JPH04151590A - Neutron monitor apparatus - Google Patents

Neutron monitor apparatus

Info

Publication number
JPH04151590A
JPH04151590A JP2275616A JP27561690A JPH04151590A JP H04151590 A JPH04151590 A JP H04151590A JP 2275616 A JP2275616 A JP 2275616A JP 27561690 A JP27561690 A JP 27561690A JP H04151590 A JPH04151590 A JP H04151590A
Authority
JP
Japan
Prior art keywords
neutron
concn
concentration
alarm
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275616A
Other languages
Japanese (ja)
Inventor
Shoichi Watanabe
庄一 渡辺
Shigeto Kikuchi
茂人 菊池
Takeshi Kiyono
清野 赳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2275616A priority Critical patent/JPH04151590A/en
Publication of JPH04151590A publication Critical patent/JPH04151590A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To prevent the critical state by emitting an alarm by measuring, calculating and evaluating the number of neutrons from plutonium (Pu) to compare the same with a preset Pu concn. upper limit control value to detect the abnormality of concn. CONSTITUTION:The neutron generated from a small amount of Pu contained in the waste extract (aqueous nitric acid solution or org. solvent solution) supplied to a mixer settler is measured by the neutron detection part 1 constituted of the counter surrounded by a neutron decelerating material. The signal from the detection part 1 is inputted to a Pu concn. calculator 3 as a count rate through a counter circuit 2. Pu isotope composition ratio analytical data also becomes the input data of the calculator 3. Further, a neutron effective multiplication constant memory apparatus 4 stores the data showing the relation between a neutron effective multiplication constant and Pu concn. on the basis of theoretical calculation and the calculator 3 refers to said data to correct neutron multiplication effect to calculate the concn. of Pu. The Pu concn. calculation value outputted from the calculator is sent to an alarm generator 5 to be compared with a Pu concn. upper limit value and, when the Pu concn. calculation value becomes said limit value or more, an alarm is emitted.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、再処理抽出工程の共除染工程及び精製工程に
附属するプルトニウム濃度による臨界管理を行う機器に
おいて用いられる中性子モニタ装置に係り、とりわけプ
ルトニウム漏洩検出機能を備えた中性子モニタ装置に関
する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to the use of neutrons used in equipment that performs criticality control by plutonium concentration in the co-decontamination process and purification process of the reprocessing extraction process. The present invention relates to a monitoring device, and particularly to a neutron monitoring device equipped with a plutonium leakage detection function.

(従来の技術) 従来から再処理工場の共除染・分配工程及び精製工程の
うち、プルトニウム(Pu)やウラン(U)等の核燃料
物質を常時取扱う機器においては、中性子実効増倍率が
1.0未満、つまり臨界とならないように臨界安全設計
を行っている。即ち、これらの各機器においては、供給
される液の酸性度、その中のPu、U等核燃料物質濃度
及び硝酸水溶液・有機溶媒中のPu、U成分濃度の異常
時も考慮して変動しうる変化に対して未臨界となるよう
形状寸法・容積を制限した設計となっている。一方、上
記各機器に附属するPu濃度(硝酸水溶液中あるいは有
機溶媒液中のPu含有率)による臨界管理を行う機器は
、通常運転時にはPu量は少量であるかまたは殆ど流れ
込まないため、処理効率を考慮して機器の形状寸法・容
積の制限をゆるめた設計としている。しかし、万−何ら
かの原因によってPuが漏洩し臨界となる可能性も考え
られ、中性子線、ガンマ線等の検出器を各所に設置する
ことにより、放射線レベルの上昇を検出し、警報を発生
させて運転員や各所要質に危険を知らせたり、人の判断
によって工程を停止する等の措置がとられている。
(Prior art) Conventionally, in the co-decontamination/distribution process and refining process of reprocessing plants, equipment that constantly handles nuclear fuel materials such as plutonium (Pu) and uranium (U) has an effective neutron multiplication factor of 1. Criticality safety design is carried out so that the temperature does not become less than 0, that is, criticality. In other words, in each of these devices, the acidity of the supplied liquid, the concentration of nuclear fuel materials such as Pu and U in it, and abnormalities in the concentration of Pu and U components in the nitric acid aqueous solution and organic solvent can be changed. The design limits the shape and volume so that it is subcritical to changes. On the other hand, equipment that performs criticality control using Pu concentration (Pullium content in nitric acid aqueous solution or organic solvent solution) attached to each of the above equipment has a low processing efficiency because the amount of Pu is small or hardly flows during normal operation. With this in mind, the design has relaxed restrictions on the shape, size, and volume of the equipment. However, there is a possibility that Pu may leak for some reason and become critical, so by installing neutron ray, gamma ray, etc. detectors in various places, it is possible to detect an increase in the radiation level and generate an alarm. Measures are taken, such as notifying staff and each required quality of the danger, and stopping the process based on human judgment.

(発明が解決しようとする課題) しかし、そのレベルは単に核燃料物質濃度に比例して増
大するだけではない。例えば臨界安全管理上Puがとく
に重要であるが、P’uからの中性子発生率はPu同位
体組成比によって大きく変化することが知られている。
(Problem to be Solved by the Invention) However, the level does not simply increase in proportion to the concentration of nuclear fuel material. For example, Pu is particularly important for criticality safety management, and it is known that the neutron generation rate from P'u varies greatly depending on the Pu isotope composition ratio.

この同位体組成比は、再処理燃料の初期濃縮度や照射履
歴によって大きく異なり、このため中性子線のレベルは
必ずしもPuの量だけに比例するわけではない。このた
め、単に放射線レベルを検知するのみではPu濃度を定
量することができず、臨界安全管理を行う上で過大なマ
ージンをとる必要があるというのが現状となっている。
This isotopic composition ratio varies greatly depending on the initial enrichment level and irradiation history of the reprocessed fuel, and therefore the level of neutron beam is not necessarily proportional to the amount of Pu. Therefore, the current situation is that it is not possible to quantify the Pu concentration simply by detecting the radiation level, and it is necessary to take an excessive margin for criticality safety management.

本発明はこのような点を考慮してなされたもので、その
目的とするところは、再処理主工程の共除染・分配工程
及び精製工程に附属するプルトニウム濃度による臨界管
理を行う機器において、その中のPuからの中性子数を
測定するとともにPu同位体組成比等に関する情報を取
り入れて、即座に漏洩Pu濃度を評価し、その数値を運
転員に知らせるとともに警報を発する信号発生装置を備
えた中性子モニタ装置を提供しようとするものである。
The present invention has been made in consideration of these points, and its purpose is to provide equipment for criticality control based on plutonium concentration attached to the co-decontamination/distribution process and purification process of the main reprocessing process. It is equipped with a signal generator that measures the number of neutrons from the Pu contained therein, takes in information on the Pu isotope composition ratio, etc., immediately evaluates the leaked Pu concentration, notifies the operator of the value, and issues an alarm. The aim is to provide a neutron monitoring device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記課題を解決するために、各機器内の漏洩プ
ルトニウムからの中性子数を測定する装置と、この中性
子数の測定値を入力として前記各機器内のプルトニウム
濃度を計算するプルトニウム濃度計算装置と、この計算
装置により計算されたプルトニウム濃度をあらかじめ安
全側に設定されているプルトニウム濃度上限制限値と比
較してプルトニウム濃度が上限制限値を越えたとき警報
を発する信号発生装置を備えたことを特徴としている。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a device for measuring the number of neutrons from leaked plutonium in each device, and a device for measuring the number of neutrons from leaked plutonium in each device, and a device for measuring the number of neutrons from leaked plutonium in each device. A plutonium concentration calculation device calculates the plutonium concentration, and the plutonium concentration calculated by this calculation device is compared with the plutonium concentration upper limit value set on the safe side in advance, and an alarm is issued when the plutonium concentration exceeds the upper limit value. It is characterized by being equipped with a signal generator that emits a signal.

(作 用) 本発明によれば、中性子数測定装置からの信号はプルト
ニウム濃度計算装置に入力され、プルトニウム濃度が算
出される。この算出されたプルトニウム濃度は信号発生
装置に送られ、あらかじめ設定されているプルトニウム
濃度上限制限値と比較され、プルトニウム濃度がこの上
限制限値を越えた場合、警報が発生される。
(Function) According to the present invention, the signal from the neutron number measuring device is input to the plutonium concentration calculation device, and the plutonium concentration is calculated. This calculated plutonium concentration is sent to a signal generator and compared with a preset plutonium concentration upper limit value, and if the plutonium concentration exceeds this upper limit value, an alarm is generated.

(実施例) まず、本発明の基礎となる理論について説明する。(Example) First, the theory underlying the present invention will be explained.

中性子源となるのは、主にPuの自発核分裂及びPuの
アルファ崩壊による酸素等との(α、n)反応であるが
、Pu単位重量あたり中性子発生率の大きさは第1表に
示すように、Pu同位体によって異なることが知られて
いる。一方、再処理燃料中のPu同位体組成比は、再処
理燃料の初期濃縮度、照射履歴等によって大きく異なっ
ている。
The neutron source is mainly the spontaneous nuclear fission of Pu and the (α, n) reaction with oxygen etc. due to alpha decay of Pu, but the neutron generation rate per unit weight of Pu is as shown in Table 1. It is known that it differs depending on the Pu isotope. On the other hand, the Pu isotope composition ratio in the reprocessed fuel varies greatly depending on the initial enrichment level, irradiation history, etc. of the reprocessed fuel.

第2図はPu−240を代表組成としてPu同位体組成
比の範囲を例示した図である。このことをふまえ、本発
明では受入れ仕様に定められている全ての再処理燃料を
包含するPu同位体組成の範囲を考慮し、第3図のよう
にPu同位体組成比(Puベクトルと称する) Puと
Pu単位重量あたり中性子発生率s (Pu)の関係を
求めておく。また、第4図は廃液中の微量のPuを洗浄
除去する補助抽出器の中性子実効増倍率に84.を例示
したものであるが、体系のKefTはPu濃濃度上匹の
関数であり、理論計算等をもとに求めておく。
FIG. 2 is a diagram illustrating the range of Pu isotope composition ratios using Pu-240 as a representative composition. Based on this, in the present invention, we consider the range of Pu isotopic composition that includes all reprocessed fuel stipulated in the acceptance specifications, and calculate the Pu isotopic composition ratio (referred to as Pu vector) as shown in Figure 3. The relationship between Pu and the neutron generation rate s (Pu) per unit weight of Pu is determined. In addition, Figure 4 shows that the effective neutron multiplication factor of the auxiliary extractor for cleaning and removing trace amounts of Pu in the waste liquid is 84. The KefT of the system is a function of the Pu concentration, and is determined based on theoretical calculations.

第1表 Puの中性子発生率 (n/sec ・gPu) 注1) H2O:100% 注2)  TBP:30V%、 Dodecane :
 70 v%本発明では、あらかじめ上記の関係を求め
ておくことにより、以下の原理に基づいてPu濃度を算
出し、Pu濃度警報値(上限制限値)と比較することに
よりPu濃度異常の検知を行う。
Table 1 Pu neutron generation rate (n/sec ・gPu) Note 1) H2O: 100% Note 2) TBP: 30V%, Dodecane:
70 v% In the present invention, by determining the above relationship in advance, the Pu concentration is calculated based on the following principle, and the Pu concentration abnormality can be detected by comparing it with the Pu concentration alarm value (upper limit value). conduct.

まず、Pu濃度の算出法について示す。中性子計数率C
は、Pu溶液単位体積あたり中性子発生率S に比例し
、体系のKerrにも依存する。また、その単位体積あ
たり中性子線源の強さS は、Pu濃度n及び受入れP
u単位重量あたり中性子発生率Sの積である。
First, a method for calculating the Pu concentration will be described. Neutron count rate C
is proportional to the neutron generation rate S per unit volume of Pu solution and also depends on the Kerr of the system. In addition, the strength S of the neutron source per unit volume is determined by the Pu concentration n and the acceptance P
It is the product of the neutron generation rate S per unit weight.

すなわち、 C−α・S/(1−K)     ・・・・・・・・・
・・・(1)o     err S  −n−s (Pu)          ・・・
・・・・・・・・・(2)ここで、αは定数であり、線
源の仕様が既知の体系で測定して求めておく定数である
。また、体系のKef’rはnと匹の関数であり、 ・・・・・・・・・・・・(3) Ke「f −Kef’f (n、’り (1)〜(3)式より、Cとnの関係は次のように求ま
る C−a・n−s (Pu)/ (1−Ke、f(n、 
Pu) ) −(4)すなわち、中性子計数率Cが与え
られた場合、(4)式によってPu濃度を算出すること
ができる。
That is, C-α・S/(1-K) ・・・・・・・・・
... (1) o err S -n-s (Pu) ...
. . . (2) Here, α is a constant, which is determined by measurement using a system in which the specifications of the radiation source are known. In addition, Kef'r of the system is a function of n and individuals, and ...... From the formula, the relationship between C and n can be found as follows: C-a・n-s (Pu)/ (1-Ke, f(n,
Pu) ) - (4) That is, when the neutron count rate C is given, the Pu concentration can be calculated using equation (4).

次に、第5図は典型的な例として、廃液中の微量のPu
を洗浄除去する補助抽出器(ミキサセトラ)における中
性子計数率とPufi度の関係を示す。図中破線は、中
性子増倍効果をなしとした場合、実線は中性子増倍効果
をありとした場合についての関係を表わす。この図より
、Pu濃度が1gPu#!程度以下の場合、中性子増倍
効果をゼロとしてもよいが、Pu濃度が数gPu#7程
度になると、中性子増倍効果を考慮する必要があること
が分かる。図中AA’は酸濃度、硝酸水溶液や有機溶液
の流量等のプロセス量変動を考慮したときの通常運転時
の最大Pu濃度に対応する計数率の変化範囲、−BB’
はプロセス管理上の管理濃度(漏洩Pu最大許容濃度)
に対応する計数率の変化範囲を表わし、斜線で示される
範囲は、全受入Pu組成範囲を考慮したときの計数率の
範囲を表わす。
Next, Figure 5 shows, as a typical example, a trace amount of Pu in the waste liquid.
This figure shows the relationship between the neutron count rate and the Pufi degree in the auxiliary extractor (mixer settler) that washes and removes neutrons. In the figure, the broken line represents the relationship when the neutron multiplication effect is not present, and the solid line represents the relationship when the neutron multiplication effect is present. From this figure, the Pu concentration is 1gPu#! If the Pu concentration is less than a certain amount, the neutron multiplication effect may be set to zero, but when the Pu concentration reaches about several grams of Pu#7, it is clear that it is necessary to take the neutron multiplication effect into consideration. In the figure, AA' is the change range of the counting rate corresponding to the maximum Pu concentration during normal operation when considering process quantity fluctuations such as acid concentration and flow rate of nitric acid aqueous solution and organic solution, -BB'
is the control concentration for process management (maximum allowable leakage Pu concentration)
, and the hatched range represents the range of count rate when the entire accepted Pu composition range is considered.

Pu濃度の警報値は、管理濃度より低めの値NAに設定
するが、対応する計数率の範囲はCC′となる。n^は
、Pu組成情報を与えることにより、ひとつの計数率デ
ータに対して前記(4)式により一意に求まる。
The alarm value for the Pu concentration is set to a value NA lower than the control concentration, but the corresponding counting rate range is CC'. By giving Pu composition information, n^ can be uniquely determined for one count rate data by the above equation (4).

以下、本発明による中性子モニタ装置の実施例について
図面を参照して説明する。
Embodiments of the neutron monitor device according to the present invention will be described below with reference to the drawings.

第1図は、本発明の中性子モニタ装置の第1の実施例の
構成を示すもので、図に例示する機器は、廃液を中の微
量のPuを洗浄除去するミキサセトラの段方向の垂直断
面図であり、Pu溶液、中性子検出部1の位置関係を示
している。中性子検出器からの信号は、計数回路2を経
て計数率としてPu濃度計算装置3に入力される。また
、Pu同位体組成比分析データも同装置の入力データと
なる。中性子実効増倍率記憶装置4には、理論計算等を
もとに中性子実効増倍率とPu濃度の関係を示すデータ
が内蔵され、前記装置3はこれを参照することにより、
中性子増倍効果の補正を行ってPu濃度を算出する。装
置3より出力されたPu濃度計算値は、警報発生装置5
に送られて、Pu濃度警報値と比較され、それ以上の値
となった場合に警報発生装置5は警報を発生する。
FIG. 1 shows the configuration of the first embodiment of the neutron monitoring device of the present invention. , which shows the positional relationship between the Pu solution and the neutron detection section 1. The signal from the neutron detector is input to the Pu concentration calculation device 3 via the counting circuit 2 as a counting rate. In addition, the Pu isotope composition ratio analysis data is also input data to the device. The neutron effective multiplication factor storage device 4 has built-in data indicating the relationship between the neutron effective multiplication factor and the Pu concentration based on theoretical calculations, etc., and by referring to this, the device 3 can:
The Pu concentration is calculated by correcting the neutron multiplication effect. The calculated Pu concentration value output from the device 3 is sent to the alarm generating device 5.
is sent to and compared with the Pu concentration alarm value, and if the value exceeds the Pu concentration alarm value, the alarm generator 5 issues an alarm.

即ち、この中性子モニタ装置では、ミキサセトラに供給
された抽出廃液(硝酸水溶液または有機溶媒液)中に含
まれる少量のPuから発生する中性子を、中性子減速材
(ポリエチレン等)で囲んだHe−3カウンタ、B−1
0カウンタ等で構成する中性子検出器1によって測定す
る。
That is, in this neutron monitoring device, neutrons generated from a small amount of Pu contained in the extraction waste liquid (nitric acid aqueous solution or organic solvent solution) supplied to the mixer settler are collected using a He-3 counter surrounded by a neutron moderator (polyethylene, etc.). ,B-1
Measurement is performed by a neutron detector 1 consisting of a 0 counter and the like.

計数回路2は、前置増幅器、増幅器、波高弁別器、計数
器等により構成される。
The counting circuit 2 includes a preamplifier, an amplifier, a pulse height discriminator, a counter, and the like.

Pu濃度計算装置3は、Pu濃度を計算する装置であり
、中性子計数率及び受入れ燃料溶液のPu同位体組成比
の分析データを入力とし、更に中性子実効増倍率記憶装
置4に記憶される中性子実効増倍率とPu濃度の関係を
示すデータから、前記(4)式を満足するようなPu濃
度を算出する。中性子実行倍増率記憶装置4では、論理
計算結果や臨界安全ハンドブック等に基づ(Pu濃度と
中性子実効増倍率の関係を示すデータが記憶されている
。なお、同一のPu濃度でも、プロセス量の変動に伴い
Pu溶液部分の形状が変化することを考慮し、その変動
範囲内で中性子実効増倍率を最小値に設定しておけば、
(4)式においてn値は大きめに評価され安全側となる
。また、(4)式中の定数α値は、あらかじめ線源強度
や形状が種々の中性子源(Cf−252、Pu溶液等)
を用いて機器を模擬した体系や実体系で中性子検出器の
応答特性を測定しておき、それより求められた較正定数
である。なお、同一のPu濃度でも、プロセス量の変動
に伴いPu溶液部分の形状が変化することを考慮し、そ
の変動範囲内でα値を最小値に設定しておけば(4)式
においてn値は大きめに評価され安全側となる。
The Pu concentration calculation device 3 is a device that calculates the Pu concentration, and inputs the analysis data of the neutron count rate and the Pu isotope composition ratio of the received fuel solution, and further calculates the neutron effective multiplication factor stored in the neutron effective multiplication factor storage device 4. A Pu concentration that satisfies the above equation (4) is calculated from data showing the relationship between the multiplication factor and the Pu concentration. The neutron effective multiplication factor storage device 4 stores data indicating the relationship between the Pu concentration and the neutron effective multiplication factor based on logical calculation results, criticality safety handbooks, etc. Considering that the shape of the Pu solution part changes with fluctuations, if the effective neutron multiplication factor is set to the minimum value within the fluctuation range,
In equation (4), the n value is evaluated to be relatively large and becomes on the safe side. In addition, the constant α value in formula (4) is calculated using neutron sources with various source strengths and shapes (Cf-252, Pu solution, etc.).
The response characteristics of the neutron detector are measured in a system simulating the equipment or in a real system using Note that even if the Pu concentration is the same, the shape of the Pu solution part changes as the process amount changes, and if the α value is set to the minimum value within the fluctuation range, the n value in equation (4) is evaluated as being on the safe side.

警報発生装置5は、装置3より出力されたPu濃度計算
値を、Pu濃度警報値と比較してそれ以上の値となった
場合に警報を発生する機能を有する。
The alarm generating device 5 has a function of comparing the Pu concentration calculation value outputted from the device 3 with the Pu concentration alarm value and generating an alarm when the value exceeds the Pu concentration alarm value.

なお、本発明による装置の入出力値である中性子計数率
、Pu同位体組成、中性子実効増倍率、Pu濃度等の情
報を運転員の要求によりレコーダやプリンタに出力する
ことにより、運転員に常時注意を促すようにできること
はいうまでもない。
Note that information such as neutron count rate, Pu isotope composition, effective neutron multiplication factor, and Pu concentration, which are the input and output values of the device according to the present invention, can be outputted to a recorder or printer at the request of the operator, so that the operator can always know the information. It goes without saying that things can be done to encourage caution.

第2の実施例は第6図に示す如くであり、第1の実施例
においてシステムを簡素化した例である。
The second embodiment is as shown in FIG. 6, and is an example in which the system of the first embodiment is simplified.

Pu濃度警報値が1 gPu#程度以下の場合、中性子
増倍効率が小さいことに着目し、(4)式において中性
子実効増倍率をゼロとすることにより第1の実施例での
中性子実効増倍率記憶装置4を省き、システムを簡素化
したものである。
Focusing on the fact that the neutron multiplication efficiency is small when the Pu concentration alarm value is about 1 gPu# or less, the effective neutron multiplication factor in the first embodiment is calculated by setting the neutron effective multiplication factor to zero in equation (4). The system is simplified by omitting the storage device 4.

第3の実施例は第7図に示す如くであり、第1の実施例
において、更にプロセス量の情報を取り入れることによ
りPu濃度の計算精度向上を図ったものである。即ち、
プロセス量の変動に伴ってPu溶液の形状が変化し、検
出器応答特性及び体系の中性子増倍効果が変化すること
を考慮し、(4)式中のα及びKerrはPu溶液の形
状に依存する量としている。このため、Pu濃度計算装
置3は、中性子計数率及び受入れ燃料溶液のPu組成の
分析データに加え、プロセス量を入力としている。一方
、中性子実効増倍率記憶装置4には、様々なプロセス量
の変動に対するPu溶液の形状の代表パターンが記憶さ
れ、それぞれに対して理論計算結果や臨界安全ハンドブ
ック等に基づいて評価した中性子実効増倍率とPu濃度
の関係を示すデータが記憶されている。また、較正定数
記憶装置4′には、様々なプロセス量の変動に対するP
u溶液形状の代表パターンが記憶され、それぞれに対応
する較正定数αが記憶されている。較正定数αは、様々
なプロセス量の変動を想定して、あらかじめ線源強度や
形状が種々の中性子源(Cf−252、Pu溶液等)を
用いて機器を模擬した体系や実体系で中性子検出器の応
答特性を測定しておき、それらの結果をもとに代表パタ
ーンごとにより求められている。Pu濃度計算装置3は
、入力されたプロセス量の情報をもとに、Pu溶液の形
状がどのパターンに属するかを判断し、前記記憶装置4
及び4′より較正定数α及び中性子実効増倍率とPu濃
度の関係を示すデータをとりだし、(4)式よりPu濃
度を計算する。
The third embodiment is as shown in FIG. 7, and is an attempt to improve the calculation accuracy of the Pu concentration by further incorporating process amount information in the first embodiment. That is,
Considering that the shape of the Pu solution changes as the process amount changes, and the detector response characteristics and neutron multiplication effect of the system change, α and Kerr in equation (4) depend on the shape of the Pu solution. The amount is set to 1. For this reason, the Pu concentration calculation device 3 inputs the process amount in addition to the analysis data of the neutron count rate and the Pu composition of the received fuel solution. On the other hand, the effective neutron multiplication factor storage device 4 stores representative patterns of the shape of the Pu solution for various process amount fluctuations, and the effective neutron multiplication factor is evaluated for each based on theoretical calculation results, criticality safety handbooks, etc. Data indicating the relationship between magnification and Pu concentration is stored. The calibration constant storage device 4' also contains P
U Representative patterns of solution shapes are stored, and calibration constants α corresponding to each are stored. The calibration constant α is calculated based on neutron detection using a system that simulates equipment or a real system using neutron sources with various source intensities and shapes (Cf-252, Pu solution, etc.), assuming variations in various process quantities. The response characteristics of the device are measured in advance, and each representative pattern is determined based on those results. The Pu concentration calculation device 3 determines to which pattern the shape of the Pu solution belongs based on the input process amount information, and stores the information in the storage device 4.
Data indicating the relationship between the calibration constant α and the effective neutron multiplication factor and the Pu concentration are extracted from the equation (4) and the Pu concentration is calculated from the equation (4).

本発明の対象機器はミキサセトラに限定されるものでな
く、パルスカラム、貯槽等、Puを内蔵する他の機器に
も適用される。また、本発明において、中性子輸送計算
コードや拡散計算コードを用いて較正定数及び中性子実
効増倍率を計算する機能をもたせ、必要に応じてより精
度良(Pu濃度を算出あるいは補正する方法が考えられ
る。
The target equipment of the present invention is not limited to mixer settlers, but is also applicable to other equipment containing Pu, such as pulse columns and storage tanks. In addition, in the present invention, a function is provided to calculate a calibration constant and an effective neutron multiplication factor using a neutron transport calculation code and a diffusion calculation code, and if necessary, a method of calculating or correcting the Pu concentration can be considered. .

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明の中性子モニタ装置は、再処理抽
出工程の共除染工程及び精製工程に附属するPu濃度に
よる臨界管理を行う機器において、その中の漏洩Puか
らの中性子数を測定し、これを人力として機器内のPu
濃度のみならず中性子実効増倍率を計算し、その臨界安
全性を連続的に監視し、または運転員の要求により評価
することができ、予め安全側に設定されているPu濃度
上限制限値とを比較してPu濃度異常を検知し、警報を
発生させることにより、臨界を未然に防止することがで
きる。
As described above, the neutron monitoring device of the present invention measures the number of neutrons from leaked Pu in equipment that performs criticality control based on Pu concentration that is attached to the co-decontamination process and purification process of the reprocessing extraction process. , this is done manually to remove the Pu inside the device.
Not only the concentration but also the effective neutron multiplication factor can be calculated, and its criticality safety can be continuously monitored or evaluated at the request of the operator, and the upper limit value of the Pu concentration, which is set in advance on the safe side, can be calculated. Criticality can be prevented by comparing and detecting an abnormal Pu concentration and generating an alarm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の中性子モニタ装置を示
す構成図、第2図はPuの同位体組成比の範囲を示す図
、第3図はPu単位重量あたりの中性子発生率とPu同
位体組成比(Pu−240で代表)の関係を示す図、第
4図は中性子実効増倍率とPu濃度の関係を示す図、第
5図は中性子計数率とPu濃度の関係において警報値の
設定を示す図、第6図は本発明の第2の実施例の中性子
モニタ装置を示す構成図、第7図は本発明の第3の実施
例の中性子モニタ装置を示す構成図である。 1・・・中性子検出部、2・・・計数回路、3・・・P
u濃度計算装置、4・・・中性子実効増倍率記憶装置、
4′・・・較正定数記憶装置、5・・・警報発生装置。
Figure 1 is a diagram showing the configuration of a neutron monitoring device according to the first embodiment of the present invention, Figure 2 is a diagram showing the range of Pu isotopic composition ratios, and Figure 3 is a diagram showing the neutron generation rate per unit weight of Pu. Figure 4 shows the relationship between the Pu isotope composition ratio (represented by Pu-240), Figure 4 shows the relationship between the effective neutron multiplication factor and Pu concentration, and Figure 5 shows the alarm value in the relationship between the neutron count rate and Pu concentration. FIG. 6 is a block diagram showing a neutron monitor device according to a second embodiment of the present invention, and FIG. 7 is a block diagram showing a neutron monitor device according to a third embodiment of the present invention. 1... Neutron detection unit, 2... Counting circuit, 3... P
u concentration calculation device, 4... neutron effective multiplication factor storage device,
4'... Calibration constant storage device, 5... Alarm generating device.

Claims (1)

【特許請求の範囲】[Claims] 各機器内の漏洩プルトニウムからの中性子数を測定する
装置と、前記中性子数の測定値を入力として前記各機器
内のプルトニウム濃度を計算するプルトニウム濃度計算
装置と、前記計算装置により計算されたプルトニウム濃
度をあらかじめ安全側に設定されているプルトニウム濃
度上限制限値と比較し、プルトニウム濃度が前記上限制
限値を越えたとき警報を発する信号発生装置を備えたこ
とを特徴とする中性子モニタ装置。
a device for measuring the number of neutrons from leaked plutonium in each device; a plutonium concentration calculation device for calculating the plutonium concentration in each device by inputting the measured value of the number of neutrons; and a plutonium concentration calculated by the calculation device. A neutron monitor device comprising: a signal generating device that compares plutonium concentration with an upper limit value set on the safe side in advance and issues an alarm when the plutonium concentration exceeds the upper limit value.
JP2275616A 1990-10-15 1990-10-15 Neutron monitor apparatus Pending JPH04151590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275616A JPH04151590A (en) 1990-10-15 1990-10-15 Neutron monitor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275616A JPH04151590A (en) 1990-10-15 1990-10-15 Neutron monitor apparatus

Publications (1)

Publication Number Publication Date
JPH04151590A true JPH04151590A (en) 1992-05-25

Family

ID=17557938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275616A Pending JPH04151590A (en) 1990-10-15 1990-10-15 Neutron monitor apparatus

Country Status (1)

Country Link
JP (1) JPH04151590A (en)

Similar Documents

Publication Publication Date Title
JPS6097296A (en) Method and device for deciding access to critical state of nuclear reactor
US3712850A (en) Method for determining reactor coolant system leakage
JP3524203B2 (en) Neutron monitor and criticality management method for spent nuclear fuel
JPH04151590A (en) Neutron monitor apparatus
KR100765969B1 (en) Digital radiation monitoring system for auto radionuclide analysis
JPH06214038A (en) Neutron monitoring method and device therefor
Ryazanov et al. Neutron-dosimetric support of experiments carried out at RIAR reactors
JPH04256897A (en) Neutron monitor device
JP2010112726A (en) Method for determining nuclide composition of fissionable material
JP2023030895A (en) Neutron monitoring device, and spent nuclear fuel criticality management method
JP2005098741A (en) Leak detection method
Coble et al. Integrating data sources for improved safeguards and accountancy of electrochemical fuel reprocessing systems. final report
JPH05232238A (en) Calibration of neutron monitor device
JP2006317248A (en) Radiation measuring system
Zhu et al. Evaluation of source terms of fission products in gaseous effluents and recommendations for effluent monitoring of nuclear power plants
JP2809739B2 (en) Criticality prevention device
Hakkila et al. Integrated international safeguards concepts for fuel reprocessing
Ayers The Use of Fuel Reprocessing Plant Instrumentation for International Safeguards
Besar Installation, calibration and independent verification of the performance of a primary water radioactivity monitor in a one megawatt TRIGA research reactor
JPS60260876A (en) Method and device for measuring concentration of plutonium in process liquid flow
Cabrilla Westinghouse Hanford Company
JPS59141086A (en) Method and apparatus for measuring uranium enrichment
Rundquist et al. Material control for a reprocessing plant
Rinard et al. Monitoring a Liquid Waste Stream with A Delayed-neutron Instrument
Barbry et al. Criticality accident studies and methodology implemented at the CEA