JPH05232238A - Calibration of neutron monitor device - Google Patents

Calibration of neutron monitor device

Info

Publication number
JPH05232238A
JPH05232238A JP4031881A JP3188192A JPH05232238A JP H05232238 A JPH05232238 A JP H05232238A JP 4031881 A JP4031881 A JP 4031881A JP 3188192 A JP3188192 A JP 3188192A JP H05232238 A JPH05232238 A JP H05232238A
Authority
JP
Japan
Prior art keywords
neutron
alarm
concentration
fuel
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4031881A
Other languages
Japanese (ja)
Inventor
Shoichi Watanabe
庄一 渡辺
Eiji Mihashi
偉司 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4031881A priority Critical patent/JPH05232238A/en
Publication of JPH05232238A publication Critical patent/JPH05232238A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To set the alarm value of the neutron count value corresponding to the concn. of controlled plutonium by instantaneously and certainly detecting the abnormality of the concn. of plutonium. CONSTITUTION:The neutron generated from a small amount of Pu contained in a waste extract is detected by a neutron detection part 1 surrounded by a neutron decelerating material. The signal from the neutron detection part 1 is outputted to an alarm generator 3 as a count ratio through a count circuit 2. A calibrating neutron source 3 is received in a neutron source cask 5 during operation. The calibrating neutron source 4 is inserted in the predetermined place of the neutron detection part 1 prior to operation and it is confirmed that said neutron source 3 is set to a predetermined count ratio. The alarm value 6 of a neutron count ratio is set to the alarm generator 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば使用済燃料の再
処理抽出操作における共除染工程および精製工程に附属
するプルトニウム(Pu)濃度による臨界管理を行う機
器に用いられる中性子モニタ法に係るPu漏洩検出装置
の警報値を設定するための中性子モニタ装置の校正方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a neutron monitor method used for an apparatus for performing criticality control by plutonium (Pu) concentration attached to co-decontamination step and refining step in reprocessing and extraction operation of spent fuel The present invention relates to a calibration method of a neutron monitor device for setting an alarm value of a Pu leak detection device.

【0002】[0002]

【従来の技術】従来から再処理工場の共除染・分配工程
および精製工程のうち、プルトニウム(Pu)やウラン
(U)等の核燃料物質を取扱う機器においては、中性子
実効増倍率が 1.0未満、つまり臨界とならないように臨
界安全設計を行っている。
2. Description of the Related Art Among the co-decontamination / distribution process and the refining process of a reprocessing plant, the neutron effective multiplication factor of less than 1.0 has been applied to equipment handling nuclear fuel materials such as plutonium (Pu) and uranium (U). In other words, the criticality safety design is done so as not to become critical.

【0003】即ち、これらの各機器においては、供給さ
れる液の酸性度、その中のPu,U等核燃料物質濃度お
よび硝酸水溶液・有機溶媒中のPu,U成分濃度の異常
時も考慮して変動し得る変化に対して未臨界となるよう
形状寸法・容積を制限した設計となっている。
That is, in each of these devices, the acidity of the liquid to be supplied, the concentration of nuclear fuel substances such as Pu and U, and the concentration of Pu and U components in the nitric acid aqueous solution / organic solvent are also taken into consideration. It is designed so that the size and volume are limited so that it is not critical to changes that can fluctuate.

【0004】一方、上記各機器に附属するPu濃度(硝
酸水溶液中あるいは有機溶媒液中のPu含有率)による
臨界管理を行う機器は、通常運転時にはPu量は少量で
あるかまたは殆ど流れ込まないため、処理効率を考慮し
て機器の形状寸法・容積に制限をゆるめた設計としてい
る。
On the other hand, a device for performing criticality control according to the Pu concentration (Pu content in nitric acid aqueous solution or organic solvent liquid) attached to each of the above-mentioned devices has a small amount of Pu or hardly flows into it during normal operation. In consideration of processing efficiency, the design is relaxed in the shape and volume of the equipment.

【0005】ところで、万一何らかの原因によってPu
が漏洩し臨界となる可能性も考えられ、中性子線、ガン
マ線等の検出器を各所に設置することにより、放射線レ
ベルの上昇を検出し、警報を発生させて運転員や各所要
員に危険を知らせたり、人の判断によって工程を停止す
る等の措置がとられている。
By the way, if something happens, Pu
There is a possibility that it will leak and become critical, and by installing detectors for neutron rays, gamma rays, etc. at various places, an increase in radiation level is detected and an alarm is issued to notify the operator and each personnel of the danger. Alternatively, measures such as stopping the process at the discretion of the person are taken.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、その放
射線レベルは単に核燃料物質濃度に比例して増大するだ
けではない。例えば臨界安全管理上、Puはとくに臨界
管理が重要であるが、Puからの中性子発生率はPu同
位体によって大きく変化することが知られており、この
同位体組成比は再処理燃料の初期濃縮度や照射履歴によ
って大きく異なり、このため中性子線のレベルは必ずし
もPuの量だけに比例するわけではない。
However, its radiation level does not merely increase in proportion to the nuclear fuel material concentration. For example, in criticality safety management, criticality control of Pu is particularly important, but it is known that the neutron generation rate from Pu changes greatly depending on the Pu isotope, and this isotope composition ratio is the initial concentration of reprocessed fuel. The level of the neutron beam is not necessarily proportional only to the amount of Pu because of a great difference depending on the irradiation degree and the irradiation history.

【0007】このため、単に放射線レベルを検知するの
みではPu濃度異常を検知することができず、臨界安全
管理を行う上で過大なマージンを取っており、設備利用
率を低下させるおそれがあった。 本発明は上記課題を
解決するためになされたもので、再処理主工程の共除染
・分配工程および精製工程に附属するプルトニウム濃度
による臨界管理を行う機器において、その中のPuから
の中性子計数率を測定し、Pu濃度の異常を即座に、か
つ確実に検知して警報を発する中性子モニタ装置におい
て、管理Pu濃度(プロセス管理上の漏洩Pu最大許容
濃度)に対応する中性子計数値の警報値を設定する中性
子モニタ装置の校正方法を提供するものである。
Therefore, the Pu concentration abnormality cannot be detected merely by detecting the radiation level, and an excessive margin is taken in performing criticality safety control, which may reduce the facility utilization rate. .. The present invention has been made to solve the above problems, and in a device for performing criticality control based on plutonium concentration, which belongs to the co-decontamination / distribution process and the purification process of the main reprocessing step, the neutron counting from Pu in it In the neutron monitor device that measures the rate and immediately and surely detects an abnormality in Pu concentration and issues an alarm, an alarm value of the neutron count value corresponding to the control Pu concentration (leakage Pu maximum allowable concentration in process control) A method for calibrating a neutron monitor device for setting the above is provided.

【0008】[0008]

【課題を解決するための手段】本発明はプルトニウム濃
度による臨界管理を行う機器中への漏洩プルトニウムか
らの中性子を計数して、あらかじめ設定されている警報
値と比較して警報を発する信号発生装置を備えている中
性子モニタ装置の校正方法において、前記警報値は校正
用中性子源による計数値を基に設定することを特徴とす
る。
SUMMARY OF THE INVENTION The present invention is a signal generator for counting neutrons from plutonium that leaks into a device that performs criticality control based on plutonium concentration, and compares it with a preset alarm value to issue an alarm. In the method for calibrating a neutron monitor device, the alarm value is set based on a count value by a neutron source for calibration.

【0009】[0009]

【作用】測定系のチェックに用いられる校正用中性子源
および理論計算結果を基に管理Pu濃度に対応する計数
率の警報レベルを精度よく設定する。 Pu溶液管理濃度での中性子計数率:Cfuel Pu溶液管理濃度での検出器位置中性子束:φfuel 校正用中性子源による中性子計数率:Ccalb 校正用中性子源による検出器位置中性子束:φcalbfuel=β(φfuel/φcalb)・Ccalb βは 1.0に近い値、中性子束は理論計算値であり、比を
とることにより系統誤差が相殺される。
The alarm level of the count rate corresponding to the control Pu concentration is set accurately based on the calibration neutron source used for checking the measurement system and the theoretical calculation result. Neutron count rate at Pu solution control concentration: C fuel Detector position neutron flux at Pu solution control concentration: φ fuel Neutron count rate by calibration neutron source: C calb Detector position neutron flux by calibration neutron source: φ calb C fuel = β (φ fuel / φ calb ) · C calb β is a value close to 1.0, and the neutron flux is a theoretical calculation value. By taking the ratio, the systematic error is offset.

【0010】警報値を精度よく設定することにより臨界
安全性を連続的に確実に監視でき、Pu濃度異常を検知
し、警報を発することにより臨界を未然に防止すること
ができる。
By setting an alarm value with high accuracy, the criticality safety can be continuously and reliably monitored, and by detecting an abnormal Pu concentration and issuing an alarm, the criticality can be prevented.

【0011】[0011]

【実施例】本発明に係る中性子モニタ装置の校正方法を
図面を参照して一実施例について説明する。図1は本発
明の校正方法を実施するための中性子モニタ装置の構成
を示すもので、中性子モニタ装置は再処理抽出工程の共
除染工程および精製工程に附属するPu濃度による臨界
管理を行う工程機器中に漏洩するPuから発生し、その
臨界安全性を連続的に監視するためのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a neutron monitor calibration method according to the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a neutron monitor device for carrying out the calibration method of the present invention, in which the neutron monitor device carries out criticality control according to the Pu concentration attached to the co-decontamination step and the purification step of the reprocessing extraction step. This is for continuously monitoring the criticality safety generated from Pu leaking into the equipment.

【0012】図1に例示する機器は廃液中の微量のPu
を洗浄除去する溶媒抽出装置としてのミキサセトラの段
方向を示す垂直断面図で、Pu溶液、中性子検出部1の
位置関係を示している。このミキサセトラMは燃料抽出
工程で使用されるもので、燃料溶液部Fに再処理工程で
生じたPu溶液が流入し、有機溶媒と接触して液々抽出
が行われる。燃料溶液部Fの下方にたとえばカドミウム
などの中性子吸収体Nが配置されており、この中性子吸
収体Nの下部に中性子減速材で包囲された中性子検出部
1が設けられている。
The device illustrated in FIG. 1 has a small amount of Pu in the waste liquid.
FIG. 3 is a vertical cross-sectional view showing the step direction of a mixer-settler as a solvent extraction device for washing and removing the, showing the positional relationship between the Pu solution and the neutron detector 1. This mixer-settler M is used in the fuel extraction step, and the Pu solution generated in the reprocessing step flows into the fuel solution section F and comes into contact with the organic solvent for liquid extraction. A neutron absorber N such as cadmium is arranged below the fuel solution portion F, and a neutron detector 1 surrounded by a neutron moderator is provided below the neutron absorber N.

【0013】即ち、ミキサセトラMに供給された抽出廃
液(硝酸水溶液または有機溶媒液)中に含まれる少量の
Puから発生する中性子を中性子減速材(ポリエチレン
等)で囲んだHe−3カウンタ、B−10カウンタ等で構
成する中性子検出部1によって検出する。
That is, a He-3 counter in which neutrons generated from a small amount of Pu contained in the extraction waste liquid (nitric acid aqueous solution or organic solvent liquid) supplied to the mixer settler M is surrounded by a neutron moderator (polyethylene or the like), B- It is detected by the neutron detector 1 composed of 10 counters.

【0014】中性子検出部1からの信号は計数回路2を
経て計数率として警報発生装置3に出力される。計数回
路2は前置増幅器、増幅器、波高弁別器、計数器等によ
り構成される。警報発生装置3は入力された計数率を警
報値と比較してそれ以上の値となった場合に警報を発生
する機能を有する。
The signal from the neutron detector 1 is output to the alarm generator 3 as a count rate via the counting circuit 2. The counting circuit 2 is composed of a preamplifier, an amplifier, a wave height discriminator, a counter and the like. The alarm generating device 3 has a function of comparing the input count rate with an alarm value and generating an alarm when the value exceeds the alarm value.

【0015】また、校正用中性子源4は、運転中は中性
子源キャスク5に収納されており、測定回路の正常動作
確認のため、運転に先立って中性子検出部1の所定の場
所に挿入され、所定の計数率であることが確認される。
Further, the calibration neutron source 4 is housed in the neutron source cask 5 during operation, and is inserted in a predetermined location of the neutron detector 1 prior to operation in order to confirm normal operation of the measurement circuit. It is confirmed that it is a predetermined count rate.

【0016】次に、本発明になる方法で求められた中性
子計数率の警報値6が警報発生装置3に設定される。こ
の中性子計数率警報値6は、既に述べた前記 (4)式での
検出効率の比βと中性子束比(φfuel/φcalb)の不確
定さ、計算で評価される中性子増幅率の補正の不確定
さ、バックフラウンド計数の影響等を考慮して管理Pu
濃度での中性子計数率Cfuelより小さめの値に設定する
のが実用的である。
Next, the warning value 6 of the neutron count rate obtained by the method according to the present invention is set in the warning generator 3. This neutron count rate warning value 6 is the uncertainty of the detection efficiency ratio β and the neutron flux ratio (φ fuel / φ calb ) in the above-mentioned equation (4), and the correction of the neutron amplification factor evaluated by calculation. Management Pu taking into consideration the uncertainty of
It is practical to set a value smaller than the neutron count rate C fuel at the concentration.

【0017】Puは自発核分裂反応によって中性子を放
出する他、アルファ崩壊に伴うα粒子と周囲の酸素等の
軽元素との(α,n)反応によって中性子を放出する。
これらの単位重量あたり中性子発生率Sの大きさsは表
1に示すように、Pu同位体によって異なることが知ら
れている。
Pu emits neutrons by spontaneous fission reaction, and also emits neutrons by (α, n) reaction between α particles and surrounding light elements such as oxygen accompanying alpha decay.
It is known that the magnitude s of the neutron production rate S per unit weight varies depending on the Pu isotope, as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】一方、再処理燃料中のPu同位体組成比
(Puベクトル) は、再処理燃料の初期濃縮度、照射履歴等によって大き
く異なっている。図2はPu−240 を代表組成としてP
u同位体組成比の範囲を例示した図である。同図より、
測定対象機器のPu溶液中における単位体積あたりの中
性子発生率SはPu濃度が一定としてもある範囲内で変
動することが分かる。また、Puを含む機器から計数さ
れる中性子計数率Cは、Sに比例するとともに体系の中
性子実効増倍率keff に依存し、次のようになる。
On the other hand, the Pu isotope composition ratio (Pu vector) in the reprocessed fuel Vary greatly depending on the initial enrichment of the reprocessed fuel, the irradiation history, and the like. Figure 2 shows P-240 with Pu-240 as the representative composition.
It is the figure which illustrated the range of u isotope composition ratio. From the figure,
It can be seen that the neutron production rate S per unit volume in the Pu solution of the device to be measured fluctuates within a certain range even if the Pu concentration is constant. Further, the neutron count rate C counted from a device including Pu is proportional to S and depends on the effective neutron multiplication factor k eff of the system, and is as follows.

【0020】[0020]

【数1】 [Equation 1]

【0021】図3はPu濃度nと中性子計数率Cの関係
を模式的に示したものであり、図中曲線A,Bで囲まれ
た斜線で示される部分は、受入れ再処理燃料中のPu組
成の範囲に対応するものである。図では、計数率が最小
となる側にある曲線B上に管理Pu濃度nd に対応する
計数率の警報値Cdを設定すれば、計数率は最小となり
安全側に設定となることが示されている。
FIG. 3 schematically shows the relationship between the Pu concentration n and the neutron count rate C. The shaded portion surrounded by the curves A and B in the figure indicates Pu in the received reprocessed fuel. It corresponds to the composition range. In the figure, it is shown that if the alarm value Cd of the count rate corresponding to the control Pu concentration n d is set on the curve B on the side where the count rate is the minimum, the count rate becomes the minimum and the safe side is set. ing.

【0022】さて、Cdは例えば、図中曲線B上のPu
組成でかつPu濃度nd の条件で、体系の中性子源入り
未臨界増倍体系の中性子輸送計算(あるいは拡散計算)
を行って求めることができる。しかし、実際に機器内に
Pu溶液を満たして中性子を計数して計算の妥当性を確
認することは不可能である。そこで、本発明では、上記
理論計算および線源強度既知の校正用中性子源の計数値
等を基に、以下のような方法で警報値のレベルを設定す
るものとする。
Now, Cd is, for example, Pu on the curve B in the figure.
Neutron transport calculation (or diffusion calculation) of a subcritical multiplication system containing a neutron source of the system under the condition of composition and Pu concentration n d
You can go and ask. However, it is impossible to confirm the validity of the calculation by actually filling the device with the Pu solution and counting the neutrons. Therefore, in the present invention, the level of the alarm value is set by the following method based on the theoretical calculation and the count value of the neutron source for calibration whose source intensity is known.

【0023】計数率Cは検出器位置での中性子束にほぼ
比例すると考えられる。Pu溶液の場合の計数率、検出
器位置での中性子束をそれぞれCfuel、φfuelとし、校
正用中性子源でのそれをCcalb、φcalbとすれば、 Cfuel=α ・φfuel …(2) Ccalb=α′・φcalb …(3) ここで、αおよびα′は定数(検出効率)であり、検出
器位置での中性子束スペクトルが熱化されていれば、両
者はほぼ等しいと考える。そこで、右辺のφfuel,φ
calbは理論計算により求める。 (2)および (3)式から、
警報値の設定値Cfu el(Cd)は次のように求まる。 Cfuel=β・(φfuel/φcalb)・Ccalb …(4) ここで、βは検出効率の比であり、1.0に近い値であ
る。一般に、中性子束の計算値は使用する核反応断面積
の精度等により系統的な誤差(バイアス)をもつ可能性
があり、上式のように中性子束比(φfuel/φcalb)を
とることによってその誤差は相殺される方向であり、本
発明ではその性質を利用する。また、計算コードとして
は、原子力計算一般で用いられている計算精度が検証さ
れたもので、モンテカルロ輸送計算コード、SN 輸送計
算コード、拡散計算コード等を用いる。
The counting rate C is considered to be approximately proportional to the neutron flux at the detector position. If the count rate in the case of the Pu solution and the neutron flux at the detector position are C fuel and φ fuel, and those in the calibration neutron source are C calb and φ calb , then C fuel = α · φ fuel ... ( 2) C calb = α '· φ calb (3) Here, α and α'are constants (detection efficiency), and if the neutron flux spectrum at the detector position is thermalized, they are almost equal. I think. Therefore, φ fuel , φ on the right side
calb is calculated by theoretical calculation. From equations (2) and (3),
Alarm value setting C fu el (Cd) is determined as follows. C fuel = βfuel / φ calb ) C calb (4) where β is the ratio of detection efficiencies and is close to 1.0. In general, the calculated neutron flux may have a systematic error (bias) due to the accuracy of the nuclear reaction cross section used, etc., and the neutron flux ratio (φ fuel / φ calb ) should be taken as shown in the above equation. The error tends to be canceled by the above, and the present invention utilizes the property. As the calculation code, the calculation accuracy used in general nuclear calculation has been verified, and a Monte Carlo transport calculation code, an S N transport calculation code, a diffusion calculation code, etc. are used.

【0024】以上述べたように、本発明の方法により、
管理Pu濃度に対応する中性子計数率を精度よく求める
ことができ、より適切な安全マージンをもった警報値を
設定することが可能となり、設備利用率向上に資するこ
とができる。
As described above, according to the method of the present invention,
The neutron count rate corresponding to the controlled Pu concentration can be accurately obtained, and the alarm value with a more appropriate safety margin can be set, which can contribute to the improvement of the facility utilization rate.

【0025】なお、警報値は検出効率と中性子束計算の
際に自動的に評価される中性子増倍効果の補正の不確定
さ、バックグラウンド計数の影響等を考慮して上記C
fuelより小さめの値に設定するのが実用的である。な
お、校正用中性子源としては 252Cf等を用いることが
できる。
The alarm value is determined by taking into consideration the detection efficiency and the uncertainty of correction of the neutron multiplication effect which is automatically evaluated when calculating the neutron flux, and the influence of the background count.
It is practical to set a value smaller than fuel . As the neutron source for calibration, 252 Cf or the like can be used.

【0026】本発明が対象とする中性子モニタ装置は、
前述のミキサセトラに設置されるものに限定されるもの
でなく、例えば、パルスカラムの下部や貯槽の底面部に
設置されるもの等、Puを内蔵する他の機器にも適用さ
れる。
The neutron monitor device targeted by the present invention is
The present invention is not limited to the one installed in the above-mentioned mixer-settler, and is also applied to other devices containing Pu such as those installed in the lower part of the pulse column or the bottom part of the storage tank.

【0027】[0027]

【発明の効果】本発明によれば適切な安全マージンをも
って警報値を設定することにより、警報値と比較してP
u濃度異常を即座に検知し、警報を発生させて臨界を未
然に防止するとともに、設備利用率の向上を図ることが
できる。
According to the present invention, by setting the alarm value with an appropriate safety margin, P is compared with the alarm value.
It is possible to immediately detect an abnormality in the u concentration and generate an alarm to prevent the criticality and improve the facility utilization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る中性子モニタ装置の校正方法の一
実施例を実施するための装置を示す系統図。
FIG. 1 is a system diagram showing an apparatus for carrying out an embodiment of a neutron monitoring apparatus calibration method according to the present invention.

【図2】Puの同位体組成比の範囲を示す曲線図。FIG. 2 is a curve diagram showing a range of Pu isotope composition ratios.

【図3】Pu濃度と中性子計数率との関係において警報
値の設定を示す模式図。
FIG. 3 is a schematic diagram showing setting of alarm values in relation to Pu concentration and neutron count rate.

【符号の説明】[Explanation of symbols]

1…中性子検出部、2…計数回路、3…警報発生装置、
4…校正用中性子源、5…中性子源キャスク、6…中性
子計数率警報値。
1 ... Neutron detector, 2 ... Counting circuit, 3 ... Alarm generator,
4 ... Calibration neutron source, 5 ... Neutron source cask, 6 ... Neutron count rate alarm value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プルトニウム濃度による臨界管理を行う
機器中への漏洩プルトニウムからの中性子を計数して、
あらかじめ設定されている警報値と比較して警報を発す
る信号発生装置を備えている中性子モニタ装置の校正方
法において、前記警報値は校正用中性子源による中性子
計数値を基に設定することを特徴とする中性子モニタ装
置の校正方法。
1. The number of neutrons from the plutonium leaked into the device for criticality control based on the plutonium concentration is counted,
In a calibration method of a neutron monitor device comprising a signal generator that emits an alarm in comparison with a preset alarm value, the alarm value is set based on a neutron count value by a neutron source for calibration. Calibration method for neutron monitor.
JP4031881A 1992-02-19 1992-02-19 Calibration of neutron monitor device Pending JPH05232238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031881A JPH05232238A (en) 1992-02-19 1992-02-19 Calibration of neutron monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031881A JPH05232238A (en) 1992-02-19 1992-02-19 Calibration of neutron monitor device

Publications (1)

Publication Number Publication Date
JPH05232238A true JPH05232238A (en) 1993-09-07

Family

ID=12343377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031881A Pending JPH05232238A (en) 1992-02-19 1992-02-19 Calibration of neutron monitor device

Country Status (1)

Country Link
JP (1) JPH05232238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421301A (en) * 2004-11-23 2006-06-21 Bil Solutions Ltd Monitoring radioactive waste and other materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421301A (en) * 2004-11-23 2006-06-21 Bil Solutions Ltd Monitoring radioactive waste and other materials
GB2421301B (en) * 2004-11-23 2010-02-17 Bil Solutions Ltd Improvements in and relating to monitoring
US7902519B2 (en) 2004-11-23 2011-03-08 Vt Nuclear Services Limited Monitoring

Similar Documents

Publication Publication Date Title
JP3524203B2 (en) Neutron monitor and criticality management method for spent nuclear fuel
JPH05232238A (en) Calibration of neutron monitor device
JP4316338B2 (en) Criticality safety monitoring method and criticality safety monitoring device
US4515749A (en) Subcriticality measurement apparatus and method
JPH06214038A (en) Neutron monitoring method and device therefor
JPH04256897A (en) Neutron monitor device
CA1057425A (en) Inspection of nuclear fuel rods
JP2001147289A (en) Criticality monitoring method for fuel vessel system, monitoring device and fuel vessel
Dileep et al. An advanced method for quick detection of heavy water leak in steam generators of pressurized heavy water reactors
JP2000193784A (en) Device for detecting fracture of fuel
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system
Tsujimura et al. New criticality accident alarm system detectors at the JAEA Tokai Reprocessing Plant
JP2023030895A (en) Neutron monitoring device, and spent nuclear fuel criticality management method
JP2006317248A (en) Radiation measuring system
Menlove et al. The verification of reactor operating history using the fork detector
JPH04151590A (en) Neutron monitor apparatus
Simpson Meaningful Characterisation of High Beta Gamma Radwaste by Radiometric Instrumentation
Raschke et al. Radiation dosimetry and monitoring for a test of geologic storage of spent nuclear fuel
Garber et al. Applications of waste processing systems for pressurized water reactors
Faust et al. Criteria for safe handling of irradiated plutonium in beta-gamma shielded cells
Dodd et al. Searching for a possible fuel element leak
Clark et al. Improved Assay of Highly Active Reprocessing Waste by the Use of a Linear Accelerator Based Neutron Source
JPS6155075B2 (en)
JPH08320380A (en) Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement
GB2159273A (en) Measuring plutonium concentration in process liquid streams