JPH05230599A - Steam turbine rotor material - Google Patents

Steam turbine rotor material

Info

Publication number
JPH05230599A
JPH05230599A JP3761592A JP3761592A JPH05230599A JP H05230599 A JPH05230599 A JP H05230599A JP 3761592 A JP3761592 A JP 3761592A JP 3761592 A JP3761592 A JP 3761592A JP H05230599 A JPH05230599 A JP H05230599A
Authority
JP
Japan
Prior art keywords
steam turbine
rotor material
turbine rotor
carbon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3761592A
Other languages
Japanese (ja)
Inventor
Akiji Fujita
明次 藤田
Masatomo Shinohara
正朝 篠原
Yusaku Takano
勇作 高野
Yorimasa Takeda
頼正 竹田
Takeshi Kondo
武志 近藤
Ikujiro Kitagawa
幾次郎 北川
Katsuo Kako
勝男 加来
Takashi Koga
隆 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Japan Casting and Forging Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp, Mitsubishi Heavy Industries Ltd filed Critical Japan Casting and Forging Corp
Priority to JP3761592A priority Critical patent/JPH05230599A/en
Publication of JPH05230599A publication Critical patent/JPH05230599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a steam turbine rotor material. CONSTITUTION:This steam turbine rotor material is (1) a steam turbine rotor material produced by providing a composition consisting of, by weight ratio, 0.25-0.34% carbon, <=0.1% silicon, 0.7-1.1% manganese, 0.5-1% nickel, 1-1.4% chromium, 1-1.3% molybdenum, 0.2-0.3% vanadium, and iron with inevitable impurities, using vacuum deoxidation process at the time of ingoting, and further applying oil quenching at the time of hardening and (2) a steam turbine rotor material produced by providing a composition which contains, by weight ratio, 0.25-0.34% carbon, <=0.1% silicon, 0.7-1.1% manganese, 0.5-1% nickel, 1-1.4% chromium, 1-1.3% molybdenum, and 0.2-0.3% vanadium and has <=8 embrittlement parameter value represented by [10X(phosphorus content) + 5X(antimony content) + 4X(tin content) + (arsenic content)]X100 and also has the balance iron, using a vacuum deoxidation process at the time of ingoting, and further applying oil quenching at the time of hardening.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービンロータ材、
特に火力発電用蒸気タービンロータ材に関する。
The present invention relates to a steam turbine rotor material,
In particular, it relates to a steam turbine rotor material for thermal power generation.

【0002】[0002]

【従来の技術】火力発電用蒸気タービンプラントに用い
られるロータ材としては主に高圧ロータとして用いられ
るCrMoV鋼があげられるが、この材料は高温強度特
にクリープ破断強度を確保するために成分的にはNi含
有量を0.5%以下に抑え、熱処理としては強制空冷と
いう比較的ゆっくりとした焼入れ処理を施すことによっ
て製造している。
2. Description of the Related Art CrMoV steel, which is mainly used as a high-pressure rotor, can be cited as a rotor material used in a steam turbine plant for thermal power generation. However, this material is componently in order to secure high temperature strength, especially creep rupture strength. The Ni content is suppressed to 0.5% or less, and the heat treatment is performed by performing a relatively slow quenching process called forced air cooling.

【0003】このため、このロータ材においては優れた
クリープ破断特性を有するが、反面靱性は劣り、50%
FATT( Fracture Appearance Trasition Temperatu
re ;衝撃遷移温度)が高く、十分にタービン内の温度が
上昇しないとタービンを回転させることができないた
め、起動時間が長くなるという不具合がある。特に、近
年火力発電プラントにおいても電力需要にあった運転形
態を取ることが必要となってきており、頻繁にプラント
の発停を繰り返すために起動時間の短縮に対する要求は
一段と強くなっている。
For this reason, this rotor material has excellent creep rupture properties, but on the other hand, its toughness is inferior and it is 50%.
FATT (Fracture Appearance Trasition Temperatu
re; impact transition temperature) is high, and the turbine cannot be rotated unless the temperature inside the turbine rises sufficiently, so there is a problem that the startup time becomes long. In particular, in recent years, it has become necessary to take an operating form that meets the power demand even in a thermal power plant, and the demand for shortening the start-up time has become stronger because the plant frequently repeats starting and stopping.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は高圧
ロータのクリープ破断強度を現状のままで保持し、靱性
を改善することによって、起動時間が短縮できる新しい
CrMoV鋼系のロータ材を提供しようとするものであ
る。
Therefore, the present invention intends to provide a new CrMoV steel-based rotor material in which the creep rupture strength of a high-pressure rotor is maintained as it is and the toughness is improved to shorten the start-up time. It is what

【0005】[0005]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、優れた靱性を有し、しかもクリープ破断強度は現
用のCrMoV高圧ロータ材と同等である新規のロータ
材を発明するに至った。
As a result of earnest research, the inventors of the present invention have invented a new rotor material having excellent toughness and creep rupture strength equivalent to that of the current CrMoV high pressure rotor material. It was

【0006】すなわち、本発明は (1) 重量比で、炭素:0.25〜0.34%、シリ
コン:0.1%以下、マンガン:0.7〜1.1%、ニ
ッケル:0.5〜1%、クロム:1〜1.4%、モリブ
デン:1〜1.3%、バナジウム:0.2〜0.3%及
び不可避的不純物及び鉄からなり、造塊に真空カーボン
脱酸法を用い、さらに焼入れの際に油焼入れを適用して
製造してなることを特徴とする蒸気タービンロータ材。 (2) 重量比で、炭素:0.25〜0.34%、シリ
コン:0.1%以下、マンガン:0.7〜1.1%、ニ
ッケル:0.5〜1%、クロム:1〜1.4%、モリブ
デン:1〜1.3%、バナジウム:0.2〜0.3%で
あり、{(10×リン量+5×アンチモン量+4×スズ
量+ヒソ量)}×100 で表される脆化パラメータ値
が8以下で残部が鉄からなり、造塊に真空カーボン脱酸
法を用い、さらに焼入れの際に油焼入れを適用して製造
してなることを特長とする蒸気タービン材。 である。
That is, the present invention is: (1) Carbon: 0.25 to 0.34%, silicon: 0.1% or less, manganese: 0.7 to 1.1%, nickel: 0.5 by weight. -1%, chromium: 1-1.4%, molybdenum: 1-1.3%, vanadium: 0.2-0.3% and inevitable impurities and iron. A steam turbine rotor material, which is manufactured by using oil quenching when used. (2) By weight, carbon: 0.25 to 0.34%, silicon: 0.1% or less, manganese: 0.7 to 1.1%, nickel: 0.5 to 1%, chromium: 1 to 1. 1.4%, molybdenum: 1 to 1.3%, vanadium: 0.2 to 0.3%, represented by {(10 × phosphorus amount + 5 × antimony amount + 4 × tin amount + deflecting amount)} × 100 The steam turbine material is characterized in that the embrittlement parameter value is 8 or less and the balance is iron, and the product is manufactured by using a vacuum carbon deoxidizing method for ingot formation and further applying oil quenching during quenching. .. Is.

【0007】[0007]

【作用】本発明者らは、CrMoV鋼高圧ロータ材の成
分について厳選することにより従来得ることができない
ほどの優れた靱性を有する高圧ロータ材を発明した。以
下に本発明ロータ材における成分限定理由を述べるが、
以下、成分の%は重量%を示す。
The present inventors have invented a high-pressure rotor material having excellent toughness that cannot be obtained conventionally by carefully selecting the components of the CrMoV steel high-pressure rotor material. The reasons for limiting the components in the rotor material of the present invention will be described below.
Hereinafter,% of the components means% by weight.

【0008】C:Cは焼入れ性を向上させるとともにC
rやMoの炭化物を形成し高温強度の向上に寄与する。
しかし、0.25%未満では十分な耐力、クリープ破断
強度が得られず、また0.34%を越えると過剰な炭化
物を形成し靱性を低下させるため0.25〜0.34%
とする。
C: C improves the hardenability and at the same time C
It forms carbides of r and Mo and contributes to improvement of high temperature strength.
However, if it is less than 0.25%, sufficient yield strength and creep rupture strength cannot be obtained, and if it exceeds 0.34%, excessive carbides are formed and the toughness decreases, so 0.25 to 0.34%.
And

【0009】Si:Siは脱酸材として必要な元素であ
るが、造塊法として真空カーボン脱酸法を採用する本発
明のロータ材においては必ずしも必要ではなく、むしろ
真空カーボン脱酸の反応を促進するためには低い方が望
ましく、加えてSiは靱性の低下や脆化を助長するので
0.1%以下とした。
Si: Si is an element necessary as a deoxidizing agent, but it is not always necessary in the rotor material of the present invention which employs the vacuum carbon deoxidizing method as the agglomeration method, and rather the reaction of vacuum carbon deoxidizing is performed. In order to promote it, it is preferable that the content is low, and Si is 0.1% or less because it promotes deterioration of toughness and embrittlement.

【0010】Mn:Mnは焼入れ性を高める元素として
有用であり靱性改善に効果がある。0.7%未満ではそ
の効果は十分ではなく、また1.1%を越えると靱性が
低下するため0.7〜1.1%とする。
Mn: Mn is useful as an element for improving hardenability and is effective in improving toughness. If it is less than 0.7%, the effect is not sufficient, and if it exceeds 1.1%, the toughness decreases, so the content is made 0.7 to 1.1%.

【0011】Ni:Niは焼入れ性の向上に効果があ
り、また靱性向上に強い効果がある。0.5%未満では
その効果は少なく、1%を越えると高温強度、特にクリ
ープ破断強度の低下をもたらすので0.5〜1%とす
る。
Ni: Ni has an effect of improving hardenability and a strong effect of improving toughness. If it is less than 0.5%, its effect is small, and if it exceeds 1%, the high temperature strength, particularly the creep rupture strength is lowered.

【0012】Cr:Crは炭化物を形成し、高温強度の
改善に有効であり、また靱性の向上にも効果がある。1
%未満では十分な強度や靱性が得られず、また1.4%
を越えると靱性やクリープ破断強度の低下をもたらす。
このため、1〜1.4%とする。
Cr: Cr forms a carbide, is effective in improving high temperature strength, and is also effective in improving toughness. 1
%, Sufficient strength and toughness cannot be obtained, and 1.4%
If it exceeds, the toughness and the creep rupture strength are lowered.
Therefore, it is set to 1 to 1.4%.

【0013】Mo:Moは炭化物を形成し、高温のクリ
ープ破断強さを向上させることに効果がある。また、靱
性向上にも効果がある。1%未満では十分な効果は得ら
れず、また1.3%を越えると使用中の脆化をもたらす
ので、1〜1.3%とする。
Mo: Mo forms carbides and is effective in improving creep rupture strength at high temperatures. It is also effective in improving toughness. If it is less than 1%, a sufficient effect cannot be obtained, and if it exceeds 1.3%, it causes embrittlement during use.

【0014】V:Vは炭化物を形成しクリープ破断強度
の向上に強く寄与するが、0.2%未満では十分な効果
は得られず、また0.3%を越えると靱性を低下させる
ので、0.2〜0.3%とする。
V: V forms carbide and strongly contributes to the improvement of creep rupture strength, but if it is less than 0.2%, a sufficient effect cannot be obtained, and if it exceeds 0.3%, toughness is deteriorated. 0.2 to 0.3%.

【0015】P,Sb,Sn,As:これらは焼もどし
脆化を助長する元素であり、可能なかぎり低いことが望
ましい。特に、焼もどし脆化パラメータ値{(10P+
5Sb+4Sn+As)×100}が8以下である場
合、焼もどし脆化は軽徴になる。
P, Sb, Sn, As: These are elements that promote temper embrittlement, and it is desirable that they are as low as possible. In particular, tempering embrittlement parameter value {(10P +
When 5Sb + 4Sn + As) × 100} is 8 or less, temper embrittlement becomes a slight sign.

【0016】[0016]

【実施例】以下に実施例に基づいて本発明を説明する。 (実施例1)試験は50kg真空溶解炉を用いて表1に
示す試験材を溶解し、3S相当の鍛造を施した後、熱処
理を施し各試験に供した。熱処理は油冷もしくは強制空
冷のときの1200φの胴径を有するロータ材の中心部
位及び表層部位に相当する熱サイクルを模擬して行っ
た。焼入れの温度は955℃、また焼もどしの温度は
0.2%耐力が60〜65kgf/mm2 になるように
670〜705℃の範囲で調整した。
EXAMPLES The present invention will be described below based on examples. (Example 1) In the test, the test materials shown in Table 1 were melted using a 50 kg vacuum melting furnace, and after forging corresponding to 3S, heat treatment was performed and each test was performed. The heat treatment was carried out by simulating a heat cycle corresponding to the center portion and the surface portion of the rotor material having a body diameter of 1200 φ when oil-cooled or forced air cooling. The quenching temperature was 955 ° C., and the tempering temperature was adjusted in the range of 670 to 705 ° C. so that the 0.2% proof stress was 60 to 65 kgf / mm 2 .

【0017】表2に中心相当シミュレート熱処理材の機
械試験の結果を示す。本結果から、本発明材は比較材に
比べて優れた靱性を有していることがわかる。すなわ
ち、本発明材の50%FATTは全て60℃未満である
のに対し、比較材は60℃以上と高く、また本発明材の
衝撃値は3.0kgf−m以上であるのに対し比較材は
2.6kgf−m以下と低い。この本発明材の優れた靱
性は、Siの低減による効果と冷却速度の速い油冷の効
果とさらには成分範囲を厳選することによって初めて達
成されたものである。なお、本実施例では少量溶解材で
あるためSiを低減することだけで真空カーボン脱酸を
模擬したが後述する実施例2では真空カーボン脱酸の効
果を実機相当材にて確認した。
Table 2 shows the result of the mechanical test of the simulated heat treated material corresponding to the center. From this result, it is understood that the material of the present invention has excellent toughness as compared with the comparative material. That is, the 50% FATT of the material of the present invention is less than 60 ° C., whereas the comparative material has a high value of 60 ° C. or higher, and the impact value of the material of the present invention is 3.0 kgf-m or more, whereas the comparative material Is as low as 2.6 kgf-m or less. The excellent toughness of the material of the present invention was achieved for the first time by the effect of reducing Si, the effect of oil cooling with a high cooling rate, and further by carefully selecting the component range. In this example, since a small amount of the material was dissolved, vacuum carbon deoxidation was simulated only by reducing Si. However, in Example 2 described later, the effect of vacuum carbon deoxidation was confirmed with a material equivalent to an actual machine.

【0018】また、図1に表層相シミュレート材のクリ
ープ破断試験結果を示す。図1において、横軸はラルソ
ン・ミラーパラメーターであって、温度と破断時間で決
まる値であり、縦軸はクリープ破断試験を行った時の破
断応力を示す。本結果から本発明ロータ材は、比較材や
従来から用いられている高圧ロータ材と同等の優れたク
リープ破断強度を有することがわかる。
FIG. 1 shows the results of creep rupture test of the surface phase simulated material. In FIG. 1, the abscissa is the Larson-Miller parameter, which is a value determined by the temperature and the rupture time, and the ordinate is the rupture stress when a creep rupture test is performed. From these results, it is understood that the rotor material of the present invention has excellent creep rupture strength equivalent to that of the comparative material and the conventionally used high-pressure rotor material.

【0019】また、表3に450℃〜500℃で行った
脆化試験の結果を示す。本表から明らかなように本発明
材は優れた焼もどし脆化特性を示す。
Table 3 shows the results of the embrittlement test conducted at 450 ° C to 500 ° C. As is clear from this table, the material of the present invention exhibits excellent temper embrittlement characteristics.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0020】(実施例2)上述に示す基礎試験結果に基
づいて実機ロータ相当のモデルロータ(最大胴径120
0φ)を試作して確認を行った。本モデルロータは、造
塊法に真空カーボン脱酸法を適用し、また焼入れ処理に
は油冷を採用しており、従来の高圧ロータの場合の造塊
時のSiキルド脱酸や焼入れ時の強制空冷とは異なる方
法で製造した。
(Embodiment 2) A model rotor (maximum body diameter 120
0φ) was prototyped and confirmed. This model rotor uses the vacuum carbon deoxidation method for the agglomeration method and employs oil cooling for the quenching treatment. It was manufactured by a method different from forced air cooling.

【0021】表4に本発明ロータ材の実機相当モデルロ
ータ材の化学成分を、従来からの高圧ロータ材の実績例
と比較して示す。また、表5に同ロータの機械的性質を
やはり従来からの高圧ロータの実績例とともに示す。本
結果から明らかなように、本発明ロータ材の靱性は従来
からの高圧ロータに比べて飛躍的に向上していることが
わかる。
Table 4 shows the chemical composition of the model rotor material corresponding to the actual machine of the rotor material of the present invention in comparison with the actual example of the conventional high-pressure rotor material. In addition, Table 5 shows the mechanical properties of the rotor together with actual examples of conventional high-pressure rotors. As is clear from this result, the toughness of the rotor material of the present invention is dramatically improved as compared with the conventional high-pressure rotor.

【表4】 [Table 4]

【表5】 [Table 5]

【0022】[0022]

【発明の効果】本発明の高圧ロータ材は、従来からの優
れた高温強度、特にクリープ破断強度を損なうことな
く、良好な靱性を具備したものであることから、タービ
ンの起動時間を短縮することができ、電力需要の変化に
敏感に対応できる火力発電プラントの運用が可能となっ
た。
The high-pressure rotor material of the present invention has good toughness without impairing the conventional excellent high-temperature strength, in particular, creep rupture strength. Therefore, the start-up time of the turbine can be shortened. It has become possible to operate a thermal power plant that can respond to changes in power demand.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のロータ材のクリープ破断強さを示す
図。
FIG. 1 is a diagram showing creep rupture strength of a rotor material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高野 勇作 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 竹田 頼正 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 近藤 武志 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 北川 幾次郎 福岡県北九州市戸畑区大字中原先ノ浜46番 59 日本鋳鍛鋼株式会社内 (72)発明者 加来 勝男 福岡県北九州市戸畑区大字中原先ノ浜46番 59 日本鋳鍛鋼株式会社内 (72)発明者 古賀 隆 福岡県北九州市戸畑区大字中原先ノ浜46番 59 日本鋳鍛鋼株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yusaku Takano 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanhishi Heavy Industries Ltd. Nagasaki Research Institute (72) Inventor Yorima Takeda 5-chome, Fukahori-cho, Nagasaki-shi, Nagasaki Prefecture 717-1 Sanbishi Heavy Industries Ltd. Nagasaki Research Institute (72) Inventor Takeshi Kondo 1-1, Atsunouracho, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard (72) Inventor Kitajiro Kitagawa Tobata, Kitakyushu City, Fukuoka Prefecture Ward Ward 46-59 Nakahara Masakinohama 59 Japan Cast & Forged Steel Co., Ltd. (72) Inventor Katsuo Kaku Tobata-ku, Kitakyushu-shi, Fukuoka Kamo Nakahara Masakinoha 46 59 Japan Cast & Forged Steel Co., Ltd. (72) Inventor Takashi Koga Fukuoka, Kitakyushu, Tobata-ku, Oita 46-59, Nakahara Sakinohama Nippon Cast and Forged Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、炭素:0.25〜0.34
%、シリコン:0.1%以下、マンガン:0.7〜1.
1%、ニッケル:0.5〜1%、クロム:1〜1.4
%、モリブデン:1〜1.3%、バナジウム:0.2〜
0.3%及び不可避的不純物及び鉄からなり、造塊に真
空カーボン脱酸法を用い、さらに焼入れの際に油焼入れ
を適用して製造してなることを特徴とする蒸気タービン
ロータ材。
1. A weight ratio of carbon: 0.25 to 0.34.
%, Silicon: 0.1% or less, manganese: 0.7 to 1.
1%, nickel: 0.5 to 1%, chromium: 1 to 1.4
%, Molybdenum: 1 to 1.3%, vanadium: 0.2 to
A steam turbine rotor material comprising 0.3% and inevitable impurities and iron, which is manufactured by using a vacuum carbon deoxidizing method for ingot formation and further applying oil quenching during quenching.
【請求項2】 重量比で、炭素:0.25〜0.34
%、シリコン:0.1%以下、マンガン:0.7〜1.
1%、ニッケル:0.5〜1%、クロム:1〜1.4
%、モリブデン:1〜1.3%、バナジウム:0.2〜
0.3%であり、{(10×リン量+5×アンチモン量
+4×スズ量+ヒソ量)}×100 で表される脆化パ
ラメータ値が8以下で残部が鉄からなり、造塊に真空カ
ーボン脱酸法を用い、さらに焼入れの際に油焼入れを適
用して製造してなることを特長とする蒸気タービン材。
2. A weight ratio of carbon: 0.25 to 0.34.
%, Silicon: 0.1% or less, manganese: 0.7 to 1.
1%, nickel: 0.5 to 1%, chromium: 1 to 1.4
%, Molybdenum: 1 to 1.3%, vanadium: 0.2 to
0.3%, and the embrittlement parameter value represented by {(10 × phosphorus amount + 5 × antimony amount + 4 × tin amount + definition amount)} × 100 is 8 or less, and the balance is iron, and vacuum is applied to the ingot formation. A steam turbine material characterized by being manufactured by using a carbon deoxidizing method and applying oil quenching during quenching.
JP3761592A 1992-02-25 1992-02-25 Steam turbine rotor material Pending JPH05230599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3761592A JPH05230599A (en) 1992-02-25 1992-02-25 Steam turbine rotor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3761592A JPH05230599A (en) 1992-02-25 1992-02-25 Steam turbine rotor material

Publications (1)

Publication Number Publication Date
JPH05230599A true JPH05230599A (en) 1993-09-07

Family

ID=12502529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3761592A Pending JPH05230599A (en) 1992-02-25 1992-02-25 Steam turbine rotor material

Country Status (1)

Country Link
JP (1) JPH05230599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093668A (en) * 2006-10-06 2008-04-24 Hitachi Ltd Welded rotor of steam turbine
CN100445412C (en) * 2004-07-06 2008-12-24 株式会社日立制作所 Heat-proof steel and shaft using same for steam turbine,steam turbine and steam turbine generator
EP2302089A1 (en) * 2009-09-24 2011-03-30 General Electric Company Steam turbine rotor and alloy therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445412C (en) * 2004-07-06 2008-12-24 株式会社日立制作所 Heat-proof steel and shaft using same for steam turbine,steam turbine and steam turbine generator
JP2008093668A (en) * 2006-10-06 2008-04-24 Hitachi Ltd Welded rotor of steam turbine
EP2302089A1 (en) * 2009-09-24 2011-03-30 General Electric Company Steam turbine rotor and alloy therefor
US8523519B2 (en) 2009-09-24 2013-09-03 General Energy Company Steam turbine rotor and alloy therefor

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JPH08176671A (en) Production of high-and low-pressure integral type turbine rotor
CA2260498C (en) Material for gas turbine disk
JP3492969B2 (en) Rotor shaft for steam turbine
JPH05230599A (en) Steam turbine rotor material
JP3422658B2 (en) Heat resistant steel
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JP3468975B2 (en) Low alloy heat resistant steel and steam turbine rotor
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH0234724A (en) Manufacture of turbine rotor
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JPH0219425A (en) Manufacture of turbine rotor
JPH0931600A (en) Steam turbine rotor material for high temperature use
JPH08337813A (en) Production of high chromium ferritic steel excellent in creep characteristic of welded joint
JP3245097B2 (en) High temperature steam turbine rotor material
JPH1036944A (en) Martensitic heat resistant steel
JPH0762477A (en) High temperature bolt stock
JPH02145749A (en) Turbine rotor
JPH01230723A (en) Manufacture of turbine rotor
JP3576328B2 (en) Low alloy heat resistant steel and steam turbine rotor
JPH09194987A (en) Low alloy heat resistant steel and steam turbine rotor
JPH05345922A (en) Production of high-pressure part and low-pressure part integrated type turbine rotor
JP3164140B2 (en) Martensitic stainless steel for machine parts
JP3581458B2 (en) High temperature steam turbine rotor material
JPH05195068A (en) Manufacture of high-and low-pressure integrated turbine rotor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011002