JPS6155075B2 - - Google Patents

Info

Publication number
JPS6155075B2
JPS6155075B2 JP60008879A JP887985A JPS6155075B2 JP S6155075 B2 JPS6155075 B2 JP S6155075B2 JP 60008879 A JP60008879 A JP 60008879A JP 887985 A JP887985 A JP 887985A JP S6155075 B2 JPS6155075 B2 JP S6155075B2
Authority
JP
Japan
Prior art keywords
subcriticality
fuel
equation
neutron
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60008879A
Other languages
Japanese (ja)
Other versions
JPS61105492A (en
Inventor
Kyoshi Ueda
Fumio Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP60008879A priority Critical patent/JPS61105492A/en
Publication of JPS61105492A publication Critical patent/JPS61105492A/en
Publication of JPS6155075B2 publication Critical patent/JPS6155075B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は中性子発生源を有する燃料集合体を含
む単位未臨界体系の内部または外部の中性子束を
当該単位未臨界体系だけの場合と、前記単位未臨
界体系を含む複合未臨界体系の場合について比較
し、単位未臨界体系の未臨界度すなわち負の反応
度を求める方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of measuring the neutron flux inside or outside a unit subcritical system including a fuel assembly having a neutron source, in the case of only the unit subcritical system, and in the case of a composite system including the unit subcritical system. This paper compares the case of a subcritical system and relates to a method for determining the subcriticality, that is, the negative reactivity of a unit subcritical system.

単位未臨界体系には少なくとも1体の中性子発
生源を有する燃料集合体が含まれる。中性子発生
源を有する燃料集合体としては照射燃料のように
中性子を自発的に放出する(以下のこの中性子を
自発中性子と呼ぶ)超ウラン元素を含む燃料集合
体、照射燃料のように高エネルギーのガンマ線を
放出する燃料集合体の内部などに(γ,n)反応
で中性子を放出する重水素、ベリリウムなどを装
着した燃料集合体、カリホルニウム―252やアン
チモン・ベリリウムなどの外部中性子源を装着し
た燃料集合体などがある。外部中性子源の装着は
燃料集合体の内外部いずれでもよい。
A unit subcritical system includes a fuel assembly having at least one neutron source. Fuel assemblies with neutron sources include fuel assemblies containing transuranium elements that spontaneously emit neutrons (hereinafter these neutrons are referred to as spontaneous neutrons), such as irradiated fuel, and fuel assemblies that contain high-energy elements such as irradiated fuel. Fuel assemblies that are equipped with deuterium, beryllium, etc. that emit neutrons through (γ, n) reactions inside the fuel assemblies that emit gamma rays, and fuels that are equipped with external neutron sources such as californium-252 or antimony/beryllium. There are also aggregates. The external neutron source may be mounted either inside or outside the fuel assembly.

複合未臨界体系としては停止中の原子炉炉心、
使用済燃料輸送容器、燃料ラツクなどがある。
As a complex subcritical system, a nuclear reactor core that is shut down,
These include spent fuel transport containers and fuel racks.

本発明が適用される代表的例は以下に述べるも
のである。
Typical examples to which the present invention is applied are described below.

(1) 停止中の原子炉炉心の未臨界度測定 (2) 使用済燃料輸送容器の未臨界度測定 (3) 燃料ラツクの未臨界度測定 (4) プルトニウムなど新燃料貯蔵庫の未臨界度測
定 (5) 照射燃料の未臨界度測定 これらのうち、(1)〜(4)は複合未臨界体系の未臨
界度測定に属し、(5)は単位未臨界体系の未臨界度
測定に属する。(1)の停止中の原子炉の未臨界度す
なわち負の反応度は制御棒の核的健全性、制御棒
交換時の安全性、制御棒脱落仮想事故時の安全性
あるいは核設計手法の評価にきわめて有効であ
る。(2)の使用済燃料輸送容器の未臨界度は安全輸
送に不可欠な条件である。(3)の燃料ラツクの未臨
界度は使用済燃料貯蔵場所の有効利用あるいは当
該ラツクの核的設計方法の妥当性評価に有効であ
る。(4)の新燃料貯蔵庫の未臨界度は冠水事故の安
全性評価や当該貯蔵庫の有効利用、設計手法の評
価に有効である。(5)の照射燃料の未臨界度は燃焼
状態の確認や当該燃料の有効利用、設計方法の評
価などに有効である。
(1) Measurement of subcriticality of nuclear reactor core during shutdown (2) Measurement of subcriticality of spent fuel transport containers (3) Measurement of subcriticality of fuel racks (4) Measurement of subcriticality of new fuel storage such as plutonium (5) Subcriticality measurement of irradiated fuel Of these, (1) to (4) belong to the subcriticality measurement of a composite subcritical system, and (5) belongs to the subcriticality measurement of a unit subcritical system. The subcriticality, or negative reactivity, of a nuclear reactor during shutdown in (1) indicates the nuclear integrity of the control rods, safety during control rod replacement, safety in the event of a hypothetical control rod dropout accident, or evaluation of nuclear design methods. It is extremely effective. (2) Subcriticality of the spent fuel transportation container is an essential condition for safe transportation. The subcriticality of the fuel rack in (3) is effective for the effective use of spent fuel storage sites and for evaluating the validity of the nuclear design method for the rack. The subcriticality of the new fuel storage in (4) is effective in evaluating the safety of flooding accidents, the effective use of the storage, and design methods. The subcriticality of irradiated fuel (5) is effective for checking the combustion state, effectively utilizing the fuel, and evaluating design methods.

以下複合未臨界体系の代表例である(1)の停止中
の原子炉炉心の未臨界度の測定方法について詳細
に説明する。前述の(2)〜(4)も同様に実施すること
ができる。
The following describes in detail the method (1) for measuring the subcriticality of a nuclear reactor core during shutdown, which is a typical example of a composite subcritical system. The above-mentioned (2) to (4) can also be implemented in the same manner.

一般に動力用原子炉では核分裂や中性子捕獲な
どの核反応が非常に活発に行なわれており、たと
えばウランを核燃料として使用した場合には、ウ
ラン235の量が減損し代りにプルトニウムが生成
する。ウランの減損は原子炉の正の反応度を低下
させ、プルトニウムの生成は逆に正の反応度を上
昇させる。また核分裂によつて生成する生成物の
中にはキセノン135のように中性子吸収断面積が
非常に大きいものがあるが、特にキセノン135の
生成は原子炉の運転出力によつて変化するだけで
なく、原子炉を一旦停止すると大幅に増大し、そ
の後減少するが、10日間も原子炉を停止しておく
と、ほとんど消滅する。原子炉停止中にキセノン
135が消滅すると原子炉の未臨界度が小さくな
る。また燃料集合体の中には原子炉の余剰反応度
を抑制し、出力分布を改良したり、あるいは制御
棒反応度効果をよくするために、ガドリニウムな
どの可燃性毒物が使用されることもある。この可
燃性毒物は核燃料の燃焼が進むにつれて、徐々に
あるいはかなり急速に消滅し、それに伴つて原子
炉に正の反応度効果が生ずる。
In general, nuclear reactions such as nuclear fission and neutron capture take place very actively in power reactors. For example, when uranium is used as nuclear fuel, the amount of uranium-235 is depleted and plutonium is produced instead. Depletion of uranium reduces the positive reactivity of the reactor, while production of plutonium conversely increases the positive reactivity. In addition, some products produced by nuclear fission, such as xenon-135, have extremely large neutron absorption cross sections, but the production of xenon-135 in particular varies not only depending on the operating output of the nuclear reactor. , increases significantly once the reactor is shut down and then decreases, but if the reactor is shut down for 10 days, it almost disappears. Xenon during reactor shutdown
When 135 disappears, the subcriticality of the reactor decreases. In addition, burnable poisons such as gadolinium are sometimes used in fuel assemblies to suppress excess reactivity in the reactor, improve power distribution, or improve the control rod reactivity effect. . This burnable poison is gradually or rather rapidly destroyed as the nuclear fuel burns, creating an associated positive reactivity effect in the reactor.

以上述べたように動力用原子炉においては核分
裂反応が進行するにつれて原子炉のもつ潜在的な
反応度は複雑に変化する。原子炉運転中はこの潜
在的反応度は制御棒などで抑制されて反応度零の
状態になつている。原子炉停止の場合には、制御
棒を使用するが、制御棒の反応度は核燃料の燃焼
が進行してもほとんど変化しない。原子炉は停止
するときには安全確実に余裕をもつて停止しなけ
ればならない。したがつて停止中の原子炉の未臨
界度(停止余裕という)は、原子炉の安全にきわ
めて重要である。
As mentioned above, in a power reactor, the potential reactivity of the reactor changes in a complex manner as the nuclear fission reaction progresses. During reactor operation, this potential reactivity is suppressed by control rods, etc., resulting in a state of zero reactivity. When a nuclear reactor is shut down, control rods are used, and the reactivity of the control rods hardly changes as the nuclear fuel burns. When a nuclear reactor is shut down, it must be shut down safely and with plenty of time. Therefore, the subcriticality (referred to as shutdown margin) of a nuclear reactor during shutdown is extremely important for the safety of the reactor.

一般の研究用原子炉や臨界実験装置などでは、
パルス中性子源法、制御棒落下法、ノイズ法など
種々の方法によつて未臨界度の測定がなされてい
るが、動力用原子炉の場合には、炉心が非常に大
きいことやガンマ線が非常に強いなどの理由から
前記種々の方法は適用不可能である。このため動
力用原子炉の停止余裕を実測した例はなく、もつ
ぱら理論計算に頼つているのが現状である。前述
のように停止余裕の複雑な変化があつても、原子
炉を安全確実に未臨界に保つため、従来は理論計
算結果さらに余裕をもたせることによつてこの問
題を解決してきた。
In general research reactors and critical experiment equipment,
Subcriticality has been measured using various methods such as the pulsed neutron source method, control rod drop method, and noise method, but in the case of power reactors, the core is extremely large and gamma rays are The various methods described above are not applicable due to reasons such as strong strength. For this reason, there have been no actual measurements of the shutdown margin of power reactors, and currently we rely solely on theoretical calculations. In order to safely and reliably keep the reactor subcritical even when there are complex changes in the shutdown margin as described above, this problem has conventionally been solved by adding more margin to the results of theoretical calculations.

本発明による方法を実施すると、理論計算の結
果を実験的に評価することができるので、原子炉
の経済的設計に役立てることができるが、さらに
制御棒の核的健全性、制御棒脱落仮想事故時の安
全性、制御棒や燃料の交換時における安全性の評
価などに役立てることができる。
By implementing the method according to the present invention, it is possible to experimentally evaluate the results of theoretical calculations, which can be useful for the economical design of nuclear reactors. It can be used to evaluate the safety during control rod and fuel replacement.

本発明の原理を数式により説明する。 The principle of the present invention will be explained using mathematical formulas.

照射燃料の中に生成する超ウラン元素から放出
される高速中性子すなわち自発中性子と、連鎖的
に誘発される核分裂によつて放出される高速中性
子すなわち誘発中性子は共にほとんど同一のエネ
ルギースペクトルを有するため、対象とする体系
(この場合停止中の炉心)における高速中性子の
振舞を表わす拡散方程式は次のようになる。
Fast neutrons, or spontaneous neutrons, emitted from transuranium elements produced in irradiated fuel and fast neutrons, or induced neutrons, emitted by chain-induced nuclear fission both have almost the same energy spectrum. The diffusion equation that describes the behavior of fast neutrons in the system of interest (in this case, a stopped reactor core) is as follows.

自発中性子と誘発中性子とが共存して定常状態
になつているから次の(1)式が成立する。
Since spontaneous neutrons and induced neutrons coexist in a steady state, the following equation (1) holds true.

<(Σr+DB2FφFs=<νΣfφ>+S (1) 一方自発中性子が存在しない場合には、方程式
を定常状態の形で表現するために、実効増倍率k
effが用いられ(2)式で表わすことができる。
<(Σ r +DB 2 ) F φ F > s = <νΣ f φ>+S (1) On the other hand, in the absence of spontaneous neutrons, in order to express the equation in steady state form, the effective multiplication factor k
eff is used and can be expressed by equation (2).

<(Σr+DB2FφF> =<νΣfφ>/keff (2) ここに < >:< >の中の値が与えられた体系の平
均値であることを示す記号。
<(Σ r + DB 2 ) F φ F > = <νΣ f φ>/k eff (2) Here <>: A symbol indicating that the value inside <> is the average value of the given system.

F:高速中性子に体する値であることを示す指
標 Σr:除去断面積 D:拡散系数 B:バツクリング νΣfφ:高速中性子から熱中性子までのすべ
ての中性子による前記誘発中性子発生率 φF:高速中性子束 S:自発中性子発生率 (1)式の< >sのsは自発中性子が存在する体
系であることを示す指標である。
F: Index indicating that the value corresponds to fast neutrons Σ r : Removal cross section D: Diffusion coefficient B: Buckling νΣ f φ: The induced neutron generation rate due to all neutrons from fast neutrons to thermal neutrons φ F : Fast neutron flux S: Spontaneous neutron generation rate s in <> s in equation (1) is an index indicating that the system contains spontaneous neutrons.

(1)式の中性子束の値は自発中性子発生率Sで大
きく左右されるが、(2)式の中性子束の値は全く相
対的な値である。したがつていま(1)式の左辺と(2)
式の左辺とが等しくなるように(2)式の中性子束レ
ベルを規格化すれば次の(3)式が得られる。
The value of the neutron flux in equation (1) is greatly influenced by the spontaneous neutron generation rate S, but the value of the neutron flux in equation (2) is a completely relative value. Therefore, now the left side of equation (1) and (2)
If the neutron flux level in equation (2) is normalized so that it is equal to the left side of the equation, the following equation (3) can be obtained.

<νΣfφ>s+S=<νΣfφ>/keff (3) この(3)式を未臨界度すなわち負の反応度ρの定
義によつて変形すると次の(4)式が得られる。
<νΣ f φ> s + S = <νΣ f φ>/k eff (3) If this equation (3) is transformed by the definition of subcriticality, that is, negative reactivity ρ, the following equation (4) is obtained. .

ρ=(1/keff)−1 =(S/<νΣfφ>)+[(<νΣfφ>s /<νΣfφ>)−1] (4) 第1図は沸騰水型原子炉の炉心部1を示す図で
ある。
ρ=(1/k eff )−1 = (S/<νΣ f φ>)+[(<νΣ f φ> s /<νΣ f φ>)−1] (4) Figure 1 shows a boiling water type atom FIG. 1 is a diagram showing a core part 1 of a reactor.

2は燃料集合体、3は十字型制御棒である。1
本の制御棒は破線4で囲まれた4体の燃料集合体
を支配している。
2 is a fuel assembly, and 3 is a cross-shaped control rod. 1
The control rods control four fuel assemblies surrounded by dashed lines 4.

第2図は燃料集合体を一体炉心内から取出して
水プール中においた図である。全体を2で示す燃
料集合体はチヤンネルボツクス5の中に多数の燃
料棒6(図では7行7列の計49本が示されてい
る)が規則正しく並べられている。燃料棒の間に
は減速材の軽水7が充たされている。チヤンネル
ボツクスの外部にもプール水8が充たされてい
る。
FIG. 2 is a diagram showing the fuel assembly taken out from inside the integrated reactor core and placed in a water pool. The fuel assembly, generally designated by 2, has a large number of fuel rods 6 (a total of 49 fuel rods are shown in 7 rows and 7 columns in the figure) arranged regularly in a channel box 5. Light water 7 serving as a moderator is filled between the fuel rods. The outside of the channel box is also filled with pool water 8.

いま第2図のような体系と第1図の破線4で囲
まれた体系のそれぞれに対し、中性子の拡散理論
に基づく計算コードにより、中性子束分布とkef
について厳密に解析してみると、(1)式に基づく
自発中性子と誘発中性子が共存している場合の中
性子束分布は(2)式に基づく誘発中性子しか存在し
ない場合の中性子束分布とかなりよく一致するこ
とがわかる。その理由は自発中性子の移動距離と
燃料集合体の大きさ(対辺間距離)とが同程度で
あるからである。なお、第1図の破線4の内部に
ついての上記解析では破線4から内側への中性子
の流入や外側への流出はないものとする。
Now, for the system shown in Figure 2 and the system surrounded by the broken line 4 in Figure 1, the neutron flux distribution and k ef are calculated using calculation codes based on neutron diffusion theory.
A strict analysis of f shows that the neutron flux distribution when spontaneous neutrons and induced neutrons coexist based on equation (1) is quite similar to the neutron flux distribution when only induced neutrons exist based on equation (2). It can be seen that they match well. The reason for this is that the travel distance of spontaneous neutrons and the size of the fuel assembly (distance between opposite sides) are approximately the same. In addition, in the above analysis of the inside of the broken line 4 in FIG. 1, it is assumed that there is no inflow of neutrons from the broken line 4 inward or outflow to the outside.

(1)式に基づく中性子束分布と、(2)式に基づく中
性子束分布とがあまり差異がないことは、<νΣf
φ>sと<νΣfφ>とがほぼ等しいことを意味す
るので、(4)式の[ ]の値はほぼ零となる。した
がつて(4)式の右辺の[ ]は補正項とみることが
できる。(4)式の[ ]の補正項が無視できない場
合は、理論計算で求めたものを用いることができ
る。以下の議論では簡単のため(4)式の補正項は無
視すると、 ρ=S/<νΣfφ> (4a) が得られる。<νΣfφ>は<νΣfφ>としても
よい。
The fact that there is not much difference between the neutron flux distribution based on equation (1) and the neutron flux distribution based on equation (2) means that <νΣ f
This means that φ> s and <νΣ f φ> are approximately equal, so the value of [ ] in equation (4) is approximately zero. Therefore, [ ] on the right side of equation (4) can be seen as a correction term. If the correction term [ ] in equation (4) cannot be ignored, the one determined by theoretical calculation can be used. In the following discussion, for simplicity, the correction term in equation (4) is ignored, and ρ=S/<νΣ f φ> (4a) is obtained. <νΣ f φ> may also be <νΣ f φ>.

(4a)式の諸値をプール中における値には
“o”で、炉心内挿入時における値に対して
“c”を付して区別し未臨界度ρの比を求める
と、 ρc/ρo=(Sc/So)(<νΣfφ>o /<νΣfφ>c) (5) となる。Sの値は炉心内でも炉心外でも変わらな
いが、炉心内では燃料集合体周辺からの影響をう
けて実効的には多少の変化が考えられるので、
ScとSoを区別して示した。当該燃料のSと周辺
の燃料集合体のSがおおよそ等しいときにはSc
≒Soとなり次の(5a)式が得られる。
By distinguishing the values of equation (4a) by adding "o" to the value in the pool and "c" to the value at the time of insertion into the core, and finding the ratio of subcriticality ρ, we get ρc/ρo. = (Sc/So) (<νΣ f φ>o /<νΣ f φ>c) (5). The value of S does not change inside the core or outside the core, but within the core it is likely to change somewhat due to the influence of the surroundings of the fuel assembly.
Sc and So are shown separately. When S of the fuel concerned and S of the surrounding fuel assembly are approximately equal, Sc
≒So, and the following equation (5a) is obtained.

ρc/ρo≒<νΣfφ>o/<νΣfφ>c
(5a) ここで<νΣfφ>=<νΣf><φ>と表わす
と<νΣf>および<φ>はそれぞれ当該燃料集
合体平均のνΣf(単位中性子束当たりの誘発中
性子発生数)および中性子束である。
ρc/ρo≒<νΣ f φ>o/<νΣ f φ>c
(5a) Here, <νΣ f φ>=<νΣ f ><φ>, where <νΣ f > and <φ> are the average νΣ f (number of induced neutrons generated per unit neutron flux) of the fuel assembly, respectively. and neutron flux.

沸騰水型原子炉の例では、燃料交換等の燃料集
合体の燃焼管理が、第1図の破線4で囲まれた制
御棒をとり囲む4体の燃料集合体が単位セルとな
るように行なわれるため、単位セルの炉心内位置
依存性は小さい。すなわち、<νΣf>は炉心内で
ほとんど変化しないので(5a)式は次の(5b)
式と書くことができる。
In the example of a boiling water reactor, combustion management of fuel assemblies such as fuel exchange is performed so that the four fuel assemblies surrounding the control rod surrounded by the broken line 4 in Figure 1 form a unit cell. Therefore, the dependence of the unit cell on its position within the core is small. In other words, since <νΣ f > hardly changes within the reactor core, equation (5a) can be transformed into the following (5b)
It can be written as expression.

ρc/ρo≒<φ>o/<φ>c (5b) ところで実際に中性子束を測定する場合には、
当該燃料集合体内の中性子束分布を、当該燃料集
合体を炉心内に挿入した場合と炉心外においた場
合のそれぞれについて測定し、それぞれの平均値
<φ>cと<φ>oとの比を求めるのは労力的に
みて比較的面倒である。よつてたとえば当該燃料
集合体の適切な場所(中央近傍)でだけ中性子束
を測定し、それぞれφcとφoを得たとする。<
φ>cとφc、<φ>oとφoとの関係を結ぶ比
例定数をそれぞれGc、Goとすれば、<φ>c=
Gcφc、<φ>o=Goφoとなる。
ρc/ρo≒<φ>o/<φ>c (5b) By the way, when actually measuring neutron flux,
The neutron flux distribution within the fuel assembly is measured when the fuel assembly is inserted into the reactor core and when it is placed outside the reactor core, and the ratio of the respective average values <φ>c and <φ>o is calculated. The search is relatively troublesome in terms of effort. Therefore, for example, assume that the neutron flux is measured only at an appropriate location (near the center) of the fuel assembly, and φc and φo are obtained, respectively. <
If the proportionality constants connecting φ>c and φc and <φ>o and φo are Gc and Go, respectively, <φ>c=
Gcφc, <φ>o=Goφo.

中性子束を測定する位置を前記のように適切に
選べばGc≒Goとすることができるが、Gc、Goは
1.0に比較的近い値であるから、理論計算でも正
確に求めることができる。したがつて(5b)式
は ρc≒(Go/Gc)(φo/φc)ρo =(Go/Gc)(φo/φc) [(1/(keff)o)−1] (6) と書くことができる。(keff)oは当該燃料集合
体1体をプール水中においた場合の実効増倍率で
あり、現在の沸騰水型原子炉の燃料集合体の場
合、0.4〜0.5程度である。(6)式の[ ]の相対
誤差は(keff)oが1.0の近傍で少しく変化した
場合、非常に大きくなるが、0.4〜0.5近傍では少
しくらい変化しても大きくなる恐れはない。実際
には(Keff)o=0.4〜0.5であるため、ρcの測
定に当たつては(keff)oの値をことさら精度
よく求める必要はなく、計算などで容易にその値
を求めることができる。
If the position at which the neutron flux is measured is chosen appropriately as described above, Gc≒Go can be obtained, but Gc and Go are
Since it is a value relatively close to 1.0, it can be determined accurately even by theoretical calculations. Therefore, equation (5b) is written as ρc≒(Go/Gc) (φo/φc) ρo = (Go/Gc) (φo/φc) [(1/(k eff ) o) −1] (6) be able to. ( keff )o is an effective multiplication factor when one fuel assembly is placed in pool water, and is approximately 0.4 to 0.5 in the case of a fuel assembly for a current boiling water reactor. The relative error in [ ] in equation (6) becomes very large if (k eff )o changes slightly near 1.0, but there is no risk of the relative error becoming large even if it changes slightly near 0.4 to 0.5. In reality, (K eff ) o = 0.4 to 0.5, so when measuring ρc, it is not necessary to find the value of (k eff ) o particularly precisely, and the value can be easily found by calculation etc. I can do it.

(4)式から(4a)式への近似、(5)式から(5a)、
(5b)式への近似も理論計算の助けにより比較的
小さな補正を施せば当然等式化できる。
Approximation from equation (4) to equation (4a), equation (5) to (5a),
The approximation to equation (5b) can of course be equated by making a relatively small correction with the help of theoretical calculations.

第3図は第2図の燃料集合体内の軽水7の部分
に中性子検出器9を装着した板状中性子検出器支
持具10を挿入した図である。中性子検出器の設
定位置を当該燃料集合体内に限定する必要はない
ことはもちろんである。また燃料集合体内の1本
の燃料棒を引抜き、そこに中性子検出器を装着し
た棒状中性子検出器支持具を挿入してもよい。
FIG. 3 is a diagram in which a plate-shaped neutron detector support 10 equipped with a neutron detector 9 is inserted into the light water 7 portion of the fuel assembly shown in FIG. Of course, it is not necessary to limit the setting position of the neutron detector within the fuel assembly. Alternatively, one fuel rod in the fuel assembly may be pulled out and a rod-shaped neutron detector support equipped with a neutron detector may be inserted therein.

本発明の趣旨は、未臨界度既知の複合未臨界体
系の未臨界度から照射燃料集合体のような未臨界
度未知の単位未臨界体系の未臨界度を求めること
であるが、これは前述の複合未臨界体系の未臨界
度から精度よく次のようにして求めることができ
る。
The gist of the present invention is to determine the subcriticality of a unit subcritical system of unknown subcriticality, such as an irradiated fuel assembly, from the subcriticality of a composite subcritical system of known subcriticality. It can be determined accurately from the subcriticality of the composite subcritical system as follows.

第4図および第5図は、この方法を示すもので
ある。単位未臨界体系は第4図aに示すように使
用済燃料集合体1体Aだけからなり、第4図b〜
iに示す複合未臨界体系は単位未臨界体系をなし
ている使用済燃料集合体A、一般の使用済燃料集
合体B1,B2,B3と標準燃料集合体C1,C2,C3
C4で構成されている。第4図iは核的性質のわ
かつている標準燃料集合体C1,C2,C3,C4だけ
で構成されている。前述の複合未臨界体系は第4
図aにおける未臨界度ρo(a)を既知としてb
〜iのような体系の未臨界度ρo(b)〜ρo
(i)を求めるものであつた。
Figures 4 and 5 illustrate this method. The unit subcritical system consists of only one spent fuel assembly A as shown in Fig. 4a, and Fig. 4b~
The composite subcritical system shown in i is a unit subcritical system consisting of spent fuel assembly A, general spent fuel assemblies B 1 , B 2 , B 3 and standard fuel assemblies C 1 , C 2 , C 3 ,
Consists of C 4 . Figure 4i consists only of standard fuel assemblies C 1 , C 2 , C 3 and C 4 whose nuclear properties are known. The above-mentioned complex subcritical system is the fourth
Assuming that the subcriticality ρo(a) in diagram a is known, b
The subcriticality of a system like ~i ρo(b) ~ρo
(i) was sought.

第5図の実線は標準燃料集合体の数を横軸にし
てρo(b)〜ρo(i)をプロツトしたもので
ある。一方標準燃料集合体だけからなる体系iの
場合には、核的性質がわかつているので、未臨界
度はρo(i)より正しく決定することができ
る。理論計算でもかなり正確に未臨界度を決定す
ることができるが、実験的にもパルス中性子法、
指数実験法、中性子源増倍法、ノイズ法等の従来
の方法を適用できる。標準燃料集合体として新燃
料集合体で型式の揃つたものを使用すると、標準
燃料はガンマ線などの放射線レベルがきわめて低
いため取扱いが容易である。一例として沸騰水型
原子炉の新燃料集合体では、無限増倍率k∞は
1.15程度、中性子移動面積M2は40cm2程度である
から、体系iの未臨界度は0.25程度になる。
The solid line in FIG. 5 is a plot of ρo(b) to ρo(i) with the number of standard fuel assemblies on the horizontal axis. On the other hand, in the case of system i consisting of only standard fuel assemblies, the nuclear properties are known, so the degree of subcriticality can be determined correctly from ρo(i). The degree of subcriticality can be determined fairly accurately by theoretical calculations, but it can also be determined experimentally using the pulsed neutron method,
Conventional methods such as exponential experiment method, neutron source multiplication method, and noise method can be applied. When new fuel assemblies of the same type are used as standard fuel assemblies, they are easy to handle because the standard fuel has an extremely low level of radiation such as gamma rays. For example, in a new fuel assembly for a boiling water reactor, the infinite multiplication factor k∞ is
Since the neutron transfer area M 2 is about 40 cm 2 , the subcriticality of system i is about 0.25.

従来の技術で未臨界度が0.25程度までは正確な
測定ができることが最近わかつてきたが、0.75程
度までの正確な測定は見通しがたつていない。第
4図では複合未臨界体系として4体の燃料集合体
からなる未臨界体系を示したが、4体の新燃料集
合体からなる未臨界体系には従来技術が適用可能
である。
It has recently been discovered that conventional techniques can accurately measure subcriticality down to about 0.25, but there is no prospect of accurate measurement down to about 0.75. Although FIG. 4 shows a subcritical system consisting of four fuel assemblies as a composite subcritical system, the conventional technology can be applied to a subcritical system consisting of four new fuel assemblies.

第5図の実線11は体系aの未臨界度を第1近
似としてρoaとすると、体系iの未臨界度はρo
(i)になることを示しているが、体系iの未臨
界は正しくρ(i)であるから、点ρ(i)
を通りかつ実線11に比例するような破線12を
作図することによつて体系bの未臨界度をρo
(b)からρ(b)へ修正することができる。
求めるべき体系aの未臨界度ρo(a)はρ
(a)=ρo(a)×ρ(i)/ρo(i)なる
関係により修正することができる。それはρo
(i)とρ(i)との差異は体系aの未臨界度
の1次的近似値ρo(a)の不正確さに起因する
からである。
The solid line 11 in FIG. 5 indicates that if the subcriticality of system a is ρoa as the first approximation, then the subcriticality of system i is ρo
(i), but since the subcriticality of system i is exactly ρ 1 (i), the point ρ 1 (i)
By drawing a broken line 12 that passes through and is proportional to the solid line 11, the degree of subcriticality of system b is expressed as ρo
(b) can be modified to ρ 1 (b).
The subcriticality ρo(a) of the system a to be found is ρ 1
It can be corrected by the relationship (a)=ρo(a)×ρ 1 (i)/ρo(i). That is ρo
This is because the difference between (i) and ρ 1 (i) is due to the inaccuracy of the first-order approximation value ρo(a) of the subcriticality of system a.

このように複合未臨界体系の未臨界度から単位
未臨界体系の未臨界度を求める方法は未臨界度を
正しく決定できる複合未臨界体系において得られ
る未臨界度を修正することによつて逆に単位未臨
界体系の未臨界度を正しく決定するものである。
使用済燃料集合体1体だけの未臨界度は1.0をこ
えることもあるが、本発明はこのような高未臨界
体系の未臨界度の決定を可能ならしめるものであ
る。
In this way, the method of calculating the degree of subcriticality of a unit subcritical system from the degree of subcriticality of a composite subcritical system is to correct the degree of subcriticality obtained in a composite subcritical system in which the degree of subcriticality can be determined correctly. This method correctly determines the degree of subcriticality of a unit subcritical system.
Although the subcriticality of a single spent fuel assembly may exceed 1.0, the present invention makes it possible to determine the subcriticality of such a highly subcritical system.

本発明は停止中の沸騰水型原子炉や使用済燃料
集合体を例としてそれらの未臨界度の測定方法を
説明したが、中性子測定ができる体系であればど
のような未臨界体系でも本発明の方法を適用でき
る。
In the present invention, a method for measuring the subcriticality of a shut down boiling water reactor or a spent fuel assembly is explained as an example, but the present invention can be applied to any subcritical system as long as it is capable of measuring neutrons. method can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は停止中の沸騰水型原子炉の炉心横断面
図、第2図は1体の燃料集合体を炉心から取出し
て水プールの中に入れた場合の横断面図、第3図
は第2図に示す燃料集合体の内部に中性子検出器
を挿入した横断面図、第4図と第5図は単位未臨
界体系(使用済燃料集合体1体だけの場合)の未
臨界度の決定方法を示す説明図である。 1…炉心、2,2a…燃料集合体、3…制御
棒、5…チヤンネルボツクス、6…燃料棒、7…
冷却材(軽水)、8…プール水、9…中性子検出
器、10…支持具。
Figure 1 is a cross-sectional view of the reactor core of a stopped boiling water reactor, Figure 2 is a cross-sectional view of one fuel assembly taken out from the core and placed in a water pool, and Figure 3 is Figure 2 is a cross-sectional view of a neutron detector inserted inside a fuel assembly, and Figures 4 and 5 show the subcriticality of a unit subcritical system (in the case of only one spent fuel assembly). FIG. 2 is an explanatory diagram showing a determination method. DESCRIPTION OF SYMBOLS 1... Core, 2, 2a... Fuel assembly, 3... Control rod, 5... Channel box, 6... Fuel rod, 7...
Coolant (light water), 8...Pool water, 9...Neutron detector, 10...Support.

Claims (1)

【特許請求の範囲】[Claims] 1 中性子発生源を有する燃料集合体を含む単体
未臨界体系の未臨界度を仮定し、前記単位未臨界
体系と未臨界度既知の複合未臨界体系に対してそ
れぞれ中性子束を測定し、前記単位未臨界体系で
仮定した未臨界度と前記両体系に対する中性子束
との比との積により複合未臨界体系の未臨界度を
算出し、前記既知の未臨界度と前記算出未臨界度
との比から前記仮定の単位未臨界体系の未臨界度
を修正することを特徴とする未臨界度の測定方
法。
1 Assuming the subcriticality of a single subcritical system including a fuel assembly having a neutron source, measure the neutron flux for the unit subcritical system and a composite subcritical system with known subcriticality, and Calculate the subcriticality of the composite subcritical system by the product of the subcriticality assumed in the subcritical system and the ratio of the neutron flux for both systems, and calculate the ratio of the known subcriticality and the calculated subcriticality. A method for measuring the degree of subcriticality, characterized in that the degree of subcriticality of the assumed unit subcriticality system is corrected from .
JP60008879A 1985-01-21 1985-01-21 Method of measuring non-critical degree Granted JPS61105492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60008879A JPS61105492A (en) 1985-01-21 1985-01-21 Method of measuring non-critical degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60008879A JPS61105492A (en) 1985-01-21 1985-01-21 Method of measuring non-critical degree

Publications (2)

Publication Number Publication Date
JPS61105492A JPS61105492A (en) 1986-05-23
JPS6155075B2 true JPS6155075B2 (en) 1986-11-26

Family

ID=11704956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60008879A Granted JPS61105492A (en) 1985-01-21 1985-01-21 Method of measuring non-critical degree

Country Status (1)

Country Link
JP (1) JPS61105492A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442941Y2 (en) * 1990-11-08 1992-10-12
JP5330489B2 (en) * 2011-12-01 2013-10-30 株式会社東芝 Method and apparatus for evaluating the integrity of spent fuel

Also Published As

Publication number Publication date
JPS61105492A (en) 1986-05-23

Similar Documents

Publication Publication Date Title
Hsue et al. Nondestructive assay methods for irradiated nuclear fuels
JP4761829B2 (en) Axial void ratio distribution measuring method and fuel assembly neutron multiplication factor evaluation method before storage device storage
KR910007146B1 (en) Method and apparatus for determining the nearness to criticality of a nuclear reactor
Menlove Description and performance characteristics for the neutron coincidence collar for the verification of reactor fuel assemblies
Abdurrahman et al. Spent-fuel assay performance and Monte Carlo analysis of the Rensselaer slowing-down-time spectrometer
JP2542883B2 (en) Effective multiplication factor measurement method for subcritical systems loaded with irradiation fuel
JPS6155075B2 (en)
JPH0659085A (en) Non-criticality measuring system for spent fuel assembly and non-criticality measurement
JPH0426718B2 (en)
JPS6045394B2 (en) How to measure subcriticality
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
JPH01199195A (en) Effective multiplication factor measuring method of irradiation fuel charged subcritical system
Crow et al. Thermal neutron measurements of the Rhode Island Nuclear Science Center reactor after conversion to a compact low enriched uranium core
JP4664645B2 (en) Method for measuring neutron emission rate of irradiated fuel assemblies
Yokoyama et al. Neutron emission characteristics of spent boiling water reactor fuel
Leconte et al. Reactivity loss validation of high-burnup PWR fuels with pile-oscillation experiments in MINERVE
Wolberg et al. A study of the fast fission effect in lattices of uranium rods in heavy water
Lancaster et al. Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel—I: Methodology Overview
Menlove et al. The verification of reactor operating history using the fork detector
Gatchalian et al. Analysis of Loss of Water Inventory at the Philippine Research Reactor-1 Fuel Storage Facility.
Radulescu et al. Review of Experimental Data for Validating Computer Codes Used in Shielding Calculations for Spent Fuel Storage and Transportation Systems
Brady et al. Burnup credit issues in transportation and storage
Sakurai et al. Measurement and Analysis of Reactivity Worth of 241Am Sample in Water-Moderated Low-Enriched UO2 Fuel Lattices at TCA
Grouiller et al. Neutron Monitoring and the Inherent Source of Superphénix
JPH0226754B2 (en)