層構造が得られていることが確認された。飽和
磁化は2.1T、保磁力は100mOeであった。さら
に、この薄膜を平面型インダクタの磁性膜として適用し
たところ、常用周波数帯の上限は100MHzであっ
た。 実施例7
The surface properties, cross-sectional structure and crystallinity of the laminated film were examined by RHEED, TEM and X-ray diffraction, and the magnetic properties were examined by VSM. As a result, the bcc phase Fe thin film and GaAlA, which are close to a single crystal, although they contain some dislocations,
It was confirmed that a laminated structure of the s film was obtained. The saturation magnetization was 2.1 T and the coercive force was 100 mOe. Furthermore, when this thin film was applied as a magnetic film of a planar inductor, the upper limit of the common frequency band was 100 MHz. Example 7

【0038】基板として表面が(100)面であるGa
As単結晶基板を用いた。ターゲットとして純度99.
999%のFe0.75Co0.25合金を用いた。荷電ビーム
発生源としてサドルフィールド型イオン源を用いた。
As a substrate, Ga whose surface is a (100) plane
An As single crystal substrate was used. Purity as target 99.
A 999% Fe 0.75 Co 0.25 alloy was used. A saddle field type ion source was used as the charged beam source.

【0039】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-4Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −4 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0040】サドルフィールド型イオン源を作動させ、
加速電圧5kV、ビーム電流3mAの条件でArイオン
ビームを発生させ、Fe0.75Co0.25合金ターゲットを
スパッタした。この際、GaAs基板を20rpmで回
転させ、基板温度を250℃に設定した。この条件で平
均膜厚50nmのFe0.75Co0.25合金膜を作製した。
この膜について、RHEEDにより結晶性を調べた。そ
の結果、単結晶膜であることが確認された。次に、Si
4 とCH4 を原料とする熱CVD法により、Fe0.75
Co0.25合金単結晶膜上に20nmの単結晶β−SiC
膜を形成した。この操作を20回繰り返して積層構造を
形成した。
Actuating the saddle field type ion source,
An Ar ion beam was generated under the conditions of an accelerating voltage of 5 kV and a beam current of 3 mA to sputter a Fe 0.75 Co 0.25 alloy target. At this time, the GaAs substrate was rotated at 20 rpm and the substrate temperature was set to 250 ° C. Under this condition, an Fe 0.75 Co 0.25 alloy film having an average film thickness of 50 nm was produced.
The crystallinity of this film was examined by RHEED. As a result, it was confirmed that the film was a single crystal film. Next, Si
Fe 0.75 was obtained by a thermal CVD method using H 4 and CH 4 as raw materials.
20 nm single crystal β-SiC on a Co 0.25 alloy single crystal film
A film was formed. This operation was repeated 20 times to form a laminated structure.

【0041】RHEED、TEM、X線回折により積層
膜の表面性、断面構造、結晶性を調べ、VSMにより磁
気特性を調べた。その結果、多少の転位は含まれている
が、ほぼ単結晶に近いFe0.75Co0.25合金膜とβ−S
iC膜との積層構造が得られていることが確認された。
飽和磁化は2.1T、保磁力は100mOeであった。
さらに、この薄膜を平面型インダクタの磁性膜として適
用したところ、常用周波数帯の上限は100MHzであ
った。 実施例8
The surface properties, cross-sectional structure and crystallinity of the laminated film were examined by RHEED, TEM and X-ray diffraction, and the magnetic properties were examined by VSM. As a result, the Fe 0.75 Co 0.25 alloy film and β-S, which are close to a single crystal, contain some dislocations.
It was confirmed that a laminated structure with the iC film was obtained.
The saturation magnetization was 2.1 T and the coercive force was 100 mOe.
Furthermore, when this thin film was applied as a magnetic film of a planar inductor, the upper limit of the common frequency band was 100 MHz. Example 8

【0042】基板として表面が(100)面である高圧
合成ダイヤモンド単結晶基板を用いた。ターゲットとし
て、純度99.999%のFe0.75Co0.25合金と、純
度99.9999%のCuを用いた。荷電ビーム発生源
としてECRプラズマによるイオン源を用いた。
As the substrate, a high-pressure synthetic diamond single crystal substrate having a (100) surface was used. As a target, an Fe 0.75 Co 0.25 alloy having a purity of 99.999% and Cu having a purity of 99.9999% were used. An ion source using ECR plasma was used as a charged beam generation source.

【0043】真空槽内を1×10-7Torr以下に排気
した。真空槽内に超高純度Arガスを導入して、圧力を
1×10-4Torrまで上昇させた。真空槽内のH2
の分圧が1×10-9Torr以下になるまで、質量分析
器でモニターしながら、Arガスによるパージを続け
た。
The inside of the vacuum chamber was evacuated to 1 × 10 -7 Torr or less. Ultra high purity Ar gas was introduced into the vacuum chamber to raise the pressure to 1 × 10 −4 Torr. H 2 O in the vacuum chamber
Purging with Ar gas was continued while monitoring with a mass spectrometer until the partial pressure of 1 was less than 1 × 10 −9 Torr.

【0044】ECRプラズマイオン源を作動させ、加速
電圧500V、ビーム電流20mAの条件でArイオン
ビームを発生させ、Fe0.75Co0.25ターゲットをスパ
ッタした。この際、ダイヤモンド単結晶基板を10rp
mで回転させ、基板温度を150℃に設定した。この膜
について、RHEEDにより結晶性を調べた。その結
果、面心立方構造を有する単結晶であることが確認され
た。次に、加速電圧500V、ビーム電流20mAの条
件でFe0.75Co0.25合金膜上に20nmのCu膜を形
成した。この際、基板を20rpmで回転させ、基板温
度を150℃に設定した。この膜について、RHEED
により結晶性を調べた。その結果、面心立方構造を有す
る単結晶であることが確認された。この操作を20回繰
り返して積層構造を形成した。
The ECR plasma ion source was operated, an Ar ion beam was generated under the conditions of an acceleration voltage of 500 V and a beam current of 20 mA, and a Fe 0.75 Co 0.25 target was sputtered. At this time, the diamond single crystal substrate is set to 10 rp.
The substrate temperature was set to 150 ° C. by rotating at m. The crystallinity of this film was examined by RHEED. As a result, it was confirmed to be a single crystal having a face-centered cubic structure. Next, a 20 nm Cu film was formed on the Fe 0.75 Co 0.25 alloy film under the conditions of an acceleration voltage of 500 V and a beam current of 20 mA. At this time, the substrate was rotated at 20 rpm and the substrate temperature was set to 150 ° C. About this membrane, RHEED
The crystallinity was investigated by. As a result, it was confirmed to be a single crystal having a face-centered cubic structure. This operation was repeated 20 times to form a laminated structure.

【0045】RHEED、TEM、X線回折により積層
膜の表面性、断面構造、結晶性を調べ、VSMにより磁
気特性を調べた。その結果、多少の転位は含まれている
が、ほぼ単結晶に近いfcc相のFe0.75Co0.25合金
膜とCu膜との積層構造が得られていることが確認され
た。飽和磁化は3.5T、保磁力は100mOeであっ
た。さらに、この薄膜を平面型インダクタの磁性膜とし
て適用したところ、常用周波数帯の上限は100MHz
であり、使用できる電力の上限は50Wであった。
The surface properties, sectional structure and crystallinity of the laminated film were examined by RHEED, TEM and X-ray diffraction, and the magnetic properties were examined by VSM. As a result, it was confirmed that a laminated structure of an Fe 0.75 Co 0.25 alloy film of the fcc phase and a Cu film, which is close to a single crystal, although including some dislocations, was obtained. The saturation magnetization was 3.5 T and the coercive force was 100 mOe. Furthermore, when this thin film was applied as a magnetic film for a planar inductor, the upper limit of the common frequency band was 100 MHz.
And the upper limit of usable power was 50W.

【0046】[0046]

【発明の効果】以上詳述したように本発明の方法を用い
れば、超小型の平面型磁気素子に適用されるFe系また
はFe−Co系単結晶膜を高い生産性で製造できる。
As described in detail above, by using the method of the present invention, a Fe-based or Fe-Co-based single crystal film applied to an ultra-small planar magnetic element can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において用いられるスパッタリ
ング装置の構成図。
FIG. 1 is a configuration diagram of a sputtering apparatus used in an example of the present invention.

【図2】(a)はスパイラルコイルに交流電流が流れた
場合に発生する磁界の方向を示す図、(b)は磁性膜に
導入される磁化ベクトルの方向を示す図。
FIG. 2A is a diagram showing a direction of a magnetic field generated when an alternating current flows in a spiral coil, and FIG. 2B is a diagram showing a direction of a magnetization vector introduced into a magnetic film.

【符号の説明】[Explanation of symbols]

1…真空槽、2…基板ホルダ、3…基板、4…ターゲッ
トホルダ、5…ターゲット、6…荷電ビーム発生源、7
…質量分析器、11…スパイラルコイル、12…磁性
膜。
DESCRIPTION OF SYMBOLS 1 ... Vacuum tank, 2 ... Substrate holder, 3 ... Substrate, 4 ... Target holder, 5 ... Target, 6 ... Charged beam generation source, 7
... mass spectrometer, 11 ... spiral coil, 12 ... magnetic film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 荷電ビームによりターゲットをスパッタ
リングして基板上にFe系またはFe−Co系の単結晶
磁性膜を製造するにあたり、荷電ビームのエネルギーを
300〜5000eVの範囲に設定し、基板温度を室温
〜500℃の範囲に保持することを特徴とする単結晶磁
性膜の製造方法。
1. When a target is sputtered with a charged beam to produce an Fe-based or Fe-Co-based single crystal magnetic film on a substrate, the energy of the charged beam is set in the range of 300 to 5000 eV, and the substrate temperature is set. A method for producing a single crystal magnetic film, which is characterized in that the temperature is maintained in the range of room temperature to 500 ° C.
JP5471892A 1991-12-24 1992-03-13 Manufacture of single-crystal magnetic film Pending JPH05234799A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34086091 1991-12-24
JP3-340860 1991-12-24

Publications (1)

Publication Number Publication Date
JPH05234799A true JPH05234799A (en) 1993-09-10

Family

ID=18340979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5471892A Pending JPH05234799A (en) 1991-12-24 1992-03-13 Manufacture of single-crystal magnetic film

Country Status (1)

Country Link
JP (1) JPH05234799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060632A (en) * 1996-08-16 1998-03-03 Dowa Mining Co Ltd Sputtering target, its production, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060632A (en) * 1996-08-16 1998-03-03 Dowa Mining Co Ltd Sputtering target, its production, and semiconductor device

Similar Documents

Publication Publication Date Title
Takahashi et al. Synthesis of Fe/sub 16/N/sub 2/films by using reactive plasma
US5589221A (en) Magnetic thin film, and method of manufacturing the same, and magnetic head
US11972884B2 (en) Soft magnetic alloy and magnetic device
JPH0533461B2 (en)
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
JPH08273930A (en) Thin-film magnetic element and its manufacture
JP3392444B2 (en) Magnetic artificial lattice film
JPH05234799A (en) Manufacture of single-crystal magnetic film
Naoe et al. Preparation of soft magnetic films of nanocrystalline Fe–Cu–Nb–Si–B alloy by facing targets sputtering
US5728421A (en) Article comprising spinel-structure material on a substrate, and method of making the article
JPH06224038A (en) Manufacture of thin film permanent magnet
US20200058429A1 (en) Fe-Co-Si ALLOY MAGNETIC THIN FILM
JPH07335575A (en) Manufacture of thin film
WO2022176842A1 (en) Feni ordered alloy structural body and method for manufacturing same
US11585013B2 (en) Fe—Co—Al alloy magnetic thin film
JPH03263306A (en) Magnetic film and magnetic head
JPH09306736A (en) Perpendicular magnetization film, manufacture thereof, and magneto-optical recording medium
JP2003332127A (en) Method for manufacturing soft magnetic ferrite material
JPH03265105A (en) Soft magnetic laminate film
JP3688724B2 (en) Planar magnetic element
JP4308963B2 (en) Magnetic element
US20030209189A1 (en) Magnetic material and method for preparation thereof
JPH08138934A (en) Soft magnetic thin film and manufacture thereof
JP3172652B2 (en) Magnetic thin film, method of manufacturing the same, and magnetic head
KR20010068574A (en) Soft magnetic material of FeZrBAg system and a method for fabricating a soft magnetic thin film