JP2012252443A - Phase synchronization detection circuit - Google Patents

Phase synchronization detection circuit Download PDF

Info

Publication number
JP2012252443A
JP2012252443A JP2011123313A JP2011123313A JP2012252443A JP 2012252443 A JP2012252443 A JP 2012252443A JP 2011123313 A JP2011123313 A JP 2011123313A JP 2011123313 A JP2011123313 A JP 2011123313A JP 2012252443 A JP2012252443 A JP 2012252443A
Authority
JP
Japan
Prior art keywords
phase
voltage
interval
detection
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011123313A
Other languages
Japanese (ja)
Other versions
JP5830941B2 (en
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2011123313A priority Critical patent/JP5830941B2/en
Publication of JP2012252443A publication Critical patent/JP2012252443A/en
Application granted granted Critical
Publication of JP5830941B2 publication Critical patent/JP5830941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve phase synchronization control which is high in safety and readiness for achieving a phase synchronization moving average filter in which one cyclic section of synchronization detection angular frequency ωcan be accurately synchronized, and a moving average arithmetic operation can be performed by reducing detection delay.SOLUTION: A phase synchronization moving average filter 3B for extracting higher harmonic removal voltagesv,vfrom voltage components v, vsubjected to rotating coordinate transformation sets a phase input of a moving average arithmetic operation to a synchronization detection phase θ, calculates the rate of an asynchronization detection period in a phase section as a weight in order to obtain information of the detected synchronization detection phase θand one element of the phase section synchronized with the cycle of the synchronization detection angular frequency ω, performs multiplication and correction of a detection value vof the voltage components with the weight, transforms the voltage components after the weight correction into an average voltage synchronized with the cycle of the synchronization detection angular frequency ωby integrating the voltage components for each phase section, and performs moving and averaging of the transformed average voltage.

Description

本発明は、電源系統の電圧と同期した位相を得るための位相同期検出回路に係わり、特に電源系統の電圧と非同期のサンプル検出信号に対応した位相同期検出回路に関する。   The present invention relates to a phase synchronization detection circuit for obtaining a phase synchronized with a voltage of a power supply system, and more particularly to a phase synchronization detection circuit corresponding to a sample detection signal asynchronous with the voltage of the power supply system.

自然エネルギーを利用して商用電源系統に電力を供給する分散電源などでは、供給する電力を商用電源系統と連系するために電力変換器を設けるが、商用電源系統の電圧に同期した適切な電流が流れるように電力変換器の出力(周波数、振幅、位相)を制御する必要がある。このうち、電力変換器と商用電源系統の電圧位相の同期制御には、位相同期(PLL:Phase Locked Loop)方式が多く採用されている。   In distributed power supplies that use natural energy to supply power to the commercial power system, a power converter is provided to link the supplied power with the commercial power system, but an appropriate current synchronized with the voltage of the commercial power system It is necessary to control the output (frequency, amplitude, phase) of the power converter so that current flows. Of these, a phase locked loop (PLL) system is often used for voltage phase synchronization control of the power converter and the commercial power supply system.

この位相同期方式は、電源電圧検出信号の種類で大別すると、3相の相電圧や線間電圧の零クロスを検出して電源電圧の一周期に数回程度のパルス的な信号を利用して制御する方式と、3相の電源電圧の検出を高速に逐次行ないながら3相2相変換や回転座標変換などを利用して常時位相同期を制御する方式などがある。   This phase synchronization method can be broadly classified according to the type of power supply voltage detection signal. It detects zero crossing of three-phase phase voltage and line voltage and uses a pulse-like signal several times in one cycle of the power supply voltage. And a method of constantly controlling phase synchronization using three-phase two-phase conversion, rotational coordinate conversion, etc. while sequentially detecting three-phase power supply voltages at high speed.

特許文献1,2,3は後者の電源電圧を逐次検出して位相を演算する方式である。また、特許文献1および非特許文献1では、電源電圧波形が不平衡になった場合や高調波成分が重畳した場合まで考慮した方式である。   Patent Documents 1, 2, and 3 are systems for calculating the phase by sequentially detecting the latter power supply voltage. Patent Document 1 and Non-Patent Document 1 are systems that take into consideration even when the power supply voltage waveform is unbalanced or when harmonic components are superimposed.

これら位相同期方式を適用した電力変換器と分散電源の連系制御による安定性については、連系する系統の瞬時電圧低下時にも停止することなく運転を継続する機能が望まれている。そのためには、電源電圧の振幅だけでなく不平衡状態や高調波成分までが過渡的に変動する場合であっても、これらの電圧情報から安定な基準同期信号を得る必要がある。特に、不平衡時には電源電圧には正相成分と逆相成分が混在するため、逆相分を正確に除去できないと基準位相が二次高調波で揺らいでしまい、安定なエネルギーの制御ができない。   As for the stability by the interconnection control of the power converter and the distributed power source to which these phase synchronization methods are applied, a function of continuing the operation without stopping even when the instantaneous voltage drop of the interconnection system is desired. For this purpose, it is necessary to obtain a stable reference synchronization signal from these voltage information even when not only the amplitude of the power supply voltage but also the unbalanced state and the harmonic component fluctuate transiently. In particular, since a positive phase component and a negative phase component are mixed in the power supply voltage when unbalanced, if the negative phase component cannot be accurately removed, the reference phase fluctuates due to the second harmonic, and stable energy control cannot be performed.

図6に一般的な電圧検出形の位相同期検出回路の構成を示す。この位相同期検出回路は、入力は3相電圧検出成分とし、出力には同期検出位相θS及び同期検出角周波数ωSを得る連続系の位相同期検出回路構成としている。 FIG. 6 shows a configuration of a general voltage detection type phase synchronization detection circuit. This phase synchronization detection circuit has a continuous phase synchronization detection circuit configuration in which the input is a three-phase voltage detection component and the output is a synchronization detection phase θ S and a synchronization detection angular frequency ω S.

図6において、3相/2相変換部1は、3相交流電圧の検出信号を直交2軸座標系(αβ座標)に変換する。これにより零相電圧成分を除去することができる。   In FIG. 6, the three-phase / two-phase converter 1 converts the detection signal of the three-phase AC voltage into an orthogonal two-axis coordinate system (αβ coordinate). As a result, the zero-phase voltage component can be removed.

回転座標変換部2は、直交2軸座標の電圧成分vα,vβを同期検出位相θSに同期した座標系(dq座標)の電圧成分vd,vqに回転座標変換する。これにより、同期検出後の定常状態では、d軸とq軸電圧成分vd,vqは直流となる。そのため、外乱を除去するフィルタには低域通過フィルタが利用できる。 The rotating coordinate conversion unit 2 converts the rotating two-axis voltage components v α and v β into rotating coordinate components (dq coordinates) voltage components v d and v q synchronized with the synchronous detection phase θ S. As a result, in the steady state after synchronization detection, the d-axis and q-axis voltage components v d and v q are DC. Therefore, a low-pass filter can be used as a filter for removing disturbance.

位相誤差検出部の低域通過フィルタ3は、d軸とq軸電圧成分vd,vqに混入している高調波成分を除去する。例えば、電源の検出電圧が3相不平衡電圧なら2次高調波成分が重畳しており、また整流負荷などでは6次高調波成分が重畳されることが多く、これら高調波成分をフィルタ3で除去して高調波除去電圧-d-qを抽出する(なお、直流分を意味する変数記号の前に付した符号「-」は図面中では文字vなどの上部に付して示す)。 The low-pass filter 3 of the phase error detector removes harmonic components mixed in the d-axis and q-axis voltage components v d and v q . For example, if the detection voltage of the power supply is a three-phase unbalanced voltage, the second harmonic component is superimposed, and the rectifying load or the like often superimposes the sixth harmonic component. removed to harmonic rejection voltage - v d, - v extracting the q (Note that reference numerals used before the variable symbols mean DC component "-" indicates subjected to the top of the characters v is in the drawings ).

位相誤差検出部の極座標変換部4は、低域通過フィルタ3の高調波除去電圧-d-qから同期誤差位相Δθを求める。低域通過フィルタ3を通した出力は同期検出位相θSに同期した座標系の電圧であるので、同期が完了した状態なら、電圧ベクトルは設定した基準軸上に存在するはずである。しかし、位相同期ずれがあると直流電圧のベクトル成分は基準軸に対して異なる位相に存在することになる。そこで、極座標変換部4は高調波除去電圧-d-qから極座標変換により位相情報を計算し、これを同期誤差位相Δθとして出力する。 Polar coordinate conversion of the phase error detection unit 4, the harmonic removal voltage of the low-pass filter 3 - v d, - v obtains a synchronization error phase Δθ from q. Since the output through the low-pass filter 3 is a voltage in the coordinate system synchronized with the synchronization detection phase θ S , the voltage vector should exist on the set reference axis if the synchronization is completed. However, if there is a phase synchronization shift, the vector component of the DC voltage exists in a different phase with respect to the reference axis. Therefore, the harmonic removal voltage polar coordinate transformation unit 4 - v d, - v phase information calculated by the polar coordinate conversion from q, and outputs it as a synchronization error phase [Delta] [theta].

PI演算部5は、極座標変換部4の同期誤差位相Δθより、比例積分制御を適用して、同期検出角周波数ωSを推定する。角速度時間積分部6は、推定した同期検出角周波数ωSを時間積分して、前述の同期検出位相θSを演算する。 The PI calculation unit 5 applies proportional integral control from the synchronization error phase Δθ of the polar coordinate conversion unit 4 to estimate the synchronization detection angular frequency ω S. The angular velocity time integration unit 6 time-integrates the estimated synchronization detection angular frequency ω S to calculate the above-described synchronization detection phase θ S.

以上に説明した位相同期検出回路において、位相同期制御については代表例として一般的なPI制御で示しているが、この方式に限定する必要は無く、他のフィードバック演算方法でもよい。また、フィルタ3と極座標変換部4の演算順序を逆にする方法もある。この方法は、先に極座標変換により位相情報を得て、それを低域フィルタで処理するもので、図6の回路構成による同期位相方式と比較しても似たような効果が得られる。   In the phase synchronization detection circuit described above, the phase synchronization control is shown as a general PI control as a representative example, but is not limited to this method, and other feedback calculation methods may be used. There is also a method of reversing the calculation order of the filter 3 and the polar coordinate converter 4. In this method, phase information is first obtained by polar coordinate conversion and processed by a low-pass filter, and a similar effect can be obtained even when compared with the synchronous phase method using the circuit configuration of FIG.

図6は連続系の表現を使用した位相同期検出回路の例を示したが、ディジタル回路を利用する場合には図7のような離散系で構成される。図7における図6との差異のみを示すと、電源電圧検出は、サンプラ7により検出周期TSにてサンプルホールドされてA/D(アナログ/ディジタル)変換器8などによりディジタル量に変換される。また、推定した同期検出角周波数ωSから同期検出位相θSを得る積分器6に代えて、前回の検出位相を記憶するサンプラ9と、同期検出角周波数ωSと離散時間検出周期TS乗算部10および前回の同期検出位相θn=(Z-1・θS)との積算を求める加算器11によって、同期検出角周波数ωSの時間積分をオイラー近似している。ここで、このサンプラの遅れ時間を補正したい場合には、検出した位相に同期検出角周波数ωSを利用した遅れ位相補償を適用する方法などもあることや、積分を近似する演算法なども多数存在するが、本発明とは直接関係が無いので省略している。 FIG. 6 shows an example of a phase synchronization detection circuit using a continuous system expression. However, when a digital circuit is used, it is composed of a discrete system as shown in FIG. In FIG. 7, only the difference from FIG. 6 is shown. The power supply voltage is sampled and held by the sampler 7 in the detection cycle T S and converted into a digital quantity by the A / D (analog / digital) converter 8 or the like. . In place from the synchronization detection angular frequency omega S estimated to an integrator 6 to obtain the synchronization detection phase theta S, the sampler 9 which stores the previous detection phase, the discrete time detector period T S multiplied by the synchronization detection angular frequency omega S The time integration of the synchronous detection angular frequency ω S is approximated by Euler by the adder 11 for calculating the integration with the unit 10 and the previous synchronous detection phase θ n = (Z −1 · θ S ). Here, when it is desired to correct the delay time of this sampler, there are methods such as applying delayed phase compensation using the synchronous detection angular frequency ω S to the detected phase, and many calculation methods approximating the integral. Although there is no direct relationship with the present invention, it is omitted.

譲原逸男、河村篤男、“不平衡三相三線式交流の線間電圧に基づく星形電圧と零相分電圧の瞬時値導出法と三相PWMコンバータ制御への応用”電学論D、Vol.131、No.3,pp.372−379(2011)Yasuo Jyohara and Atsio Kawamura, “A Method for Deriving Instantaneous Values of Star-Shaped Voltage and Zero-Phase Divided Voltage Based on Line Voltage of Unbalanced Three-phase Three-wire AC and Application to Three-Phase PWM Converter Control”, D 131, no. 3, pp. 372-379 (2011)

特許第3374685号公報Japanese Patent No. 3374585 特開昭55−34851号公報JP 55-34851 A 実開平01−101175号公報Japanese Utility Model Publication No. 01-101175

前記の位相同期検出回路において、低域通過フィルタ部分の特性に問題が生じる。前記の説明では定常状態を想定して説明しているが、実際には系統に瞬時電圧低下などの過渡状態が発生する。また、電圧の不平衡状態なども変化する。したがって、位相同期フィルタには、電源周波数の基本波成分は少ない時間遅れで通過させるが、高次成分や外乱成分は遮断するという過渡現象における即応性と広帯域抑圧特性との両方が要求される。この即応性と周波数遮断特性とは相反しており、適切なフィルタを選定する必要がある。   In the phase synchronization detection circuit, a problem occurs in the characteristics of the low-pass filter portion. In the above description, a steady state is assumed. However, a transient state such as an instantaneous voltage drop actually occurs in the system. In addition, the voltage unbalanced state also changes. Therefore, the phase-locked filter is required to have both a quick response and a broadband suppression characteristic in a transient phenomenon in which the fundamental wave component of the power supply frequency is passed with a small time delay but a high-order component and a disturbance component are cut off. This responsiveness and frequency cutoff characteristics are contradictory, and it is necessary to select an appropriate filter.

ディジタルフィルタにはIIRフィルタ(無限インパルス応答フィルタ)やFIRフィルタ(有限インパルス応答フィルタ)など多数の種類があるが、応答性能を要求する場合にはFIRフィルタが適しているといえる。このFIRフィルタの簡単な構成例の一つに、電源周波数の逓倍周期を演算区間とする移動平均フィルタがある。通常のFIRフィルタはエイリアジング(折り返し信号)による誤差などの影響が生じないように、数周期にわたる期間の検出データと窓関数のようなゲイン設定が必要になり、演算時間が掛かるだけでなく、過渡現象時の検出遅れも大きくなる欠点がある。   There are many types of digital filters, such as IIR filters (infinite impulse response filters) and FIR filters (finite impulse response filters), but it can be said that FIR filters are suitable when response performance is required. One example of a simple configuration of this FIR filter is a moving average filter that uses a multiplication period of a power supply frequency as a calculation interval. A normal FIR filter requires detection data for a period of several cycles and a gain setting such as a window function so that the influence of an error due to aliasing (folding signal) does not occur, and it takes not only calculation time, There is a drawback that the detection delay at the time of transient phenomenon becomes large.

これを防止する方法として、同期周波数と同一周期期間における移動平均をとる方法がある。ポイントは検出する電圧の基本波周期に正確な移動平均を適用することによりエイリアジングの影響を除去することであり、そのため演算データも基本波周期分だけあればよく、検出遅れ時間も同期周波数の基本波周期の1/2程度ですむという長所を有している。   As a method for preventing this, there is a method of taking a moving average in the same period as the synchronization frequency. The point is to eliminate the influence of aliasing by applying an accurate moving average to the fundamental wave period of the voltage to be detected. It has the advantage of being about ½ of the fundamental wave period.

しかし、この移動平均法の欠点は検出する電圧成分が同期検出角周波数ωSに正確に同期していなければならないことである。電圧成分の検出周期TSが固定されている場合には、同期検出角周波数ωSはこの検出周期TSの整数倍になるとは限らない。電源周波数は変動するので、同期検出角周波数ωSと電圧成分の検出周期TSが同期しなくなり、その場合には正確な移動平均が得られない。 However, a drawback of this moving average method is that the voltage component to be detected must be accurately synchronized with the synchronous detection angular frequency ω S. When the voltage component detection cycle T S is fixed, the synchronous detection angular frequency ω S is not always an integral multiple of the detection cycle T S. Since the power supply frequency fluctuates, the synchronization detection angular frequency ω S and the voltage component detection cycle T S are not synchronized, and in this case, an accurate moving average cannot be obtained.

検出周期と基本波周期が同期していない場合において、単純な発想で移動平均の誤差を抑制しようと機能改善した試行例を図8に示す。図8は低域通過フィルタ3に代えて移動平均フィルタ3Aを設け、検出回数演算部12は同期検出した同期検出角周波数ωSより、
N=(2π/ωS)/TS …(1)
にて、移動平均の検出回数Nを計算して、移動平均フィルタ3に平均する検出回数Nを指令する構成としている。
FIG. 8 shows a trial example in which the function is improved to suppress the error of the moving average with a simple idea when the detection cycle and the fundamental wave cycle are not synchronized. In FIG. 8, a moving average filter 3A is provided instead of the low-pass filter 3, and the number-of-detections calculation unit 12 uses the synchronous detection angular frequency ω S detected synchronously,
N = (2π / ω S ) / T S (1)
Thus, the moving average detection number N is calculated, and the moving average filter 3 is instructed to average the detection number N.

図9は横軸に時間をとり、上段に検出周期TSに同期した基準位相データθn(後述の図1の同期検出位相(前回値)Z-1・θSに相当)と、下段にそのときの電圧検出値vn(後述の図1のvd,vqに相当)を示したものである。 In FIG. 9, time is taken on the horizontal axis, reference phase data θ n (corresponding to a synchronization detection phase (previous value) Z −1 · θ S in FIG. 1 described later) synchronized with the detection cycle T S on the upper stage, and on the lower stage. The voltage detection value v n (corresponding to v d and v q in FIG. 1 described later) at that time is shown.

しかし、移動平均の検出回数Nは整数になるとは限らないため、図9に示す「2π=移動平均したい一周期区間」と検出周期TSが一致しなくなる。この検出周期TSと希望する移動平均期間2πとの誤差である少数点以下の期間に含まれる電圧成分が誤差として現れてくる。この誤差期間を無視するとそれによる誤差成分により高調波成分が変動したり、さらに誤差の極性によって同期検出角周波数ωSが増加したり減少したりする。さらに、前述の(1)式で求める検出回数Nにも影響を与えてしまう。そのため、この従来方式をシミュレーションしてみると正確に同期検出角周波数ωSの一周期期間(=2π)に同期した移動平均が実現できず、位相同期制御も不安定になってしまい、安定な電源の同期位相検出ができないことが判明した。 However, since the number N of moving average detections is not necessarily an integer, “2π = one cycle section where moving average is desired” shown in FIG. 9 does not coincide with the detection cycle T S. A voltage component included in a period below the decimal point, which is an error between the detection cycle T S and the desired moving average period 2π, appears as an error. If this error period is ignored, the harmonic component fluctuates due to the error component, and the synchronization detection angular frequency ω S increases or decreases depending on the polarity of the error. Furthermore, the number of detection times N obtained by the above-described equation (1) is also affected. Therefore, when this conventional method is simulated, a moving average synchronized with one period period (= 2π) of the synchronization detection angular frequency ω S cannot be realized accurately, and the phase synchronization control becomes unstable and stable. It turned out that the synchronous phase detection of a power supply cannot be performed.

本発明の目的は、上記の方式にさらに改良を加え、同期検出角周波数ωSの一周期区間に正確に同期し、かつ検出遅れを少なくした移動平均演算ができる位相同期移動平均フィルタを実現して、これによって安定で即応性の高い位相同期制御ができる位相同期検出回路を提供することにある。 The object of the present invention is to further improve the above method and realize a phase-synchronized moving average filter that can be accurately synchronized with one period of the synchronous detection angular frequency ω S and that can perform a moving average calculation with reduced detection delay. Thus, an object of the present invention is to provide a phase synchronization detection circuit capable of stable and highly responsive phase synchronization control.

本発明は、前記の課題を解決するため、回転座標変換した電圧成分vd,vqから高調波除去電圧-d-qを取り出す移動平均フィルタは、移動平均演算の位相入力を同期検出角周波数ωSに非同期の電圧成分の検出周期TSに同期した同期検出位相θnとし、この検出した同期検出位相θnの情報と、同期検出角周波数ωSに同期した位相区間の1個の要素を得るために、この位相区間における非同期検出期間の比率を重みとして計算し、この重みで電圧成分の電圧検出値vnを乗算補正し、この重み補正後の電圧成分を個々の位相区間分について積算して同期検出角周波数ωSと同期した平均電圧に変換し、この変換後の平均電圧を移動平均する位相同期移動平均フィルタとしたもので、以下の構成を特徴とする。 The present invention for solving the above problems, a voltage component obtained by converting a rotating coordinate v d, the harmonic removal voltage from v q - v d, - v moving average filter for extracting the q, the synchronization phase input of the moving average operation a detection period T sync detected phase synchronized with the S theta n asynchronous voltage component to detect angular frequency omega S, and information of the detected synchronization detection phase theta n, the phase interval in synchronization with the synchronization detection angular frequency omega S 1 to obtain the number of elements, the ratio of the asynchronous detection period in the phase interval calculated as a weight, a voltage detection value v n of the voltage component multiplied corrected by this weight, the weight after the correction voltage component individual phase A phase-synchronous moving average filter that integrates the sections and converts them into an average voltage synchronized with the synchronous detection angular frequency ω S and performs a moving average on the average voltage after conversion is characterized by the following configuration.

(1)電源系統の3相電圧検出成分を3相/2相変換し、この3相/2相変換した直交2軸座標の電圧成分vα,vβから電圧成分の検出周期TSに同期した同期検出位相θnを使ってdq座標系の電圧成分vd,vqに回転座標変換し、移動平均フィルタによって前記電圧成分vd,vqから高調波除去電圧-d-qを取り出し、この高調波除去電圧-d-qから極座標変換により位相情報を計算して同期誤差位相Δθを求め、この同期誤差位相Δθより同期検出角周波数ωSを推定し、同期検出位相θSを求める位相同期検出回路において、
前記移動平均フィルタは、移動平均演算の位相入力を前記同期検出位相θnとし、この検出した同期検出位相θnの情報と、同期検出角周波数ωSの周期に同期した位相区間の1個の要素を得るために、この位相区間における非同期検出期間の比率を重みとして計算し、この重みで電圧成分の検出値vnを乗算補正し、この重み補正後の電圧成分を個々の位相区間分について積算して同期検出角周波数ωSの周期と同期した平均電圧に変換し、その変換後の平均電圧を移動平均する位相同期移動平均フィルタとしたことを特徴とする。
(1) 3-phase voltage detecting components of the power supply system and the three-phase / two-phase conversion of the voltage component v alpha of the 3-phase / 2-phase converted orthogonal biaxial coordinate, v beta synchronization with the detection period T S of the voltage component from the voltage component of the synchronization detection phase θ using n dq coordinate system v d, v rotated coordinate transformation q, the voltage component v d, the harmonic removal voltage from v q by the moving average filter - v d, - v q was removed, the harmonic rejection voltage - v d, - v q obtains the synchronization error phase [Delta] [theta] to calculate the phase information by a polar coordinate conversion from estimated synchronization detection angular frequency omega S than the synchronization error phase [Delta] [theta], the synchronization detection In the phase synchronization detection circuit for obtaining the phase θ S ,
The moving average filter, a phase input of the moving average operation and the sync detection phase theta n, the synchronization detection phase theta n that the detected information and, one of the phase interval synchronized with the period of the synchronization detecting angular frequency omega S In order to obtain an element, the ratio of the asynchronous detection period in this phase interval is calculated as a weight, the voltage component detection value v n is multiplied and corrected by this weight, and the voltage component after this weight correction is calculated for each phase interval. A phase-locked moving average filter that integrates and converts to an average voltage synchronized with the period of the synchronous detection angular frequency ω S and performs a moving average of the converted average voltage is provided.

(2)前記位相同期移動平均フィルタは、
前記基準位相データθnに「移動平均点数M/同期検出角周波数ωSの一周期区間(=2π)」を乗算して位相区間mに相当する整数部m(n)と各区間mの重み係数knに相当する少数部knを求め、このうち整数部m(n)と少数部knを分離して抽出し、前記回転座標変換した電圧成分の検出値vnのうち、区間mとこの区間mの1つ前の区間を含む電圧成分の最初のデータには重み係数knを乗じたvn・knを求め、区間mに全て含まれるデータには重み係数(kn−kn-1)を乗じたvn・(kn−kn-1)を求め、区間mとこの区間mの次の区間を含む電圧成分の最後のデータには重み係数(1.0−kn-1)を乗じたvn・(1.0−kn)を求める重み演算部(20)と、
前記重み演算部(20)で区間mの各電圧サンプル値Δvnに重みを乗算した電圧成分の検出値Δvn,m、Δvn+1,m、Δvn+2,m…の総和を区間mの平均電圧データ-ma(m)として、前記整数部mが前回値と変化したタイミングを利用して求める非同期→同期変換部(30)と、
前記非同期→同期変換部(30)で求めた平均電圧データ-ma(m)をM個のスタックメモリに順次格納して同期位相に換算した移動平均データ-v(Δθm-M)について、それらを合計加算した後に(1/M)を乗算して移動平均出力vmaを求める移動平均演算部(40)を備えたことを特徴とする。
(2) The phase-locked moving average filter is
The reference phase data θ n is multiplied by “number of moving average points M / one period interval (= 2π) of the synchronous detection angular frequency ω S ” and an integer part m (n) corresponding to the phase interval m and the weight of each interval m seek minority portion k n corresponding to the coefficient k n, these extracted to separate the fractional part k n an integer portion m (n), of the detected value v n of the voltage component obtained by converting the rotational coordinate, interval m and obtains a v n · k n multiplied by the weighting factor k n is the first data voltage component comprising one previous sections of this interval m, the data contained all sections m weighting factor (k n - v n · (k n −k n−1 ) multiplied by k n−1 ), and the last data of the voltage component including the interval m and the next interval of the interval m is represented by a weight coefficient (1.0− k n-1) to v n · multiplied (1.0-k n) weight calculation section for obtaining the (20),
The sum of the detected voltage components Δv n, m , Δv n + 1, m , Δv n + 2, m ... Obtained by multiplying each voltage sample value Δv n in the interval m by the weight in the weight calculation unit (20) average voltage data m - v as ma (m), determined by utilizing the timing of the integer part m is changed from the previous value asynchronous → synchronization converting unit (30),
The asynchronous → average voltage data obtained by the synchronous conversion unit (30) - v moving average data ma (m) to converted sequentially stored to synchronizing phase into M stack memory - for v (Δθ mM), their A moving average calculation unit (40) is provided that calculates the moving average output v ma by adding (1 / M) after the total addition.

(3)前記位相同期移動平均フィルタは、
前記同期検出位相θnに「移動平均点数M/同期検出角周波数ωSの一周期区間(=2π)」を乗算して位相区間mに相当する整数部m(n)と各区間mの重み係数knに相当する少数部knを求め、このうち整数部m(n)と少数部knを分離して抽出し、前記回転座標変換した電圧成分の検出値vnのうち、区間mとこの区間mの1つ前の区間を含む電圧成分の最初のデータには重み係数knを乗じたvn・knを求め、区間mとこの区間mの次の区間を含む電圧成分に全て含まれるデータには重み係数(kn−kn-1)を乗じたvn・(kn−kn-1)を求め、区間mの最後のデータには重み係数(1.0−kn-1)を乗じたvn・(1.0−kn)を求める重み演算部(20)と、
前記重み演算部(20)で区間mの各電圧成分の検出値Δvnに重みを乗算した電圧成分の検出値Δvn,m、Δvn+1,m、Δvn+2,m…を、スタックメモリにデータアドレスを選択しながら書き込みと加算をして同期位相に換算したデータ-v(Δθm)と-v(Δθm-M)を求める非同期→同期変換部(30A)と、
前記非同期→同期変換部(30A)で求めたデータ-v(Δθm)と-v(Δθm-M)を入力データとし、整数部mの変化時のデータ-v(Δθm)を加算し、M個前のデータ-v(Δθm-M)を減算してM個の検出期間の積算値DSUM(m)を求め、この積算値DSUM(m)に(1/M)を乗算して移動平均出力vmaを求める移動平均演算部(40A)を備えたことを特徴とする。
(3) The phase-locked moving average filter is
The synchronization detection phase θ n is multiplied by “moving average number M / one period interval (= 2π) of the synchronization detection angular frequency ω S ” and an integer part m (n) corresponding to the phase interval m and the weight of each interval m seek minority portion k n corresponding to the coefficient k n, these extracted to separate the fractional part k n an integer portion m (n), of the detected value v n of the voltage component obtained by converting the rotational coordinate, interval m and obtains a v n · k n is the first data voltage component obtained by multiplying the weighting factor k n comprising one previous sections of this interval m, the voltage component which includes the following sections of this interval m and the interval m All included data is multiplied by a weighting factor (k n −k n−1 ) to obtain v n · (k n −k n−1 ), and the last data in the interval m is a weighting factor (1.0− k n-1) to v n · multiplied (1.0-k n) weight calculation section for obtaining the (20),
Detection value Delta] v n of the voltage component obtained by multiplying the weight to the detection value Delta] v n of the voltage component of the interval m in the weight calculation unit (20), m, Δv n + 1, m, a Δv n + 2, m ..., data were converted to synchronous phase with the write and addition while selecting data address in the stack memory - v and (Δθ m) - v asynchronous → synchronous conversion unit for obtaining the (Δθ mM) (30A),
And v (Δθ m) - - the asynchronous → synchronous conversion unit data obtained in (30A) v as input data ([Delta] [theta] mM), data at the time of change of the integer part m - adds v (Δθ m), M pieces previous data - v obtains an integrated value D SUM (m) of the M detection period by subtracting the ([Delta] [theta] mM), moving average this integrated value D SUM (m) by multiplying the (1 / M) A moving average calculation unit (40A) for obtaining the output v ma is provided.

以上のとおり、本発明によれば、回転座標変換した電圧成分vd,vqから高調波除去電圧-d-qを取り出す移動平均フィルタは、移動平均演算の位相入力を同期検出角周波数ωSに非同期の電圧成分の検出周期TSに同期した同期検出位相θnとし、この検出した同期検出位相θnの情報と、同期検出角周波数ωSに同期した移動平均のための位相区間の1個の要素を得るために、この位相区間における非同期検出期間の比率を重みとして計算し、この重みで電圧成分の電圧検出値vnを乗算補正し、さらに、この重み補正後の電圧成分を個々の位相区間分について積算して同期検出角周波数ωSと同期した平均電圧に変換し、この変換後の平均電圧を移動平均する位相同期移動平均フィルタとしたため、同期検出角周波数ωSの一周期と移動平均区間が正確に同期し、かつ検出遅れを少なくした移動平均演算ができる位相同期移動平均フィルタを実現でき、これによって安定で即応性の高い位相同期制御ができる。 As described above, according to the present invention, the voltage component was converted rotational coordinate v d, the harmonic removal voltage from v q - v d, - v moving average filter for extracting the q, the synchronization detection angle phase input of the moving average operation The synchronization detection phase θ n synchronized with the detection period T S of the voltage component asynchronous to the frequency ω S is set, and the information of the detected synchronization detection phase θ n and the phase for the moving average synchronized with the synchronization detection angular frequency ω S to obtain one of the elements of the section, the ratio of the asynchronous detection period in the phase interval calculated as a weight, a voltage detection value v n of the voltage component multiplied corrected by the weight, further, the voltage after the weight correction converts the components into individual average voltage synchronized with integration to synchronization detection angular frequency omega S for the phase time section, due to a phase-locked moving average filter to a moving average of the average voltage of the converted, synchronization detection angular frequency omega S Cycle and movement A phase-synchronized moving average filter that can perform a moving average calculation with the average interval accurately synchronized and with reduced detection delay can be realized, and thus stable and highly responsive phase-synchronized control can be realized.

具体的には、系統電圧の振幅や不平衡などの成分が変化した場合でも、高次高調波成分の抑制効果と基本波成分の検出遅れが少ないという特徴を有する位相同期検出回路を実現できる。   Specifically, even when components such as system voltage amplitude and unbalance change, it is possible to realize a phase-synchronization detection circuit having features of suppressing high-order harmonic components and reducing detection delay of fundamental components.

ひいては、この位相同期検出回路を電力変換器と分散電源の連系制御に適用してその回生電力の電流波形などの安定化が実現できる。   As a result, the phase synchronization detection circuit can be applied to the interconnection control of the power converter and the distributed power supply to stabilize the current waveform of the regenerative power.

また、さらに逆位相の回転座標変換と同一の特性を有する移動平均フィルタを追加すれば、逆相成分つまり同期座標系で2次高調波成分を検出することもできるなど、多岐の応用も可能になる。もし、不平衡時の逆相電圧成分も安定で即応性の高い検出ができれば、不平衡電圧時においても分散電源の系統電力供給装置における電力品質を改善することができる。   In addition, if a moving average filter having the same characteristics as the rotating coordinate transformation of the antiphase is added, various applications such as detecting the antiphase component, that is, the second harmonic component in the synchronous coordinate system, are possible. Become. If the negative-phase voltage component at the time of unbalance can be detected stably and highly responsively, the power quality in the system power supply device of the distributed power source can be improved even at the time of unbalanced voltage.

実施形態の位相同期検出回路の概略構成図。The schematic block diagram of the phase-synchronization detection circuit of embodiment. 位相補間演算による電気角−周期の移動平均演算の説明図。Explanatory drawing of the moving average calculation of an electrical angle-cycle by phase interpolation calculation. 非同期検出値の同期検出データへの変換方法の説明図。Explanatory drawing of the conversion method of the asynchronous detection value to the synchronous detection data. 実施形態の位相同期移動平均フィルタの回路構成図(その1)。1 is a circuit configuration diagram of a phase-locked moving average filter according to an embodiment (part 1). 実施形態の位相同期移動平均フィルタの回路構成図(その2)。FIG. 3 is a circuit configuration diagram of a phase-locked moving average filter according to the embodiment (part 2). 電圧検出形の位相同期検出回路の構成図(連続系)。Configuration diagram of voltage detection type phase synchronization detection circuit (continuous system). 電圧検出形の位相同期検出回路の構成図(離散系)。1 is a configuration diagram of a voltage detection type phase synchronization detection circuit (discrete system). 移動平均フィルタを適用した位相同期検出回路(離散系)。A phase synchronization detection circuit (discrete system) using a moving average filter. 基準位相データθnとそのときの電圧成分の検出値vnの関係図。FIG. 4 is a relationship diagram between reference phase data θ n and a detected value v n of a voltage component at that time.

(1)位相同期検出回路の概略構成
図1は、本発明で提案する位相同期検出回路の概略構成図である。同図が図8と異なる部分は、移動平均フィルタ3Aと検出回数演算部12に代えて、位相同期移動平均フィルタ3Bを設け、この移動平均位相入力を検出周期TSの同期検出位相θn(前回値)=Z-1・θSとし、この同期検出位相θnにより検出周期TSの電圧成分を正確に移動平均する点にある。
(1) Schematic Configuration of Phase Synchronization Detection Circuit FIG. 1 is a schematic configuration diagram of a phase synchronization detection circuit proposed in the present invention. Portions figure differs from FIG. 8, instead of the moving average filter 3A with detection count calculation unit 12, a phase synchronization moving average filter 3B is provided, the synchronization detection phase of the moving average phase input detection period T S θ n ( The previous value) = Z −1 · θ S, and the voltage component of the detection cycle T S is accurately moving averaged by this synchronization detection phase θ n .

(2)位相同期検出の原理的な説明
図9のタイムチャートは、横軸を時間にとり、位相同期検出回路の同期位相を縦軸にとって描いたものである。この時間軸と位相軸の横軸と縦軸を入れ替えたものが図2である。下段には電圧成分の検出値vnを縦軸成分として示しており、検出周期TSに相当する位相に同期させているので図9と等価である。
(2) Principle Explanation of Phase Synchronization Detection The time chart of FIG. 9 is drawn with the horizontal axis as time and the synchronization phase of the phase synchronization detection circuit as the vertical axis. FIG. 2 is a diagram in which the horizontal axis and the vertical axis of the time axis and the phase axis are interchanged. The lower shows the detection value v n of the voltage component as the vertical axis component, is equivalent to Figure 9 because in synchronism with the phase corresponding to the detected period T S.

提案する移動平均方法は、複数の非同期検出データ(n番データ)から位相と同期したM点のデータ(m番データ)に変換し、その結果をM点の移動平均演算を行なって出力するものである。   The proposed moving average method converts a plurality of asynchronous detection data (n-th data) into M-point data (m-th data) synchronized with the phase, and outputs the result after performing M-point moving average calculation. It is.

図2では、説明を簡単にするため、同期検出角周波数ωSの一周期期間(=2π)成分の区間をM=8点に区分した例で示している。もちろんこの区分数は任意に設定できる。図2ではかならずこの位相区間内に1個以上の検出周期TSが存在するように設定しているが、これも説明を簡単にするためであり、もし検出が無かった場合には例外処理を適用すればよい。実際に実現する場合には以降に示す区間平均の概念を拡張すれば容易にこの例外処理方法を類推することができるので以降の説明ではこれに関する記述を省略する。 FIG. 2 shows an example in which a section of one cycle period (= 2π) component of the synchronization detection angular frequency ω S is divided into M = 8 points for simplicity of explanation. Of course, the number of divisions can be arbitrarily set. In FIG. 2, it is set so that at least one detection period T S exists in this phase interval, but this is also for the sake of simplicity. If no detection is made, exception processing is performed. Apply. In actual implementation, this exception handling method can be easily inferred by extending the concept of interval averaging shown below, and therefore the description thereof will be omitted in the following description.

図2の入出力信号および内部変数として下記のものを使用する。   The following are used as input / output signals and internal variables in FIG.

(a)非同期検出入力に係る変数
θn:電圧成分の検出周期TSに同期した位相(図1の同期検出位相(前回値)Z-1・θSに相当)
n:位相θnと同一タイミングで検出された電圧(図1の電圧成分vd,vqに相当)
{ EMBED Equation.3 , }:同期検出角周波数ωSの一周期期間(=2π)に同期した移動平均点数(位相の区分数)
Enable:移動平均演算の演算開始タイミングを示す制御信号(1=演算許可、0=演算停止およびリセット)
(b)同期変換のための変数
n:非同期検出データの番号
m:同期検出角周波数ωSの一周期(2π)成分をM個に区分したもののうち特定の区間を示す番号
θm:{ EMBED Equation.3 , }個に区分した位相区間の区切りの位相(区間の初期位相)
n,kn+1,kn+2,…:M個に区分した位相区間に対する初期位相θmからθn,θn+1,θn+2,…までの重み関数
Δvn,m,Δvn+1,m,Δvn+2,m…kn:区間mにおいて、n、n+1,n+2,…番目の検出電圧に、区間平均用の重みkn,kn+1,kn+2…を乗算補正した電圧成分
-v(Δθm):M個に区分した位相区間のm番目の区間の同期平均電圧成分に変換した値(Δvn,m、Δvn+1,m、Δvn+2,m、…の積算値)
(c)出力信号
-ma(m):M個の-v(Δθm)を移動平均した高次高調波成分を除去した電圧出力成分
ENma:Enable=1(演算許可)信号の入力後に移動平均がM個に達し、正常出力が得られていることを示すステータスフラグ
まず、図3を利用して非同期データから同期データに変換する原理を説明する。図3の区間m=−1(θm-1からθmまでの区間)の同期電圧成分を求める例で説明する。この区間mにおいて、電圧データは(n−1)番目から(n+3)番目のデータまでが関係している。そこで、これらの電圧成分の検出データを利用して区間mの平均電圧-v(Δθm)を計算する。
(A) Variable θ n related to asynchronous detection input: Phase synchronized with voltage component detection cycle T S (corresponding to synchronous detection phase (previous value) Z −1 · θ S in FIG. 1)
v n : voltage detected at the same timing as phase θ n (corresponding to voltage components v d and v q in FIG. 1)
{EMBED Equation.3,}: Number of moving average points (number of phase divisions) synchronized to one period (= 2π) of the synchronous detection angular frequency ω S
Enable: Control signal indicating the calculation start timing of the moving average calculation (1 = calculation enable, 0 = calculation stop and reset)
(B) Variables for synchronous conversion n: Asynchronous detection data number m: Number indicating a specific section among M divided one period (2π) components of the synchronous detection angular frequency ω S θ m : {EMBED Equation.3,} Phase segmentation phase segment (initial phase of segment)
k n , k n + 1 , k n + 2 ,...: weight function Δv n, m from the initial phase θ m to θ n , θ n + 1 , θ n + 2 ,. , Δv n + 1, m , Δv n + 2, m ... k n : In the section m, the weights k n , k n + 1 , k n for the section average are added to the n, n + 1, n + 2 ,. Voltage component corrected by multiplying +2
- v (Δθ m): m-th synchronous average voltage converted value to the component sections of M to the classification by the phase interval (Δv n, m, Δv n + 1, m, Δv n + 2, m, ... of Integrated value)
(C) Output signal
- v ma (m): M-number of - v voltage output components to remove high-order harmonic components that moving average (Δθ m) EN ma: Enable = 1 moving average are M after input (operation permission) signal A status flag indicating that normal output is obtained and the principle of converting asynchronous data to synchronous data will be described with reference to FIG. An example of obtaining the synchronous voltage component in the section m = −1 (section from θ m−1 to θ m ) in FIG. 3 will be described. In this section m, the voltage data is related to the (n−1) th to (n + 3) th data. Therefore, the average voltage interval m by utilizing the detection data of these voltage components - calculating the v ([Delta] [theta] m).

ここで、注意することは、最初と最後の(n−1)番と(n+3)番のデータは、区間mの位相区切りにより途中で切断されていることである。一方、それ以外のn番〜(n+2)番のデータは検出期間が区間mに全て含まれている。したがって、区間mの平均電圧を正確に計算するためには、この位相区間をまたぐデータについても、正確な補正演算を適用しなくてはならない、そこで、各電圧成分に次の3種類の重み係数を乗算してこの非同期なn番データから同期した部分を正確に抽出する。   Here, it should be noted that the first and last (n−1) number and (n + 3) number data are cut in the middle by the phase break of the section m. On the other hand, the other detection data of the nth to (n + 2) th are included in the section m. Therefore, in order to accurately calculate the average voltage in the interval m, it is necessary to apply an accurate correction operation to the data across the phase interval. Therefore, the following three types of weighting factors are applied to each voltage component. To accurately extract a synchronized portion from the asynchronous n-th data.

・区間mの最初のデータ(ここでは(n−1))は、次式から求める。   -The first data of the section m (here (n-1)) is obtained from the following equation.

Figure 2012252443
Figure 2012252443

・区間mに全て含まれる中間のデータ(ここでは、n,(n+1),(n+2))は、例えば、(n+1)の例では次式から求める。   Intermediate data (here, n, (n + 1), (n + 2)) all included in the section m is obtained from the following equation in the example of (n + 1), for example.

Figure 2012252443
Figure 2012252443

・区間mの最後のデータ(ここでは、(n+3))は、次式から求める。   -The last data of the section m (here, (n + 3)) is obtained from the following equation.

Figure 2012252443
Figure 2012252443

この3種類の計算を行い、区間mにおけるΔvn+imの総和を同期した平均電圧-ma(m)とする。これが、非同期検出データを位相同期データに変換する原理である。 Do this three calculations, Δv n + i, the average voltage synchronized the sum of m in the interval m - v and ma (m). This is the principle of converting asynchronous detection data into phase synchronization data.

このようなデータ変換によって、図9のように、電圧成分の検出周期TSが同期検出角周波数ωSの位相と同期していない場合であっても、図3のように一旦、位相同期データに変換することにより、非同期データであってもより正確な同期検出角周波数ωSの整数倍の周期で移動平均演算を行なうことができる。 Even if the voltage component detection cycle T S is not synchronized with the phase of the synchronous detection angular frequency ω S as shown in FIG. 9 by such data conversion, the phase synchronous data is temporarily displayed as shown in FIG. Thus, even for asynchronous data, a moving average calculation can be performed with a cycle that is an integer multiple of the synchronous detection angular frequency ω S more accurately.

(3)位相同期移動平均フィルタの具体的な回路構成(その1)
図4は、前記の位相同期移動平均フィルタ3Bの回路構成例を示す。同図は、非同期→同期変換の重み演算部20と、非同期→同期変換部30および同期変換されたデータの移動平均演算部40で構成され、それぞれの詳細を以下に説明する。
(3) Specific circuit configuration of phase-locked moving average filter (part 1)
FIG. 4 shows a circuit configuration example of the phase-locked moving average filter 3B. The figure includes an asynchronous-to-synchronous conversion weight calculation unit 20, an asynchronous-to-synchronous conversion unit 30, and a moving average calculation unit 40 of the synchronously converted data, each of which will be described in detail below.

(A)非同期→同期変換の重み演算部20
同期検出位相θnは(0≦θn<2π)の周期データとする。重み計算部20ではこれに乗算器21でM/(2π)を乗算してm(n)+kn(ここで、m(n)は整数部、knは小数部を意味する)として小数点以下まで求める。そして、整数部抽出部22で抽出する整数部をm(n)(0≦m<M)、少数下部抽出部23で抽出する小数点以下の部分をknとする。少数下部抽出部23は、M/(2π)を乗算したm(n)+knから整数部m(n)を削除したことにより、その演算結果knは、
(A) Asynchronous to synchronous conversion weight calculation unit 20
The synchronization detection phase θ n is assumed to be periodic data of (0 ≦ θ n <2π). By multiplying the M / (2π) m (n ) + k n ( where, m (n) is an integer unit, k n denotes the fractional part) by the multiplier 21 to the weight calculation section 20 decimal as To ask. Then, the integer part to extract an integer portion extracting section 22 m (n) (0 ≦ m <M), the following partial point extraction with fewer lower brewing unit 23 with k n. Few lower extraction unit 23, the removal of m multiplied by M / (2π) (n) + k n from the integer unit m (n), the calculation result k n is

Figure 2012252443
Figure 2012252443

と等価な値になる。 Is equivalent to

これにより基本となるθmとθn区間の重み関数が計算できるので、前記の区間mとこの区間mの1つ前の区間を含む電圧成分の最初のデータには重み乗算器24がvn・knと重み係数knをそのまま使用した乗算値を出力し、区間mにすべて含まれるデータには重み乗算器25がサンプラ27による前回値との差分した係数を乗算した値vn・(kn−kn-1)を出力し、そして区間mとこの区間mの次の区間を含む電圧成分の最後のデータには重み乗算器26が1.0までの期間に相当する係数を乗算した値vn・(1.0−kn)を出力する。 As a result, the weight function of the basic θ m and θ n intervals can be calculated. Therefore, the weight multiplier 24 applies v n to the first data of the voltage component including the interval m and the immediately preceding interval m. A multiplication value using k n and the weight coefficient k n is output as it is, and a value v n. (() Obtained by multiplying the data included in all the intervals m by a coefficient that is different from the previous value by the sampler 27 by the weight multiplier 25. k n −k n−1 ), and the weight multiplier 26 multiplies the last data of the voltage component including the interval m and the next interval of the interval m by a coefficient corresponding to the period up to 1.0. the output value v n · a (1.0-k n).

(B)非同期→同期変換部30
非同期→同期変換部30は、重み演算部20で区間mの各電圧成分Δvnに3種類の重みを乗算した電圧成分Δvn,m、Δvn+1,m、Δvn+2,m…の総和を区間mの平均電圧データ-ma(m)として求める。3種類の重みを乗算したデータのうち最初の2種類の加算制御は整数部mが前回値と変化したかどうかで判断する。この判断結果として、整数部抽出部22で抽出する位相区間番号m(n)とサンプラ28で記憶する前回の位相区間番号m(n−1)とを判定部32が一致/不一致を判定した信号selとして与える。
(B) Asynchronous → synchronous conversion unit 30
The asynchronous-to-synchronous conversion unit 30 uses voltage components Δv n, m , Δv n + 1, m , Δv n + 2, m ... Obtained by multiplying each voltage component Δv n in the interval m by three types of weights in the weight calculation unit 20. average voltage data sum of the interval m - v obtained as ma (m). Of the data obtained by multiplying the three types of weights, the first two types of addition control are determined by whether the integer part m has changed from the previous value. As a result of this determination, a signal obtained by the determination unit 32 determining whether the phase section number m (n) extracted by the integer part extraction unit 22 and the previous phase section number m (n−1) stored by the sampler 28 match / do not match. Give as sel.

位相区間データ平均用積算器31では、次の動作を行なう。   The phase interval data averaging integrator 31 performs the following operation.

・整数部mが前回値と変化した場合(sel=1):vn・knを初期値としてsumに格納する。 · If the integer portion m has changed from the previous value (sel = 1): v is stored in the sum of n-k n as an initial value.

・整数部mが前回値と変化しない場合(sel=0):前回値sumにvn・(kn−kn-1)を加算する。 · If the integer portion m is not changed from the previous value (sel = 0): adding the v n · (k n -k n -1) to the previous value sum.

3種類の重みを乗算したものの内、最後の種類のデータは、この位相区間データ平均用積算器31の出力sumに常時加算しているが、実際には次段の移動平均用のデータメモリに格納されるタイミングは整数部mの変化時であり、ちょうど最後のデータが有効なタイミングしで次段にラッチされる。つまり、それ以外の時には無視されるので常時加算していても無視されるので実害は無い。   Of the three types of weights multiplied, the last type of data is always added to the output sum of the phase interval data averaging integrator 31. In practice, however, it is stored in the moving average data memory in the next stage. The stored timing is when the integer part m changes, and is just latched at the next stage at the timing when the last data is valid. In other words, it is ignored at other times, so even if it is always added, it is ignored and there is no actual harm.

(C)同期変換されたデータの移動平均演算部40
移動平均演算部40では位相区間mの平均電圧データ出力-v(Δθm)から-v(Δθm-M)のデータをM個のスタックメモリ41に順次格納し、それらを合計加算した後に乗算器42で(1/M)を演算し、移動平均出力vmaを求める。これにより同期検出角周波数ωSに同期した移動平均を、整数部mの更新タイミングにおいて逐次出力できる。
(C) Moving average calculation unit 40 of synchronously converted data
Moving average average voltage data output of the arithmetic unit 40 in the phase interval m - v from (Δθ m) - v sequentially stores data ([Delta] [theta] mM) to M stack memory 41, a multiplier after total addition of them 42 To calculate (1 / M) and obtain the moving average output v ma . As a result, the moving average synchronized with the synchronization detection angular frequency ω S can be sequentially output at the update timing of the integer part m.

ところで、移動平均はM個のデータが蓄積されるまでは正確なデータを出力できないので、vma(m)の更新タイミングカウンタ43により計測して、M回更新したことを検出してデータの有効/無効ステータスフラグENmaを出力している。このステータスフラグENmaは必須なものではなく、適当なウエイトタイマーなどで代用することも可能である。あくまでこの位相同期データ出力には開始時に無効期間の示すためだけに図4では追加した。 By the way, since the moving average cannot output accurate data until M pieces of data are accumulated, it is measured by the update timing counter 43 of v ma (m), and it is detected that it has been updated M times, and the data is valid. / Invalid status flag ENma is output. This status flag EN ma is not indispensable, it is also possible to substitute with appropriate weights timer. This phase-synchronized data output is added in FIG. 4 only to indicate an invalid period at the start.

(4)位相同期移動平均フィルタの具体的な回路構成(その2)
図5は、前記の位相同期移動平均フィルタの他の回路構成を示す。同図が図4と異なる部分は移動平均の演算方法だけである。図5では移動平均を積算器と加減算器で構成する方法を適用しており、図4のようにM個の加算器41が必要ない。それ以外は図4の移動平均演算と等価な演算回路を使用している。
(4) Specific circuit configuration of the phase-locked moving average filter (part 2)
FIG. 5 shows another circuit configuration of the phase-locked moving average filter. FIG. 4 differs from FIG. 4 only in the moving average calculation method. In FIG. 5, a method of constructing a moving average with an accumulator and an adder / subtracter is applied, and M adders 41 are not required as in FIG. Otherwise, an arithmetic circuit equivalent to the moving average calculation of FIG. 4 is used.

この、移動平均を積算器と加減算器で構成する方法は、既に良く知られている方法であるので、下記に-v(Δθm-M)の代わりに入力をD(m)という一般的な変数で表現した簡単な原理式のみを示す。 The method to configure a moving average in integrator and adder-subtractor is because it is already well-known method, the following - v input instead of ([Delta] [theta] mM) in the general variable, D (m) Only a simple principle expression is shown.

D(m)の入力データにおいてM個の移動平均をとる場合
・最初の(1〜M−1)個の検出期間
When M moving averages are taken in D (m) input data-First (1 to M-1) detection periods

Figure 2012252443
Figure 2012252443

・M個以降の検出期間mの演算   ・ Calculation of detection period m after M

Figure 2012252443
Figure 2012252443

非同期→同期変換部(同期データメモリスタック部)30A内の「スタックメモリ書き込み・加算・読み出し部31Aでは上式の演算のうち、重み係数を乗算した電圧成分を入力とし、スタックメモリ31Bにデータアドレスを選択しながら書き込みと加算を行なうことにより、このスタックメモリを積算値の格納メモリとして流用しながら同期位相に換算したデータ-v(Δθm)と-v(Δθm-M)を計算している。これはDSUM(m)の演算に必要な加減算データ-v(Δθm)と-v(Δθm-M)の読み出しを制御していることに相当する。 Asynchronous → synchronous conversion unit (synchronous data memory stack unit) 30A “stack memory writing / adding / reading unit 31A receives the voltage component multiplied by the weighting coefficient in the above equation and inputs the data address to stack memory 31B. by performing the selection while the write adds data obtained by converting the stack memory to the diverting while synchronizing phase as storage memory integrated value - v and (Δθ m) - v is calculating (Δθ mM). This subtraction data required for the operation of the D SUM (m) - equivalent to controlling the reading of v (Δθ mM) - v and ([Delta] [theta] m).

移動平均演算部40A内の積算部44では、DSUM(m)に相当する演算を行なっており、整数部mの変化時のデータ-v(Δθm)を加算し、M個前のデータ-v(Δθm-M)を減算してM個の検出期間の積算値DSUM(m)を求める。 The integrating unit 44 of the moving average calculation section 40A, and performs the calculation corresponding to the D SUM (m), data at the time of change of the integer part m - adds v (Δθ m), M-previous data - v (Δθ mM ) is subtracted to obtain an integrated value D SUM (m) for M detection periods.

もちろん、この場合でも移動平均はM個のデータが蓄積されるまでは正確なデータを出力できない。また、Enable=0の場合には、カウンタ43や31Bのメモリスタックをクリアする機能なども必要に応じて追加する。   Of course, even in this case, the moving average cannot output accurate data until M pieces of data are accumulated. Further, when Enable = 0, a function for clearing the memory stack of the counter 43 and 31B is added as necessary.

以上のように、図5の構成によれば、CPUなどで実現する場合には演算時間の大幅な短縮が、またFPGAなどの論理回路で実現する場合にはロジック数の大幅な削減ができる、   As described above, according to the configuration of FIG. 5, the calculation time can be greatly shortened when realized by a CPU or the like, and the number of logics can be greatly reduced when realized by a logic circuit such as an FPGA.

1 3相/2相変換部
2 回転座標変換部
3 低域通過フィルタ
3A 移動平均フィルタ
3B 位相同期移動平均フィルタ
4 極座標変換部
5 PI演算部
7、9 サンプラ
12 検出回数演算部
20 重み演算部
30,30A 非同期→同期変換部
40,40A 移動平均演算部
DESCRIPTION OF SYMBOLS 1 3 phase / 2 phase conversion part 2 Rotation coordinate conversion part 3 Low-pass filter 3A Moving average filter 3B Phase synchronous moving average filter 4 Polar coordinate conversion part 5 PI calculating part 7, 9 Sampler 12 Detection frequency calculating part 20 Weight calculating part 30 , 30A Asynchronous → Synchronous conversion unit 40, 40A Moving average calculation unit

Claims (3)

電源系統の3相電圧検出成分を3相/2相変換し、この3相/2相変換した直交2軸座標の電圧成分vα,vβから電圧成分の検出周期TSに同期した同期検出位相θnを使ってdq座標系の電圧成分vd,vqに回転座標変換し、移動平均フィルタによって前記電圧成分vd,vqから高調波除去電圧-d-qを取り出し、この高調波除去電圧-d-qから極座標変換により位相情報を計算して同期誤差位相Δθを求め、この同期誤差位相Δθより同期検出角周波数ωSを推定し、同期検出位相θSを求める位相同期検出回路において、
前記移動平均フィルタは、移動平均演算の位相入力を前記同期検出位相θnとし、この検出した同期検出位相θnの情報と、同期検出角周波数ωSの周期に同期した位相区間の1個の要素を得るために、この位相区間における非同期検出期間の比率を重みとして計算し、この重みで電圧成分の検出値vnを乗算補正し、この重み補正後の電圧成分を個々の位相区間分について積算して同期検出角周波数ωSの周期と同期した平均電圧に変換し、その変換後の平均電圧を移動平均する位相同期移動平均フィルタとしたことを特徴とする位相同期検出回路。
Synchronous detection in which the three-phase voltage detection component of the power supply system is converted into three-phase / two-phase, and the three-phase / two-phase converted voltage components v α and v β of the orthogonal two-axis coordinates are synchronized with the voltage component detection cycle T S rotated coordinate conversion voltage component v d, v q in the dq coordinate system using the phase theta n, wherein the moving average filter voltage component v d, the harmonic removal voltage from v q - v d, - v q was removed, the harmonic rejection voltage - v d, - v q obtains the synchronization error phase [Delta] [theta] to calculate the phase information by a polar coordinate conversion from estimated synchronization detection angular frequency omega S than the synchronization error phase [Delta] [theta], the synchronization detection phase theta S In the phase synchronization detection circuit for obtaining
The moving average filter, a phase input of the moving average operation and the sync detection phase theta n, the synchronization detection phase theta n that the detected information and, one of the phase interval synchronized with the period of the synchronization detecting angular frequency omega S In order to obtain an element, the ratio of the asynchronous detection period in this phase interval is calculated as a weight, the voltage component detection value v n is multiplied and corrected by this weight, and the voltage component after this weight correction is calculated for each phase interval. A phase synchronization detection circuit characterized in that a phase synchronization moving average filter that integrates and converts to an average voltage synchronized with a cycle of the synchronization detection angular frequency ω S and performs a moving average of the converted average voltage.
前記位相同期移動平均フィルタは、
前記基準位相データθnに「移動平均点数M/同期検出角周波数ωSの一周期区間(=2π)」を乗算して位相区間mに相当する整数部m(n)と各区間mの重み係数knに相当する少数部knを求め、このうち整数部m(n)と少数部knを分離して抽出し、前記回転座標変換した電圧成分の検出値vnのうち、区間mとこの区間mの1つ前の区間を含む電圧成分の最初のデータには重み係数knを乗じたvn・knを求め、区間mに全て含まれるデータには重み係数(kn−kn-1)を乗じたvn・(kn−kn-1)を求め、区間mとこの区間mの次の区間を含む電圧成分の最後のデータには重み係数(1.0−kn-1)を乗じたvn・(1.0−kn)を求める重み演算部(20)と、
前記重み演算部(20)で区間mの各電圧サンプル値Δvnに重みを乗算した電圧成分の検出値Δvn,m、Δvn+1,m、Δvn+2,m…の総和を区間mの平均電圧データ-ma(m)として、前記整数部mが前回値と変化したタイミングを利用して求める非同期→同期変換部(30)と、
前記非同期→同期変換部(30)で求めた平均電圧データ-ma(m)をM個のスタックメモリに順次格納して同期位相に換算した移動平均データ-v(Δθm-M)について、それらを合計加算した後に(1/M)を乗算して移動平均出力vmaを求める移動平均演算部(40)を備えたことを特徴とする請求項1に記載の位相同期検出回路。
The phase-locked moving average filter is
The reference phase data θ n is multiplied by “number of moving average points M / one period interval (= 2π) of the synchronous detection angular frequency ω S ” and an integer part m (n) corresponding to the phase interval m and the weight of each interval m seek minority portion k n corresponding to the coefficient k n, these extracted to separate the fractional part k n an integer portion m (n), of the detected value v n of the voltage component obtained by converting the rotational coordinate, interval m and obtains a v n · k n multiplied by the weighting factor k n is the first data voltage component comprising one previous sections of this interval m, the data contained all sections m weighting factor (k n - v n · (k n −k n−1 ) multiplied by k n−1 ), and the last data of the voltage component including the interval m and the next interval of the interval m is represented by a weight coefficient (1.0− k n-1) to v n · multiplied (1.0-k n) weight calculation section for obtaining the (20),
The sum of the detected voltage components Δv n, m , Δv n + 1, m , Δv n + 2, m ... Obtained by multiplying each voltage sample value Δv n in the interval m by the weight in the weight calculation unit (20) average voltage data m - v as ma (m), determined by utilizing the timing of the integer part m is changed from the previous value asynchronous → synchronization converting unit (30),
The asynchronous → average voltage data obtained by the synchronous conversion unit (30) - v moving average data ma (m) to converted sequentially stored to synchronizing phase into M stack memory - for v (Δθ mM), their The phase synchronization detection circuit according to claim 1, further comprising a moving average calculation unit (40) for obtaining a moving average output vma by multiplying the sum by (1 / M).
前記位相同期移動平均フィルタは、
前記同期検出位相θnに「移動平均点数M/同期検出角周波数ωSの一周期区間(=2π)」を乗算して位相区間mに相当する整数部m(n)と各区間mの重み係数knに相当する少数部knを求め、このうち整数部m(n)と少数部knを分離して抽出し、前記回転座標変換した電圧成分の検出値vnのうち、区間mとこの区間mの1つ前の区間を含む電圧成分の最初のデータには重み係数knを乗じたvn・knを求め、区間mとこの区間mの次の区間を含む電圧成分に全て含まれるデータには重み係数(kn−kn-1)を乗じたvn・(kn−kn-1)を求め、区間mの最後のデータには重み係数(1.0−kn-1)を乗じたvn・(1.0−kn)を求める重み演算部(20)と、
前記重み演算部(20)で区間mの各電圧成分の検出値Δvnに重みを乗算した電圧成分の検出値Δvn,m、Δvn+1,m、Δvn+2,m…を、スタックメモリにデータアドレスを選択しながら書き込みと加算をして同期位相に換算したデータ-v(Δθm)と-v(Δθm-M)を求める非同期→同期変換部(30A)と、
前記非同期→同期変換部(30A)で求めたデータ-v(Δθm)と-v(Δθm-M)を入力データとし、整数部mの変化時のデータ-v(Δθm)を加算し、M個前のデータ-v(Δθm-M)を減算してM個の検出期間の積算値DSUM(m)を求め、この積算値DSUM(m)に(1/M)を乗算して移動平均出力vmaを求める移動平均演算部(40A)を備えたことを特徴とする請求項1に記載の位相同期検出回路。
The phase-locked moving average filter is
The synchronization detection phase θ n is multiplied by “moving average number M / one period interval (= 2π) of the synchronization detection angular frequency ω S ” and an integer part m (n) corresponding to the phase interval m and the weight of each interval m seek minority portion k n corresponding to the coefficient k n, these extracted to separate the fractional part k n an integer portion m (n), of the detected value v n of the voltage component obtained by converting the rotational coordinate, interval m and obtains a v n · k n is the first data voltage component obtained by multiplying the weighting factor k n comprising one previous sections of this interval m, the voltage component which includes the following sections of this interval m and the interval m All included data is multiplied by a weighting factor (k n −k n−1 ) to obtain v n · (k n −k n−1 ), and the last data in the interval m is a weighting factor (1.0− k n-1) to v n · multiplied (1.0-k n) weight calculation section for obtaining the (20),
Detection value Delta] v n of the voltage component obtained by multiplying the weight to the detection value Delta] v n of the voltage component of the interval m in the weight calculation unit (20), m, Δv n + 1, m, a Δv n + 2, m ..., data were converted to synchronous phase with the write and addition while selecting data address in the stack memory - v and (Δθ m) - v asynchronous → synchronous conversion unit for obtaining the (Δθ mM) (30A),
And v (Δθ m) - - the asynchronous → synchronous conversion unit data obtained in (30A) v as input data ([Delta] [theta] mM), data at the time of change of the integer part m - adds v (Δθ m), M pieces previous data - v obtains an integrated value D SUM (m) of the M detection period by subtracting the ([Delta] [theta] mM), moving average this integrated value D SUM (m) by multiplying the (1 / M) The phase synchronization detection circuit according to claim 1, further comprising a moving average calculation unit (40A) for obtaining an output vma .
JP2011123313A 2011-06-01 2011-06-01 Phase synchronization detection circuit Active JP5830941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123313A JP5830941B2 (en) 2011-06-01 2011-06-01 Phase synchronization detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123313A JP5830941B2 (en) 2011-06-01 2011-06-01 Phase synchronization detection circuit

Publications (2)

Publication Number Publication Date
JP2012252443A true JP2012252443A (en) 2012-12-20
JP5830941B2 JP5830941B2 (en) 2015-12-09

Family

ID=47525220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123313A Active JP5830941B2 (en) 2011-06-01 2011-06-01 Phase synchronization detection circuit

Country Status (1)

Country Link
JP (1) JP5830941B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106020326A (en) * 2016-06-12 2016-10-12 安徽理工大学 Rapid photovoltaic module maximum power tracking system and method
WO2020242163A1 (en) * 2019-05-28 2020-12-03 효성중공업 주식회사 Grid voltage phase detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020330794B2 (en) 2019-08-09 2023-03-30 Meidensha Corporation System interconnection power conversion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288981A (en) * 2006-04-20 2007-11-01 Fuji Electric Systems Co Ltd Phase synchronization controlling method and phase synchronization controller of power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288981A (en) * 2006-04-20 2007-11-01 Fuji Electric Systems Co Ltd Phase synchronization controlling method and phase synchronization controller of power converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106020326A (en) * 2016-06-12 2016-10-12 安徽理工大学 Rapid photovoltaic module maximum power tracking system and method
WO2020242163A1 (en) * 2019-05-28 2020-12-03 효성중공업 주식회사 Grid voltage phase detection device
KR20200136659A (en) * 2019-05-28 2020-12-08 효성중공업 주식회사 Phase detecting device of system voltage
KR102200554B1 (en) * 2019-05-28 2021-01-08 효성중공업 주식회사 Phase detecting device of system voltage
GB2597211A (en) * 2019-05-28 2022-01-19 Hyosung Heavy Ind Corp Grid voltage phase detection device
GB2597211B (en) * 2019-05-28 2023-08-23 Hyosung Heavy Ind Corp Grid voltage phase detector
US11971437B2 (en) 2019-05-28 2024-04-30 Hyosung Heavy Industries Corporation Grid voltage phase detector

Also Published As

Publication number Publication date
JP5830941B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
CN109067393B (en) Phase locking method, device and equipment of power system
JP4679525B2 (en) Active filter
Xiong et al. A novel PLL for grid synchronization of power electronic converters in unbalanced and variable-frequency environment
Babu et al. Analysis of SDFT based phase detection system for grid synchronization of distributed generation systems
JP5855886B2 (en) Frequency detector
CN103904693B (en) Based on the synchronized method that frequency self adaptation Virtual shipyard is estimated
Meral Improved phase-locked loop for robust and fast tracking of three phases under unbalanced electric grid conditions
CN104020351A (en) Subharmonic detection method suitable for APF (Active Power Filter) under load unbalance system
Sinha et al. A pre-filter based PLL for three-phase grid connected applications
CN104300541B (en) Dynamic prediction compensation method for controlling time delay through active power filter
JP2011229361A (en) Phase detection device
JP5830941B2 (en) Phase synchronization detection circuit
JP2009038885A (en) Signal extracting device and reactive power compensator containing the same
CN109358228B (en) Power grid voltage positive and negative sequence component real-time estimation method based on double enhanced phase-locked loops
Karimi-Ghartemani et al. A phasor measurement algorithm based on phase-locked loop
JP2006317435A (en) Phase/amplitude detector, and method
JP2003224928A (en) Digital directional relay
JP3015575B2 (en) Voltage drop detector
JP2003270277A (en) Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference
JP6149492B2 (en) Storage device
Wang et al. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition
JP5238358B2 (en) AC power measuring device, AC power measuring method, and single-phase AC / DC converter
CN112415266A (en) Method for extracting load harmonic current of active power filter
Ren et al. A digital PLL control method based on the FIR filter for a grid-connected single-phase power conversion system
CN107430173A (en) The detection method and system of a kind of output current direct current zero bias of frequency converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5830941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150