JPH05232157A - Voltage drop detection device - Google Patents

Voltage drop detection device

Info

Publication number
JPH05232157A
JPH05232157A JP3119292A JP3119292A JPH05232157A JP H05232157 A JPH05232157 A JP H05232157A JP 3119292 A JP3119292 A JP 3119292A JP 3119292 A JP3119292 A JP 3119292A JP H05232157 A JPH05232157 A JP H05232157A
Authority
JP
Japan
Prior art keywords
voltage
phase
detection
signal
voltage drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3119292A
Other languages
Japanese (ja)
Other versions
JP3015575B2 (en
Inventor
Kunio Matsushita
邦雄 松下
Masato Fuchikawa
正人 渕川
Yasuo Kataoka
康夫 片岡
Masayuki Terajima
正之 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Shikoku Research Institute Inc, Shikoku Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4031192A priority Critical patent/JP3015575B2/en
Publication of JPH05232157A publication Critical patent/JPH05232157A/en
Application granted granted Critical
Publication of JP3015575B2 publication Critical patent/JP3015575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To simplify circuit configuration or software configuration while maintaining high-speed detection by multiplying a voltage waveform of each phase of three-phase AC by a three-phase sinusoidal signal of the same phases. CONSTITUTION:A PLL 22 is in synchronization with a detection voltage and generates a three-phase sinusoidal signal of a constant voltage. The PLL 22 is in synchronization with the detection voltage and generates N synchronization pulses in one period or half period of sinusoidal wave and a counter 23 is reset at a zero-cross point and counts the number of synchronization pulses. Multipliers 30-32 and an adder 33 constitute operation means, the voltage signal of each phase from a detector 21 and the sinusoidal signal of the corresponding phase from D/A converters 27-29 are multiplied by multipliers 30-32 and then the multiplication results are added by the adder 33. A comparator 34 and a timer 35 constitute a comparison means, the output and setting voltage of the adder 33 are compared by a comparator 34, the timer 35 starts counting when the output of the adder 33 is equal to or less than the setting voltage, and then an output change of the timer 35 is output as a voltage reduction signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、3相交流電源の停電や
瞬時電圧低下を検出する電圧低下検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage drop detecting device for detecting a power failure or an instantaneous voltage drop of a three-phase AC power supply.

【0002】[0002]

【従来の技術】常時商用給電形の無停電電源や無停電異
系統切替装置等では3相交流の電圧低下を検出してイン
バータや異系統電源への切替を行い、負荷には無停電給
電を行う。これら装置では電圧低下の高速検出が要求さ
れる。
2. Description of the Related Art A constant commercial power supply type uninterruptible power supply, an uninterruptible different system switching device, etc. detect a three-phase AC voltage drop and switch to an inverter or a different system power source, and supply uninterruptible power to a load. To do. These devices require high-speed detection of voltage drop.

【0003】従来の電圧低下検出方式を以下に説明す
る。
A conventional voltage drop detection method will be described below.

【0004】(1)瞬時値比較検出方式 図4に絶対値形の回路図を示す。検出対象となる系統電
圧はサンプルホールド回路1によってサンプリングさ
れ、A/D変換器2によってサンプル値のディジタル信
号として検出される。一方、系統電圧は波形整形回路3
によって方形波信号に変換され、PLL回路4によって
同期化された系統周波数のN倍のパルス信号として取出
される。
(1) Instantaneous value comparison and detection method FIG. 4 shows an absolute value type circuit diagram. The system voltage to be detected is sampled by the sample and hold circuit 1 and detected by the A / D converter 2 as a sampled digital signal. On the other hand, the system voltage is the waveform shaping circuit 3
Is converted into a square wave signal by and is taken out as a pulse signal of N times the system frequency synchronized by the PLL circuit 4.

【0005】PLL回路4の出力パルスはサンプルホー
ルド回路1のサンプリングのタイミングに使用されると
共にカウンタ5の計数入力にされる。このカウンタ5
は、エッジ検出回路6による系統電圧波形の零クロス点
タイミング信号によってリセットされ、系統電圧のサン
プリングパルスに同期した計数値を得る。ROM7はカ
ウンタ5の計数値をアドレスとして正弦波のサンプル値
を得る。比較器8はROM7のサンプル値を比較基準と
し、A/D変換器2のディジタル信号が該比較基準に較
べて所定値以上低くなった(電圧低下)か否かを検出す
る。カウンタ9は比較器8による電圧低下の検出が一定
時間継続したときに電圧低下の検出出力を得る。
The output pulse of the PLL circuit 4 is used for the sampling timing of the sample and hold circuit 1 and is also input to the counter 5 for counting. This counter 5
Is reset by the zero-crossing point timing signal of the system voltage waveform by the edge detection circuit 6 to obtain a count value synchronized with the sampling pulse of the system voltage. The ROM 7 obtains a sine wave sample value by using the count value of the counter 5 as an address. The comparator 8 uses the sample value of the ROM 7 as a comparison reference and detects whether the digital signal of the A / D converter 2 is lower than the comparison reference by a predetermined value or more (voltage drop). The counter 9 obtains a voltage drop detection output when the voltage drop detection by the comparator 8 continues for a certain period of time.

【0006】上述の絶対値形に対し、相対値形の瞬時値
比較にはROM7に代えてA/D変換器2のディジタル
信号を半サイクル又は1サイクル分過去のデータとして
RAMに書込んでおき、このサンプル値とA/D変換器
2の現在値とを比較する。
In contrast to the absolute value type described above, in order to compare the instantaneous value of the relative value type, the digital signal of the A / D converter 2 is written in the RAM as past data for half cycle or one cycle instead of the ROM 7. , And compares the sampled value with the current value of the A / D converter 2.

【0007】(2)平均値比較検出方式 この方式は3相交流を全波整流した後、CRフィルタに
よってリップル成分を除去した直流信号に変換し、この
直流信号が比較基準の直流信号よりも所定値以上低くな
ったことで電圧低下を検出する。
(2) Average value comparison / detection method In this method, three-phase alternating current is full-wave rectified and then converted into a DC signal from which ripple components have been removed by a CR filter, and this DC signal is more predetermined than the comparison reference DC signal. The voltage drop is detected when the voltage drops below the specified value.

【0008】(3)3相電圧自乗和方式 この方式は、図5に示すように、系統電圧の各相電圧E
sin ωt、E sin(ωt−2π/3)、E sin(ωt−4π
/3)を乗算器10,11,12によって夫々の自乗演
算をし、これらの総和を加算器13に求め、この結果と
比較基準Vsetとを比較器14で比較することで電圧低
下を検出する。
(3) Three-phase voltage sum of squares method In this method, as shown in FIG.
sin ωt, E sin (ωt-2π / 3), E sin (ωt-4π
/ 3) is respectively squared by the multipliers 10, 11, and 12, the sum of these is calculated in the adder 13, and the result is compared with the comparison reference Vset by the comparator 14 to detect the voltage drop. .

【0009】加算器13の出力YにはThe output Y of the adder 13 is

【0010】[0010]

【数1】 [Equation 1]

【0011】から電圧Eに比例した直流値3E2/2を
得る。
[0011] obtain a DC value 3E 2/2 proportional to the voltage E from.

【0012】[0012]

【発明が解決しようとする課題】従来の瞬時値比較検出
方式における電圧低下検出動作は図6に示すようにな
る。ROM7からの基準電圧に対し、A/D変換器2か
らの系統電圧が低下して基準電圧と交わる瞬間の時刻t
0で比較器8に電圧低下検出出力を得る。
FIG. 6 shows the voltage drop detecting operation in the conventional instantaneous value comparison and detection method. Time t at the moment when the system voltage from the A / D converter 2 decreases and crosses the reference voltage with respect to the reference voltage from the ROM 7.
At 0 , the voltage drop detection output is obtained from the comparator 8.

【0013】この検出出力を電圧低下検出信号とすると
検出時間は速くなるが、ノイズ等の影響で誤動作し易く
なる。そこで、比較器8の検出が一定時間Δt継続した
ことをカウンタ9によって計算するか、又は系統電圧と
基準電圧の差ΔVの積分値V
When this detection output is used as a voltage drop detection signal, the detection time is shortened, but malfunctions are likely to occur due to the influence of noise and the like. Therefore, it is calculated by the counter 9 that the detection of the comparator 8 continues for a fixed time Δt, or the integrated value V of the difference ΔV between the system voltage and the reference voltage.

【0014】[0014]

【数2】 [Equation 2]

【0015】が一定値を越えたことで電圧低下を検出す
る。
The voltage drop is detected when the voltage exceeds a certain value.

【0016】この検出方式では積分値Vの演算によると
積分演算を必要として回路を複雑にすること、及び系統
電圧低下のタイミング(例えば正弦波の45度の時点と
135度の時点)によって積分値が変化して検出に要す
る時間が変わってくる問題があった。
In this detection method, the calculation of the integral value V requires an integral calculation to complicate the circuit, and the integral value depends on the timing of system voltage drop (for example, the 45-degree point and the 135-degree point of the sine wave). However, there is a problem that the time required for detection changes due to the change of the.

【0017】一方、カウンタ9による一定時間継続では
正弦波の零度と180度の零クロス点では系統電圧と基
準電圧の差が殆ど無く、比較器8によるレベル比較に誤
りが生じ易い。この誤りを無くすにはゼロクロス近辺で
比較した結果をカウンタ9に与えるのを抑止する等の処
理を必要とする。このように、交流量を瞬時値で比較す
るのは種々の補正や補償を必要として回路又はソフトウ
ェアを複雑にする問題があった。
On the other hand, when the counter 9 continues for a certain period of time, there is almost no difference between the system voltage and the reference voltage at the zero crossing point of the sine wave and the zero crossing point of 180 degrees, and the level comparison by the comparator 8 is likely to be erroneous. In order to eliminate this error, it is necessary to suppress the application of the result of comparison near the zero cross to the counter 9. As described above, there is a problem that comparing the AC amounts with instantaneous values requires various corrections and compensations and complicates the circuit or software.

【0018】次に、平均値比較検出方式では検出レベル
を高くした高精度を得ようとするとリップル除去のため
のCRフィルタの時定数が大きくなり、結果的に応答性
が悪くなって高速検出ができない。
Next, in the average value comparison and detection method, when trying to obtain high accuracy by increasing the detection level, the time constant of the CR filter for ripple removal becomes large, resulting in poor response and high-speed detection. Can not.

【0019】次に、電圧自乗和方式では3相電圧が均等
に低下する場合には検出電圧Yにリップルが無く高速に
検出できるが、各相電圧の低下の割合にバラツキがある
と電圧低下の遅い相に影響されて検出時間が長くなると
いう問題があった。
Next, in the voltage-squared sum method, when the three-phase voltage drops uniformly, the detection voltage Y has no ripple and can be detected at high speed. However, if there is variation in the rate of decrease in each phase voltage, the voltage drops. There is a problem that the detection time becomes long due to the influence of the slow phase.

【0020】本発明の目的は、高速検出にしながら回路
構成又はソフトウェア構成を比較的簡単にする電圧低下
検出装置を提供することにある。
It is an object of the present invention to provide a voltage drop detecting device which has a relatively simple circuit structure or software structure while achieving high speed detection.

【0021】[0021]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、検出対象になる3相交流の各相電圧波形
を得る電圧検出手段と、前記電圧波形を得る電圧検出手
段と、前記電圧波形に同期しかつ定電圧の3相正弦波信
号を発生する正弦波発生手段と、前記3相交流の各相電
圧波形と3相正弦波信号とを同相間で夫々乗算し各乗算
結果を加算する演算手段と、この演算手段の演算結果が
設定値以下に達しかつ所定時間継続したときに前記3相
交流の電圧低下検出信号を得る比較手段とを備えたこと
を特徴とする。
In order to solve the above-mentioned problems, the present invention provides a voltage detecting means for obtaining a voltage waveform of each phase of a three-phase alternating current to be detected, and a voltage detecting means for obtaining the voltage waveform. A sine wave generating means that generates a three-phase sine wave signal of a constant voltage in synchronization with the voltage waveform, and the three-phase sine wave signal and each phase voltage waveform of the three-phase alternating current are multiplied in the same phase, and each multiplication result is obtained. And a comparing means for obtaining the three-phase AC voltage drop detection signal when the calculation result of the calculating means reaches a set value or less and continues for a predetermined time.

【0022】[0022]

【作用】3相交流の各相電圧波形を行うベクトルV=
[Va、Vb、Vc]で表し、各要素Va、Vb、Vc
[Function] Vector V = for performing three-phase alternating current voltage waveforms
Represented by [Va, Vb, Vc], each element Va, Vb, Vc
To

【0023】[0023]

【数3】 [Equation 3]

【0024】とする。It is assumed that

【0025】この各相電圧波形に同期しかつ定電圧の3
相正弦波信号を行うベクトルC=[Ca、Cb、Cc]
で表し、行ベクトルVに行ベクトルCの転置行列CT
乗ずると3相の電圧を同期回転座標上に変換したことに
なり、3相交流の電圧の大きさが平衡していれば次式で
示されるように一定の直流量になる。
A constant voltage of 3 is synchronized with the voltage waveform of each phase.
Vector C = [Ca, Cb, Cc] for performing phase sine wave signal
When the row vector V is multiplied by the transposed matrix C T of the row vector C, the three-phase voltage is converted to the synchronous rotation coordinate, and if the magnitude of the three-phase AC voltage is balanced, A constant DC amount is obtained as shown by.

【0026】[0026]

【数4】 [Equation 4]

【0027】上述のことより、正弦波発生手段に上記
(3)式の3相正弦波を発生させ、演算手段により同相
間の乗算と各乗算結果を加算することで上記(4)式に
示す一定な直流量を得る。この直流量はある時刻に3相
交流の電圧変化に行ベクトルCが一定で行ベクトルVが
変化し、電圧低下が直流レベルの低下として表れる。こ
の直流レベルの低下を比較手段によって検出することで
電圧低下の検出を直流レベルから得る。
From the above, the three-phase sine wave of the above equation (3) is generated by the sine wave generating means, and the multiplication between the same phase and each multiplication result are added by the calculating means, and this is shown in the above equation (4). Obtain a constant DC amount. This DC amount is such that at a certain time, the row vector C is constant and the row vector V changes due to the voltage change of the three-phase AC, and the voltage drop appears as a DC level drop. The detection of the voltage drop is obtained from the DC level by detecting the decrease in the DC level by the comparison means.

【0028】ここで、演算手段による乗算には同相間の
乗算結果を加算するため、3相電圧の1つの相がゼロク
ロス点にある場合にも他の相が120度,240度位相
にあって演算結果が零になることが無く、比較手段には
カウンタ等による一定時間継続判定にもゼロクロス点近
辺での比較を抑止する手段を不要にする。
Here, since the multiplication result between the same phase is added to the multiplication by the calculating means, even when one phase of the three-phase voltage is at the zero cross point, the other phases are at 120 degrees and 240 degrees. The calculation result does not become zero, and the comparison means does not require a means for suppressing the comparison in the vicinity of the zero-cross point even for the determination of continuation for a certain time by a counter or the like.

【0029】また、瞬時電圧比較によることで瞬時値比
較検出方式と同等の高速検出を得る。さらに、電圧自乗
和方式と同様に検出信号に脈動のない直流量を得て電圧
低下の判定を容易にする。
Further, by using the instantaneous voltage comparison, high-speed detection equivalent to the instantaneous value comparison detection method can be obtained. Further, as in the case of the sum-of-squares method, a DC amount with no pulsation in the detection signal is obtained to facilitate the determination of the voltage drop.

【0030】[0030]

【実施例】図1は本発明の一実施例を示す回路図であ
る。電圧検出器21は商用電源等の検出対象となる3相
交流電源から各相電圧波形を検出する。この電圧信号は
前述の(3)式に相当する。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. The voltage detector 21 detects a voltage waveform of each phase from a three-phase AC power supply to be detected such as a commercial power supply. This voltage signal corresponds to the above-mentioned equation (3).

【0031】PLL22とカウンタ23とROM24,
25,26及びD/A変換器27,28,29は正弦波
発生手段を構成し、検出電圧Vcos ωtに同期しかつ定
電圧の3相正弦波信号を発生する。PLL22は検出電
圧に同期し正弦波の1周期又は半周期間にN発の同期パ
ルスを発生し、カウンタ23はゼロクロス点でリセット
されて同期パルスの計数を行い、ROM24,25,2
6は正弦波の半周期又は一周期間のサンプル値が互いに
120度位相差を有して書込まれカウンタ23の計数値
をアドレスとして正弦波のサンプル値データを順次出力
し、D/A変換器27,28,29は各ROM24〜2
6からのサンプル値データを順次アナログ信号に変換す
ることで正弦波信号を得る。このROM24〜26の出
力は前述の(3)式で電圧Vが一定のものになる。
PLL 22, counter 23, ROM 24,
25 and 26 and the D / A converters 27, 28 and 29 constitute a sine wave generating means and generate a three-phase sine wave signal of a constant voltage in synchronization with the detection voltage Vcos ωt. The PLL 22 generates N sync pulses in one cycle or a half cycle of the sine wave in synchronism with the detection voltage, the counter 23 is reset at the zero-cross point and counts the sync pulses, and the ROMs 24, 25, 2
Reference numeral 6 denotes a D / A converter in which half-cycle or one-cycle sample values of a sine wave are written with a phase difference of 120 degrees with each other and the sine wave sample value data is sequentially output using the count value of the counter 23 as an address. 27, 28 and 29 are ROMs 24 to 2
A sine wave signal is obtained by sequentially converting the sample value data from 6 into an analog signal. The outputs of the ROMs 24 to 26 are such that the voltage V is constant according to the above equation (3).

【0032】乗算器30,31,32と加算器33は演
算手段を構成し、検出器21からの各相電圧信号とD/
A変換器27,28,29からの各相正弦波信号とを同
相間で乗算器30〜32で乗算し、これら乗算結果を加
算器33で加算する。この演算結果は前述の(4)式か
ら検出電圧の大きさが平衡していれば一定の直流量3V
/2になる。
The multipliers 30, 31, 32 and the adder 33 constitute an arithmetic means, and each phase voltage signal from the detector 21 and D /
The in-phase sine wave signals from the A converters 27, 28 and 29 are multiplied in-phase by the multipliers 30 to 32, and the multiplication results are added by the adder 33. This calculation result shows that if the magnitude of the detected voltage is balanced from the equation (4), the constant DC amount is 3V.
/ 2.

【0033】比較器34とタイマ35は比較手段を構成
し、加算器33の出力と設定電圧Vsetとを比較器34
で比較し、加算器33の出力が設定電圧以下になったと
きにタイマ35が計時を開始し、この状態がタイマ35
の時限以上に継続したときに該タイマ35の出力変化を
電圧低下検出信号として取出す。
The comparator 34 and the timer 35 constitute a comparing means, and the output of the adder 33 and the set voltage Vset are compared with each other by the comparator 34.
When the output of the adder 33 becomes equal to or lower than the set voltage, the timer 35 starts counting time, and this state is
When it continues beyond the time limit of, the output change of the timer 35 is taken out as a voltage drop detection signal.

【0034】本実施例によれば、電圧低下の検出速度と
しては瞬時値比較方式と同等の高速性を持ち、回路構成
上は電圧自乗和回路に正弦波発生手段を付加することで
済み、瞬時値比較方式のようにゼロクロス点での演算抑
止手段や積分演算手段を不要にし、比較的簡単な構成に
なる。
According to the present embodiment, the detection speed of the voltage drop is as high as that of the instantaneous value comparison method, and the sine wave generating means is added to the voltage square sum circuit in terms of the circuit configuration. Unlike the value comparison method, there is no need for means for suppressing calculation at the zero-cross point or means for integration, and the structure is relatively simple.

【0035】なお、本実施例ではハードウェア構成で示
すが、コンピュータによるソフトウェア構成で大部分を
実現することができる。例えば、電圧検出器21からの
各相電圧波形をサンプルホールド回路とマルチプレクサ
回路及びA/D変換器によってサンプリングデータとし
てコンピュータに取込み、テーブルデータとして持つ正
弦波サンプルデータとの乗算と加算と比較及びタイマ演
算の各処理を繰り返すソフトウェアをコンピュータに用
意することで実現される。
In this embodiment, the hardware configuration is shown, but most of it can be realized by a software configuration by a computer. For example, each phase voltage waveform from the voltage detector 21 is taken into a computer as sampling data by a sample hold circuit, a multiplexer circuit, and an A / D converter, and multiplication, addition, comparison with a sine wave sample data held as table data and a timer are performed. It is realized by preparing a computer with software that repeats each processing of calculation.

【0036】本発明に基づいた電圧低下検出試験を従来
の瞬時値比較検出方式及び電圧自乗和方式の試験と共に
行った。試験対象として高圧配電系統のある地点の柱上
開閉器を開放し、このときの該地点から負荷側の電圧低
下(停電)に対する応答波形をEMTPによるシミュレ
ーションで求めた。
The voltage drop detection test based on the present invention was carried out together with the conventional instantaneous value comparison detection system and voltage square sum system tests. As a test target, the pole switch at a certain point in the high-voltage distribution system was opened, and the response waveform to the voltage drop (blackout) on the load side from this point at this time was obtained by simulation with EMTP.

【0037】なお、負荷側に進相コンデンサが結合され
て残留電圧の減少に時間がかかる場合と、進相コンデン
サがつながれていない場合の両方の試験を行った。ま
た、基準値と検出信号の比較にはソフトウェアで行うと
共に判定レベル(基準値)は検出信号の定常値の80%
とした。
Tests were conducted both when the phase advancing capacitor was coupled to the load side and it took time to reduce the residual voltage, and when the phase advancing capacitor was not connected. In addition, the comparison between the reference value and the detection signal is performed by software, and the judgment level (reference value) is 80% of the steady value of the detection signal.
And

【0038】図2は負荷側にコンデンサが無い場合のシ
ミュレーション波形図を示し、同図(a)には線間電圧
波形を、(b)には本発明方式での電圧検出信号と電圧
低下判別信号を、(c)には電圧自乗和方式での電圧検
出信号と電圧低下判別信号を示す。
FIG. 2 shows a simulation waveform diagram when there is no capacitor on the load side. FIG. 2 (a) shows the line voltage waveform, and FIG. 2 (b) shows the voltage detection signal and the voltage drop discrimination according to the method of the present invention. The signals are shown in (c) of the voltage detection signal and the voltage drop determination signal in the voltage sum of squares method.

【0039】図3は負荷側にコンデンサが有る場合のシ
ミュレーション波形図を示し、同図(a)には線間電圧
波形を、(b)には本発明方式での電圧検出信号と電圧
低下判別信号を、(c)には電圧自乗和方式での夫々の
信号を示す。
FIG. 3 shows a simulation waveform diagram when there is a capacitor on the load side. FIG. 3 (a) shows the line voltage waveform, and FIG. 3 (b) shows the voltage detection signal and the voltage drop discrimination according to the method of the present invention. The signals are shown in (c), and the respective signals in the sum of voltage squares method are shown.

【0040】これらシミュレーション結果及び瞬時値比
較方式の演算結果は下記表の判別時間になる。
The simulation result and the calculation result of the instantaneous value comparison method become the discrimination time in the following table.

【0041】[0041]

【表1】 [Table 1]

【0042】なお、瞬時値比較方式では各相電圧の波形
がそれに同期し大きさが相電圧の80%の正弦波信号を
下回るまでの時間として演算で求めた。
In the instantaneous value comparison method, the time required for the waveform of each phase voltage to be synchronized with it and for the magnitude to fall below the sine wave signal of 80% of the phase voltage was calculated.

【0043】この結果から、本発明方式はコンデンサの
有無に拘らず瞬時値比較方式とほぼ同じ応答性を持ち、
電圧自乗和方式に較べて高速応答の電圧低下検出ができ
る。特に、コンデンサが系統に接続されて線間の残留電
圧が大きいときに応答性の差が大きくなる。
From this result, the method of the present invention has almost the same responsiveness as the instantaneous value comparison method regardless of the presence or absence of the capacitor,
Compared to the sum of squared voltage method, it is possible to detect a voltage drop with faster response. In particular, when a capacitor is connected to the system and the residual voltage between the lines is large, the difference in response becomes large.

【0044】[0044]

【発明の効果】以上のとおり、本発明によれば、3相交
流の各相電圧と、これに同期して発生させる3相正弦波
信号とを同相間で夫々乗算し、各乗算結果を加算するこ
とで3相交流の電圧を同期回転座標上に変換して一定の
直流量の検出電圧を得、この電圧を比較基準電圧との比
較により電圧低下を検出するようにしたため、瞬時値比
較方式と同等の高速検出になり、しかも瞬時値比較方式
に較べて積分演算やゼロクロス点の検出抑止手段を不要
にして回路構成又はソフトウェア構成を簡単化できる効
果がある。
As described above, according to the present invention, each phase voltage of the three-phase alternating current and the three-phase sine wave signal generated in synchronization with this are multiplied in-phase, and the respective multiplication results are added. By converting the three-phase AC voltage on the synchronous rotation coordinate to obtain a detection voltage with a constant DC amount, and detecting the voltage drop by comparing this voltage with the comparison reference voltage, the instantaneous value comparison method is used. The high-speed detection is equivalent to that of the above method, and there is an effect that the circuit configuration or the software configuration can be simplified by eliminating the need for integral calculation and zero-cross point detection suppressing means as compared with the instantaneous value comparison method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】電圧低下検出波形図。FIG. 2 is a voltage drop detection waveform diagram.

【図3】電圧低下検出波形図。FIG. 3 is a voltage drop detection waveform diagram.

【図4】瞬時値比較検出方式の回路図。FIG. 4 is a circuit diagram of an instantaneous value comparison detection method.

【図5】3相電圧自乗和方式の回路図。FIG. 5 is a circuit diagram of a three-phase voltage sum of squares method.

【図6】瞬時値比較検出波形図。FIG. 6 is an instantaneous value comparison detection waveform diagram.

【符号の説明】[Explanation of symbols]

21…電圧検出器、22…PLL、23…カウンタ、2
4,25,26…ROM、27,28,29…D/A変
換器、30,31,32…乗算器、33…加算器、34
…比較器、35…タイマ。
21 ... Voltage detector, 22 ... PLL, 23 ... Counter, 2
4, 25, 26 ... ROM, 27, 28, 29 ... D / A converter, 30, 31, 32 ... Multiplier, 33 ... Adder, 34
... comparator, 35 ... timer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渕川 正人 香川県高松市屋島西町2109番地8 株式会 社四国総合研究所内 (72)発明者 片岡 康夫 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 寺嶋 正之 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Fuchikawa 2109 Yashima Nishimachi, Takamatsu City, Kagawa 8 Shikoku Research Institute (72) Inventor Yasuo Kataoka 2-1-117 Osaki, Shinagawa-ku, Tokyo Stock Association Shameidensha (72) Inventor Masayuki Terashima 2-17 Osaki, Shinagawa-ku, Tokyo Stock company Shameidensha

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検出対象になる3相交流の各相電圧波形
を得る電圧検出手段と、前記電圧波形に同期しかつ定電
圧の3相正弦波信号を発生する正弦波発生手段と、前記
3相交流の各相電圧波形と3相正弦波信号とを同相間で
夫々乗算し各乗算結果を加算する演算手段と、この演算
手段の演算結果が設定値以下に達しかつ所定時間継続し
たときに前記3相交流の電圧低下検出信号を得る比較手
段とを備えたことを特徴とする電圧低下検出装置。
1. A voltage detecting means for obtaining a voltage waveform of each phase of a three-phase alternating current to be detected, a sine wave generating means for generating a three-phase sine wave signal of a constant voltage in synchronization with the voltage waveform, and the three. When the voltage waveform of each phase of the alternating current and the three-phase sine wave signal are respectively multiplied in the same phase and each multiplication result is added, and the calculation result of this calculation means reaches the set value or less and continues for a predetermined time. A voltage drop detection device comprising: a comparison unit that obtains the voltage drop detection signal of the three-phase AC.
JP4031192A 1992-02-19 1992-02-19 Voltage drop detector Expired - Lifetime JP3015575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031192A JP3015575B2 (en) 1992-02-19 1992-02-19 Voltage drop detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031192A JP3015575B2 (en) 1992-02-19 1992-02-19 Voltage drop detector

Publications (2)

Publication Number Publication Date
JPH05232157A true JPH05232157A (en) 1993-09-07
JP3015575B2 JP3015575B2 (en) 2000-03-06

Family

ID=12324569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031192A Expired - Lifetime JP3015575B2 (en) 1992-02-19 1992-02-19 Voltage drop detector

Country Status (1)

Country Link
JP (1) JP3015575B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153433A (en) * 2001-11-08 2003-05-23 Mitsubishi Heavy Ind Ltd Instantaneous voltage drop detection device for power system
JP2003294791A (en) * 2002-04-02 2003-10-15 Tokyo Denshi Kk Voltage drop detecting circuit for three-phase line
JP2007225427A (en) * 2006-02-23 2007-09-06 Fuji Electric Systems Co Ltd Power interruption detecting circuit and uninterruptible power supply unit
JP2009092504A (en) * 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd Voltage fault detector
CN103869139A (en) * 2012-12-11 2014-06-18 兄弟工业株式会社 Voltage anomaly detection device
CN103941111A (en) * 2013-01-18 2014-07-23 国家电网公司 Voltage sag simulation method and device
CN104316746A (en) * 2014-10-14 2015-01-28 钱坤 Smart measurement and computational analysis method of PT secondary circuit voltage and pressure drop
JP2017138313A (en) * 2016-02-03 2017-08-10 富士電機株式会社 Voltage abnormality detection device, program, and voltage abnormality detection method
JP2020089017A (en) * 2018-11-21 2020-06-04 富士電機株式会社 Device, power supply apparatus, method and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153433A (en) * 2001-11-08 2003-05-23 Mitsubishi Heavy Ind Ltd Instantaneous voltage drop detection device for power system
JP2003294791A (en) * 2002-04-02 2003-10-15 Tokyo Denshi Kk Voltage drop detecting circuit for three-phase line
JP2007225427A (en) * 2006-02-23 2007-09-06 Fuji Electric Systems Co Ltd Power interruption detecting circuit and uninterruptible power supply unit
JP2009092504A (en) * 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd Voltage fault detector
CN103869139A (en) * 2012-12-11 2014-06-18 兄弟工业株式会社 Voltage anomaly detection device
CN103941111A (en) * 2013-01-18 2014-07-23 国家电网公司 Voltage sag simulation method and device
CN104316746A (en) * 2014-10-14 2015-01-28 钱坤 Smart measurement and computational analysis method of PT secondary circuit voltage and pressure drop
JP2017138313A (en) * 2016-02-03 2017-08-10 富士電機株式会社 Voltage abnormality detection device, program, and voltage abnormality detection method
JP2020089017A (en) * 2018-11-21 2020-06-04 富士電機株式会社 Device, power supply apparatus, method and program

Also Published As

Publication number Publication date
JP3015575B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
CN109067393B (en) Phase locking method, device and equipment of power system
JPWO2017126205A1 (en) Power conversion device and power conversion system
JP3015575B2 (en) Voltage drop detector
da Silva et al. A comparative analysis of p-PLL algorithms for single-phase utility connected systems
JP3229520B2 (en) Phase rotation abnormality detection device
JP3287121B2 (en) Voltage drop detection circuit
US10063242B2 (en) Phase-locked loop method for use in utility electricity parallel-connection system
CN111983335B (en) Phase sequence detection method based on orthogonal area
JP4003501B2 (en) Three-phase PWM rectifier controller
Montero-Hernandez et al. A fast detection algorithm suitable for mitigation of numerous power quality disturbances
JP2012252443A (en) Phase synchronization detection circuit
JPH05297030A (en) Detection method of voltage drop
JP5238358B2 (en) AC power measuring device, AC power measuring method, and single-phase AC / DC converter
JP2000102168A (en) Active filter control method
Tran et al. Phase and Frequency Estimation for Grid-connected Inverters
KR100217861B1 (en) Spontaneous low voltage high speed detecting apparatus
JP2004156986A (en) Power failure detection device
RU2459338C1 (en) Relay of difference in amplitudes of generators connected for parallel operation
JPH01110266A (en) Voltage drop detection circuit
JPH039267A (en) Measuring method for dc current
Sivakumar et al. Kalman filter based high speed measurement and control of AC voltages for UPS applications
JP2745728B2 (en) Inverter control method
JPH0282168A (en) Voltage drop detector for ac voltage
JP2733450B2 (en) Power failure detection device
JPS618678A (en) Direct current value detecting device