JPH08320380A - Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement - Google Patents
Method for monitoring subcriticality of nuclear fuel by gamma-ray measurementInfo
- Publication number
- JPH08320380A JPH08320380A JP7148428A JP14842895A JPH08320380A JP H08320380 A JPH08320380 A JP H08320380A JP 7148428 A JP7148428 A JP 7148428A JP 14842895 A JP14842895 A JP 14842895A JP H08320380 A JPH08320380 A JP H08320380A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- subcriticality
- gamma ray
- nuclear fuel
- neutron source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、核燃料サイクルを構成
する諸施設における臨界安全管理に有用な核燃料の未臨
界監視方法に関する。更に詳しく言えば、核燃料サイク
ルを構成する諸施設における核燃料取扱いの際に、核燃
料の未臨界の度合を監視することにより臨界到達の危険
を減少させ、もって当該施設の臨界安全管理の方法を合
理化することに役立てようとする技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a subcriticality monitoring method for nuclear fuel useful for criticality safety management in various facilities constituting a nuclear fuel cycle. More specifically, the risk of reaching criticality is reduced by monitoring the degree of subcriticality of nuclear fuel during handling of nuclear fuel at facilities that compose the nuclear fuel cycle, thereby rationalizing the method of criticality safety management of the facility. Especially about the technology to be used.
【0002】[0002]
【従来技術】核燃料を内蔵する未臨界体系では、内部又
は周辺に中性子源が無いか又は微弱な場合、ほぼ臨界状
態まで近付かない限り、放射線放出量が特段に増加する
こともなく、特別な変化は見られない。しかし、一旦臨
界を超過すると、僅かな体系の変化が急激な核分裂反応
の増大を引き起こす。従って、燃料取扱い量を十分小さ
い範囲に制限する、あるいは、燃料濃度が十分低い範囲
にあることを頻繁に検査する等、核燃料の臨界安全管理
には細心の注意が払われて来た。2. Description of the Related Art In a subcritical system containing a nuclear fuel, if there is no neutron source inside or in the vicinity of the neutron source, or if the neutron source is weak, the amount of radiation emission does not increase significantly unless the neutron source approaches a critical state. Can't be seen. However, once the criticality is exceeded, slight systematic changes cause a rapid increase in fission reactions. Therefore, careful attention has been paid to the criticality safety control of nuclear fuel, such as limiting the amount of fuel handled to a sufficiently small range or frequently inspecting that the fuel concentration is in a sufficiently low range.
【0003】そこで、核燃料の臨界安全管理に際して、
未臨界の度合をリアルタイムで測定・監視することが可
能となれば、取扱い量の制限を緩和したり、濃度の検査
頻度を低減することができるとともに、作業従事者にと
って、体系が実際に核反応バランス上未臨界であること
が保証されるので、精神的負担の軽減に寄与するところ
が大きいと考えられる。Therefore, in the criticality safety control of nuclear fuel,
If it is possible to measure and monitor the degree of subcriticality in real time, it will be possible to ease the restrictions on the handling amount and reduce the frequency of concentration inspection, and at the same time for workers, the system will actually be a nuclear reaction. Since it is guaranteed to be sub-critical in terms of balance, it is thought to contribute greatly to reducing the mental burden.
【0004】このため、従来から、未臨界度を測定する
各種の方法の開発が試みられて来た。しかし、測定対象
の核燃料体系の構成があらかじめ良くわかっていること
が必要であったり、別な方法による測定値を用いて較正
する必要があったり、あるいは、測定装置が大がかりす
ぎたり測定時間がかかり過ぎる等の問題点があるため、
今なお、いづれの方法も実用化されるには至っていな
い。Therefore, various attempts have been made to develop a method for measuring the subcriticality. However, it is necessary that the configuration of the nuclear fuel system to be measured is well known in advance, that it is necessary to calibrate using the measured value by another method, or that the measuring device is too large and the measuring time is long. Because there are problems such as overshooting,
Even now, neither method has been put to practical use.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、核燃
料を内蔵する体系の未臨界の度合を簡便且つ迅速に測定
できる方法を提供することにある。また、そのことを通
して、核燃料サイクルを構成する諸施設における臨界安
全管理の合理化及び作業従事者の精神的負担の軽減を図
ろうとするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily and quickly measuring the subcriticality of a system containing nuclear fuel. In addition, through this, we will try to rationalize criticality safety management and reduce the mental burden on workers in the facilities that make up the nuclear fuel cycle.
【0006】[0006]
【問題点を解決するための手段】本発明は、中性子とガ
ンマ線の発生比率が一定の関係にある中性子源を有する
未臨界状態の核燃料体系について、核燃料の核分裂と中
性子源により生ずるガンマ線の強度を測定し、別途測定
する中性子源のみのガンマ線の強度との比から体系の未
臨界の度合を求めることによって上記技術課題を解決し
たものである。The present invention relates to the nuclear fission of a nuclear fuel and the intensity of gamma rays generated by a neutron source for a subcritical nuclear fuel system having a neutron source in which the generation ratio of neutrons and gamma rays has a constant relationship. The above technical problem is solved by measuring and separately determining the subcritical degree of the system from the ratio of the gamma ray intensity of only the neutron source.
【0007】上記各条件におけるガンマ線計測は、ガン
マ線源から検出器に至る部分の減弱特性が体系内の燃料
条件に大きく依存することを避けるため、数MeV以上
の高いエネルギー領域について行なわれることが好まし
い。従って、中性子源としては、中性子発生に伴うガン
マ線のエネルギーが高いものを用いることが好ましい。The gamma ray measurement under each of the above conditions is preferably performed in a high energy region of several MeV or more in order to avoid that the attenuation characteristic of the portion from the gamma ray source to the detector largely depends on the fuel condition in the system. . Therefore, it is preferable to use, as the neutron source, one having a high gamma ray energy associated with neutron generation.
【0008】[0008]
【作用】未臨界核燃料体系の未臨界度を知るには、体系
内に核分裂反応を誘起するために何らかの中性子源が必
要である。定常中性子源によって定常状態が形成されて
いる場合、単位時間当りの核反応のバランス式は次のよ
うになる。 L+A=P+S (1) 但し、Sは中性子源から体系に供給される中性子の数、
Pは体系内での燃料の核分裂により発生する中性子の
数、Aは体系内で吸収される中性子の数、Lは体系外へ
もれ出る中性子の数である。ここで、P/(L+A)の
比は体系が臨界に近付くにつれて大きくなり、臨界状態
では丁度1になる。[Function] To know the subcriticality of the subcritical nuclear fuel system, some kind of neutron source is necessary to induce the fission reaction in the system. When the steady state is formed by the stationary neutron source, the balance equation of the nuclear reaction per unit time is as follows. L + A = P + S (1) where S is the number of neutrons supplied to the system from the neutron source,
P is the number of neutrons generated by nuclear fission of fuel in the system, A is the number of neutrons absorbed in the system, and L is the number of neutrons leaking out of the system. Here, the ratio of P / (L + A) increases as the system approaches criticality, and becomes exactly 1 in the critical state.
【0009】従って、この比の1からの差を未臨界度と
定義すると、(1)式より、 (未臨界度)=1−P/(L+A)=S/(P+S) (2) となる。(2)式の右辺の比の値をなんらかの測定によ
って求めれば、左辺の未臨界度の値が求められることに
なる。Therefore, if the difference from 1 in this ratio is defined as the subcriticality, (subcriticality) = 1-P / (L + A) = S / (P + S) (2) from the equation (1). . If the value of the ratio on the right side of the equation (2) is obtained by some measurement, the value of the subcriticality on the left side is obtained.
【0010】従来の方法でも、(2)式と類似な比の値
を中性子計測により測定するものがある。しかし、中性
子計測では、検出器位置での中性子束又は中性子密度が
測られるので、例えばPを求めるには、体系の核分裂断
面積、検出器位置までの中性子の減速・拡散特性等を知
る必要がある。Some conventional methods measure the value of the ratio similar to the equation (2) by neutron measurement. However, in neutron measurement, since the neutron flux or neutron density at the detector position is measured, in order to obtain P, for example, it is necessary to know the fission cross section of the system, the deceleration / diffusion characteristics of neutrons up to the detector position, etc. is there.
【0011】すなわち、検出器を含む体系の構成条件が
既知でなければならない。本発明は、核分裂に伴うガン
マ線を計測することにより、(2)式の比の値を最小限
の体系情報の下に求めようとするものである。すなわ
ち、定常状態においては燃料の核分裂率に比例した強度
のガンマ線が放出され、また、そのうちの数MeV以上
の高いエネルギーのガンマ線を計測するならば、検出器
までの減弱特性が体系内の燃料条件に大きくは依存しな
いことを利用する。That is, the construction conditions of the system including the detector must be known. The present invention seeks to obtain the value of the ratio of equation (2) with minimum systematic information by measuring gamma rays associated with nuclear fission. That is, in the steady state, gamma rays with an intensity proportional to the nuclear fission rate of the fuel are emitted, and if gamma rays of high energy of several MeV or more are measured, the attenuation characteristic up to the detector is the fuel condition within the system. It does not depend much on.
【0012】但し、中性子源としては、中性子発生数と
ガンマ線発生数の間の関係が一定であるものを用いる必
要がある。(2)式の比のうち、P+Sは中性子源付き
核燃料体系からのガンマ線強度の測定により、また、S
は核分裂性物質を含まない中性子源のみの類似体系から
のガンマ線強度の測定により求められる。However, it is necessary to use, as the neutron source, one in which the relationship between the number of neutrons generated and the number of gamma rays generated is constant. In the ratio of equation (2), P + S is obtained by measuring the gamma ray intensity from the nuclear fuel system with a neutron source, and S
Is determined by measuring gamma-ray intensities from a neutron-source-only analog system containing no fissile material.
【0013】この場合、U燃料では、252Cfなどの
外部中性子源が必要であるが、自身の自発中性子を中性
子源となし得るPu燃料では、体系内のPu量を低エネ
ルギーのガンマ線スペクトル解析により測定し、それと
Puの自発中性子とガンマ線の発生率に関する文献値を
用いてSを求めることができる。In this case, the U fuel requires an external neutron source such as 252 Cf, but in the Pu fuel that can use its own spontaneous neutrons as the neutron source, the amount of Pu in the system is measured by low energy gamma ray spectrum analysis. Then, S can be obtained by using it and the literature values concerning the spontaneous neutron and Pu gamma ray generation rates.
【0014】[0014]
【実施例】図1は、本発明を実施する為の配置を説明す
る図である。同図に示すように、溶液状核燃料を内蔵す
る燃料槽1内の中心付近に中性子源2を置き、燃料槽1
から適宜な距離をおいてガンマ線検出器3を設置する。
中性子源2としては、中性子発生数とガンマ線発生数と
の間の関係が一定であるものを用いる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining the arrangement for carrying out the present invention. As shown in the figure, a neutron source 2 is placed near the center of a fuel tank 1 containing a solution-type nuclear fuel,
The gamma ray detector 3 is installed at an appropriate distance from.
As the neutron source 2, one having a constant relationship between the number of neutrons and the number of gamma rays is used.
【0015】ガンマ線検出器3としては、検出したガン
マ線のエネルギにほぼ比例した波高の検出パルスを出力
する半導体検出素子を備えたものが使用される。ガンマ
線検出器3の検出信号は周知のパルスハイトアナライザ
を含む検出信号処理装置4で処理され、一定のエネルギ
ー以上のガンマ線強度が計測される。As the gamma ray detector 3, a gamma ray detector 3 having a semiconductor detecting element for outputting a detection pulse having a wave height substantially proportional to the energy of the detected gamma ray is used. The detection signal of the gamma ray detector 3 is processed by the detection signal processing device 4 including a well-known pulse height analyzer, and the gamma ray intensity above a certain energy is measured.
【0016】燃料槽1内では燃料濃度、可溶性中性子吸
収材濃度等が変動することにより、また、棒状等の固定
型中性子吸収材が設置されている場合はその性能が劣化
することにより、臨界に至る可能性がある。The fuel concentration, the soluble neutron absorbing material concentration, etc. in the fuel tank 1 fluctuate, and the performance of the fixed type neutron absorbing material such as a rod is deteriorated. There is a possibility of reaching.
【0017】ガンマ線検出器3と検出信号処理装置4を
用いて、ガンマ線強度を、燃料濃度が零の場合と燃料が
存在する場合について測定する。燃料槽1内からガンマ
線検出器3に至るまでの減弱特性が体系内の燃料条件に
大きく依存することを避けるために、ガンマ線強度の測
定値としては、数MeV以上の高いエネルギーに対する
測定値を採用することが適当である。The gamma ray detector 3 and the detection signal processing device 4 are used to measure the gamma ray intensity when the fuel concentration is zero and when the fuel is present. In order to prevent the attenuation characteristics from the inside of the fuel tank 1 to the gamma ray detector 3 to largely depend on the fuel condition in the system, the measured value of gamma ray intensity for high energy of several MeV or more is adopted. Is appropriate.
【0018】そのために、検出信号処理装置4は、パル
スハイトアナライザで解析された数MeV以上の高いエ
ネルギーについてガンマ線強度を出力するように設定さ
れる。Therefore, the detection signal processing device 4 is set so as to output the gamma ray intensity for high energies of several MeV or more analyzed by the pulse height analyzer.
【0019】前者の測定で得られるガンマ線強度は前述
のS(中性子源から体系に供給される中性子の数)に比
例する。一方、後者の測定で得られるガンマ線強度は、
P+S(体系内での核分裂により発生する中性子の数と
中性子源から体系に供給される中性子の数の和)に比例
する。従って、両者の比から(2)式の右辺が計算さ
れ、未臨界度が求められる。The gamma ray intensity obtained by the former measurement is proportional to the above-mentioned S (the number of neutrons supplied from the neutron source to the system). On the other hand, the gamma ray intensity obtained by the latter measurement is
It is proportional to P + S (the number of neutrons generated by fission in the system plus the number of neutrons supplied to the system from a neutron source). Therefore, the right side of equation (2) is calculated from the ratio of the two, and the subcriticality is obtained.
【0020】その未臨界度をリアルタイムに監視し、あ
る値を超えて臨界に近付いたならば、槽内の燃料を排出
する等の手段を講ずることにより臨界到達を防止するこ
とができる。The subcriticality can be monitored in real time, and if it exceeds a certain value and approaches the criticality, the criticality can be prevented by taking measures such as discharging the fuel in the tank.
【0021】[0021]
【発明の効果】本発明により、核燃料を内蔵する体系の
未臨界の度合が、体系条件の詳細な情報を要することな
く、簡単な装置で迅速に測定できるので、臨界安全管理
の合理化及び作業従事者の精神的負担の軽減に有効であ
る。According to the present invention, the degree of subcriticality of the system containing nuclear fuel can be quickly measured with a simple device without requiring detailed information on the system conditions. It is effective in reducing the mental burden on the person.
【図1】本発明を実施する為の配置を説明する図であ
る。FIG. 1 is a diagram illustrating an arrangement for carrying out the present invention.
1 燃料槽 2 中性子源 3 ガンマ線検出器 4 検出信号処理装置 1 Fuel Tank 2 Neutron Source 3 Gamma Ray Detector 4 Detection Signal Processing Device
Claims (2)
係にある中性子源を有する未臨界状態の核燃料体系に関
し、核燃料の核分裂と中性子源により生ずるガンマ線の
強度を測定し、別途測定する中性子源のみのガンマ線の
強度測定値との比から体系の未臨界の度合を求めるガン
マ線計測による核燃料の未臨界監視方法。1. A neutron source for a subcritical nuclear fuel system having a neutron source in which the generation ratio of neutrons and gamma rays is in a fixed relationship, the fission of the nuclear fuel and the intensity of gamma rays produced by the neutron source are measured separately. A method for monitoring subcriticality of nuclear fuel by gamma ray measurement, which determines the degree of subcriticality of the system from the ratio to the measured gamma ray intensity.
係にある中性子源を有する未臨界状態の核燃料体系に関
し、核燃料の核分裂と中性子源により生ずるガンマ線の
強度を数MeV以上の高いエネルギー領域について測定
し、別途測定する中性子源のみのガンマ線の前記数Me
V以上の高いエネルギー領域についての強度測定値との
比から体系の未臨界の度合を求めるガンマ線計測による
核燃料の未臨界監視方法。2. A nuclear fuel system in a subcritical state having a neutron source in which the generation ratio of neutrons and gamma rays has a constant relationship, and the fission of nuclear fuel and the intensity of gamma rays generated by the neutron source are measured in a high energy region of several MeV or more. The above-mentioned number Me of gamma rays of only the neutron source to be separately measured
A method for monitoring subcriticality of nuclear fuel by gamma ray measurement, which determines the degree of subcriticality of the system from the ratio with the intensity measurement value in the high energy region of V or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7148428A JPH08320380A (en) | 1995-05-24 | 1995-05-24 | Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7148428A JPH08320380A (en) | 1995-05-24 | 1995-05-24 | Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08320380A true JPH08320380A (en) | 1996-12-03 |
Family
ID=15452582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7148428A Pending JPH08320380A (en) | 1995-05-24 | 1995-05-24 | Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08320380A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025894A (en) * | 2012-07-30 | 2014-02-06 | Central Research Institute Of Electric Power Industry | Criticality management method of management target |
-
1995
- 1995-05-24 JP JP7148428A patent/JPH08320380A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025894A (en) * | 2012-07-30 | 2014-02-06 | Central Research Institute Of Electric Power Industry | Criticality management method of management target |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101085312B1 (en) | Dose detector and dosimeter | |
JPH0477877B2 (en) | ||
Jordan et al. | Differential die-away analysis system response modeling and detector design | |
JP2002503342A (en) | Method and apparatus for measuring the relative ratio of plutonium to uranium in an object | |
JP2020071120A (en) | Radiation detector | |
Streicher et al. | A method to estimate the atomic number and mass thickness of intervening materials in uranium and plutonium gamma-ray spectroscopy measurements | |
US4409480A (en) | Method and system for the testing and calibration of radioactive well logging tools | |
JPH10123070A (en) | Hydrogen content analyzer | |
KR101842561B1 (en) | Apparatus and method for determining radiation by ESR spectrum major/minor peak ratio of alanine pellet | |
JPH08320380A (en) | Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement | |
US3699338A (en) | Oscillating monitor for fissile material | |
US4515749A (en) | Subcriticality measurement apparatus and method | |
RU2025800C1 (en) | Method for determination of content of boron-10 in heat carrier of the first circuit of nuclear reactor | |
JPH04269697A (en) | Non-destructive inspection device for reactor fuel rod | |
RU2150693C1 (en) | Method for certifying fissionable material parts and checking them for safety | |
JPH04326095A (en) | Criticality surveillance monitor for neutron multiplication system | |
Hankins | A method of determining the intermediate energy neutron dose | |
Pentaleri et al. | Complete characterization of containerized waste using a PFNA-based inspection system | |
JP2735937B2 (en) | Neutron detector for criticality accident monitoring | |
EP3848943B1 (en) | Apparatus and method for real time precision measurement of the thermal power of a fission nuclear reactor | |
JPH052113B2 (en) | ||
JPH02157696A (en) | Non-destructive analysis apparatus for fissile material | |
JPH06214038A (en) | Neutron monitoring method and device therefor | |
JP2021512278A (en) | Operation management device for fissile material | |
JP2602301B2 (en) | Correction method of photoneutron in boric acid concentration measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040511 |