JPH05230078A - New reactive silicone compound - Google Patents

New reactive silicone compound

Info

Publication number
JPH05230078A
JPH05230078A JP7213792A JP7213792A JPH05230078A JP H05230078 A JPH05230078 A JP H05230078A JP 7213792 A JP7213792 A JP 7213792A JP 7213792 A JP7213792 A JP 7213792A JP H05230078 A JPH05230078 A JP H05230078A
Authority
JP
Japan
Prior art keywords
formula
silicone compound
acid
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7213792A
Other languages
Japanese (ja)
Inventor
Toshio Tagami
敏雄 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP7213792A priority Critical patent/JPH05230078A/en
Publication of JPH05230078A publication Critical patent/JPH05230078A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a new reactive silicone compound combinable with a different kind of material, having thermal stability. CONSTITUTION:A terminal carboxyl group-containing reactive silicone compound of formula I (Z is direct bond, 1-20C bifunctional hydrocarbon or bifunctional aromatic group; X is 1 or 2; (n) is 1-200) such as a compound of formula II. The compound of formula I, for example, is obtained by reacting 1mol equivalent of a silicone compound of formula III having a butadiene monomer unit with 2mol equivalent of an aromatic carboxylic acid of formula VI having a double bond in the end or an aromatic carboxylic acid (e.g. acrylic acid or o-styrenecarboxylic acid) having a double bond in the end in the presence of preferably a catalyst of chloroplatinic acid in a solvent such as THF.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、末端カルボキシル基含
有反応性シリコーン化合物に関する。
FIELD OF THE INVENTION The present invention relates to a reactive silicone compound containing a terminal carboxyl group.

【0002】[0002]

【従来の技術】ポリシリコーンは、シリコンゴム、シリ
コーン油、表面改質剤、シーリング剤等、様々な形態で
使用されている有用な素材の一つである。ポリブタジエ
ンもまた、ブタジエンゴム(固形、液状ゴム等)として
タイヤ、一般用素材として様々な分野で広く使用されて
いる材料の一つである。熱的な性質を見ると、ポリシリ
コーンは、比較的高い熱分解開始温度を有し、−100
〜250℃の温度域で使用可能であるが、一旦熱分解を
始めてしまうと、重量減少速度(すなわち、熱分解の速
さ)が速い傾向があり、また、ポリブタジエンは、架橋
させないと高温度域での使用は不適当であり、一般に−
70〜100℃の温度域で使用されている。両者の性質
を合せ持つ材料は、直鎖オリゴブタジエン単位を有する
シリコーンとして知られており、公知の方法で合成でき
るが(Polym.Prep.Jap.vo140,No.6,1836) 、異種材料と
組合わせる手段として、ポリマーブレンドの手法しか採
用できなかった。
2. Description of the Related Art Polysilicone is one of useful materials used in various forms such as silicone rubber, silicone oil, surface modifiers and sealing agents. Polybutadiene is also one of the materials widely used in various fields as tires and general-purpose materials as butadiene rubber (solid rubber, liquid rubber, etc.). In terms of thermal properties, polysilicone has a relatively high thermal decomposition onset temperature,
Although it can be used in a temperature range of up to 250 ° C, once pyrolysis begins, the rate of weight loss (that is, the rate of pyrolysis) tends to be fast, and polybutadiene cannot be crosslinked in a high temperature range. Is unsuitable for use in
It is used in the temperature range of 70 to 100 ° C. A material having both properties is known as a silicone having a linear oligobutadiene unit and can be synthesized by a known method (Polym.Prep.Jap.vo140, No.6,1836), but it is combined with a different material. Only the method of polymer blending can be adopted as a means for matching.

【0003】[0003]

【発明が解決しようとする手段】したがって、本発明
は、従来の技術における上記の問題点を解決する事を目
的とするものであって、その目的は、異種材料と組合わ
せることが可能で、熱的に安定な新規な反応性カルボキ
シル基含有シリコーン化合物を提供することにある。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to solve the above-mentioned problems in the prior art, and the objective is to be able to combine different kinds of materials, It is intended to provide a novel thermally stable silicone compound containing a reactive carboxyl group.

【0004】[0004]

【課題を解決するための手段】本発明者等は、従来の技
術における上記の問題点を解決するために研究を進めた
結果、公知の化合物であるブタジエン単量体単位を有す
るシリコーンの末端部分のSiを水素原子を有するヒド
ロシランとし、これを末端に二重結合を含有する脂肪族
カルボン酸または末端二重結合含有基を有する芳香族カ
ルボン酸と、白金触媒存在下、公知の方法で反応させる
ことにより、反応性官能基であるカルボキシル基を有す
る直鎖オリゴブタジエン単位を有するシリコーンが容易
に合成できることを見出だし、本発明を完成するに至っ
た。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted research to solve the above-mentioned problems in the prior art, and as a result, the end portion of silicone having a butadiene monomer unit, which is a known compound, has been investigated. Of Si is used as a hydrosilane having a hydrogen atom, and this is reacted with an aliphatic carboxylic acid having a double bond at the terminal or an aromatic carboxylic acid having a terminal double bond-containing group by a known method in the presence of a platinum catalyst. As a result, it was found that a silicone having a linear oligobutadiene unit having a carboxyl group which is a reactive functional group can be easily synthesized, and the present invention has been completed.

【0005】すなわち、本発明は、下記一般式(I)で
示される末端カルボキシル基含有反応性シリコーン化合
物にある。
That is, the present invention resides in a terminal carboxyl group-containing reactive silicone compound represented by the following general formula (I).

【化2】 (式中、Zは、直接結合、炭素数1〜20の直鎖状また
は分岐鎖状の二価の炭化水素基または二価の芳香族基を
表わし、xは1または2の整数を表わし、nは1〜20
0の整数を表わす。)
[Chemical 2] (In the formula, Z represents a direct bond, a linear or branched divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic group, and x represents an integer of 1 or 2, n is 1 to 20
Represents an integer of 0. )

【0006】以下、本発明を更に詳細に説明する。上記
一般式(I)で表される末端カルボキシル基含有反応性
シリコーン化合物は、文献未記載の新規な化合物であっ
て、下記一般式(II)で示されるブタジエン単量体単位
を含むシリコーン化合物1モル当量と、下記一般式(II
I )で示される末端に二重結合を含有する脂肪族カルボ
ン酸または末端二重結合含有基を有する芳香族カルボン
酸2モル当量とを、反応溶剤中で、白金系触媒の存在下
に常温で反応させることにより得ることができる。
The present invention will be described in more detail below. The terminal carboxyl group-containing reactive silicone compound represented by the general formula (I) is a novel compound which has not been described in any literature, and is a silicone compound 1 containing a butadiene monomer unit represented by the following general formula (II). The molar equivalent and the following general formula (II
I) an aliphatic carboxylic acid having a double bond at the terminal or 2 molar equivalents of an aromatic carboxylic acid having a terminal double bond-containing group at a room temperature in the presence of a platinum catalyst in a reaction solvent. It can be obtained by reacting.

【化3】 (式中、Z、n及びxは、上記したと同意義を有す
る。)
[Chemical 3] (In the formula, Z, n and x have the same meanings as described above.)

【0007】一般式(III )で示される末端に二重結合
を含有する脂肪族カルボン酸または末端二重結合含有基
を有する芳香族カルボン酸は、特に限定されるわけでは
ないが、具体的には、アクリル酸、ビニル酢酸、4−ペ
ンテン酸、10−ウンデセン酸、17−オクタデセン酸
等の直鎖状の末端に二重結合を含有する脂肪族カルボン
酸、o−スチレンカルボン酸、m−スチレンカルボン
酸、p−スチレンカルボン酸等の芳香環を有し末端二重
結合含有基を有する芳香族カルボン酸を例示することが
できる。
The aliphatic carboxylic acid having a double bond at the terminal or the aromatic carboxylic acid having a terminal double bond-containing group represented by the general formula (III) is not particularly limited, Is an aliphatic carboxylic acid containing a double bond at the linear end such as acrylic acid, vinyl acetic acid, 4-pentenoic acid, 10-undecenoic acid, 17-octadecenoic acid, o-styrenecarboxylic acid, m-styrene. Examples thereof include aromatic carboxylic acids having an aromatic ring and a terminal double bond-containing group such as carboxylic acid and p-styrenecarboxylic acid.

【0008】白金系触媒としては、塩化白金酸(H2
tCl6 )が好適に使用される。また、反応溶剤は、反
応中に反応成分と反応せず、かつ、反応生成物を十分に
溶解するものでなければならない。具体的には、例え
ば、ジエチルエーテル、テトラヒドロフラン、ジグライ
ム、1,4−ジオキサン、石油エーテル等をあげること
ができる。反応生成物は、常法により精製することがで
きる。
As the platinum-based catalyst, chloroplatinic acid (H 2 P
tCl 6 ) is preferably used. In addition, the reaction solvent must be one that does not react with the reaction components during the reaction and that sufficiently dissolves the reaction product. Specific examples include diethyl ether, tetrahydrofuran, diglyme, 1,4-dioxane, petroleum ether and the like. The reaction product can be purified by a conventional method.

【0009】なお、上記一般式(II)で示されるブタジ
エン単量体単位を含むシリコーン化合物は、下記に示さ
れる公知の反応経路によって合成することができる。
The silicone compound containing the butadiene monomer unit represented by the general formula (II) can be synthesized by a known reaction route shown below.

【化4】 (式中、n及びxは、上記したと同意義を有する。)[Chemical 4] (In the formula, n and x have the same meaning as described above.)

【0010】上記反応経路中に使用される触媒および還
元剤類は、次の通りである。アルカリ金属としては、金
属Li、金属Na、金属Kaがあげられる。クロル化剤
としては、塩化アセチル−塩化アルミニウム系触媒が好
適に用いられる。還元剤としては、LiAlH4 が好適
に使用される。Pt系触媒としては、ジクロロビス(ベ
ンゾニトリル)パラジウム(II)[PtCl2 (C6
5 CN)2 (II)]、テトラキス(トリフェニルホスフ
ィン)パラジウム(0)[Pt(PPh3 4(0)]
が使用できる。Ni系触媒としては、ジクロロビス(ト
リエチルホスフィン)ニッケル(II)[NiCl2 (P
Et3 2 (II)]が好適に使用される。
The catalysts and reducing agents used in the above reaction route are as follows. Examples of the alkali metal include metal Li, metal Na, and metal Ka. An acetyl chloride-aluminum chloride catalyst is preferably used as the chlorinating agent. LiAlH 4 is preferably used as the reducing agent. As the Pt-based catalyst, dichlorobis (benzonitrile) palladium (II) [PtCl 2 (C 6 H
5 CN) 2 (II)], tetrakis (triphenylphosphine) palladium (0) [Pt (PPh 3 ) 4 (0)]
Can be used. As the Ni-based catalyst, dichlorobis (triethylphosphine) nickel (II) [NiCl 2 (P
Et 3 ) 2 (II)] is preferably used.

【0011】上記反応経路においては、所望により反応
溶剤が使用されるが、反応溶剤は、反応中に反応成分と
反応せず、かつ、反応生成物を十分に溶解するものでな
ければならない。具体的には、例えば、ジエチルエーテ
ル、テトラヒドロフラン、ジグライム、1,4−ジオキ
サン、石油エーテル等をあげることができる。なお、反
応に際しては、充分に脱水し、精製する必要がある。
In the above reaction route, a reaction solvent is optionally used, but the reaction solvent must be one that does not react with the reaction components during the reaction and that sufficiently dissolves the reaction product. Specific examples include diethyl ether, tetrahydrofuran, diglyme, 1,4-dioxane, petroleum ether and the like. In the reaction, it is necessary to thoroughly dehydrate and purify.

【0012】[0012]

【実施例】以下に実施例をあげて本発明を詳細に述べる
が、本発明はこれら実施例によって限定されるものでは
ない。 実施例1 1)ヘキサメチルジシランの合成 乾燥窒素導入管とジムロート冷却管を装備した500m
l四つ口丸底フラスコ中に、粒状金属リチウム1.1モ
ル(7.63g)と乾燥テトラヒドロフラン200ml
を入れ、0℃に冷却した後、トリメチルクロロシラン1
モル(99.62g)を含む乾燥テトラヒドロフラン溶
液250mlを発熱しないように、2時間かけて滴下
し、そのまま1時間反応させた。ついで55℃まで昇温
させ、さらに60時間反応を続けた。その後、グラスフ
ィルターで生成した塩化リチウムと過剰の金属リチウム
を濾別し、テトラヒドロフランで充分に洗浄した。濾液
を常圧下で留去し、テトラヒドロフランと未反応トリメ
チルクロロシランを除去し、ヘキサメチルジシランを得
た。収率は、74%であった。
The present invention is described in detail below with reference to examples, but the present invention is not limited to these examples. Example 1 1) Synthesis of hexamethyldisilane 500 m equipped with a dry nitrogen introducing tube and a Dimroth cooling tube
In a four-neck round bottom flask, 1.1 mol (7.63 g) of granular metal lithium and 200 ml of dry tetrahydrofuran.
, And after cooling to 0 ° C, trimethylchlorosilane 1
250 ml of a dry tetrahydrofuran solution containing mol (99.62 g) was added dropwise over 2 hours so as not to generate heat, and reacted for 1 hour as it was. Then, the temperature was raised to 55 ° C., and the reaction was continued for further 60 hours. Then, the lithium chloride produced by the glass filter and the excess metallic lithium were separated by filtration and washed thoroughly with tetrahydrofuran. The filtrate was distilled off under normal pressure to remove tetrahydrofuran and unreacted trimethylchlorosilane to obtain hexamethyldisilane. The yield was 74%.

【0013】2)ジクロロテトラメチルジシランの合成 300ml三口丸底フラスコ中に、無水塩化アルミニウ
ム98.66g(740ミリモル)を入れ、塩化アセチ
ル58.12g(740ミリモル)を発熱しないよう徐
々に加え、反応器を氷浴上に移し、1)で得られたヘキ
サメチルジシラン54.1g(369ミリモル)を1時
間で滴下した。そのまま30分間攪拌し、50℃まで昇
温させた後、16時間反応させた。反応後、窒素気流中
で濾過し、固形物を乾燥ヘキサンで洗浄し、濾液を集
め、蒸留して、目的物であるジクロロテトラメチルジシ
ランを収率85%で得た。1 H−NMR(ppm):0.4(Si−Me:溶媒C
2 2 Cl4 )、13C−NMR(ppm):18.0
(Si−Me) IR(cm-1):2960,2900,1460,14
00(Si−Me),1290,760,630(Si
−C),470(−Cl)
2) Synthesis of dichlorotetramethyldisilane In a 300 ml three-necked round bottom flask, 98.66 g (740 mmol) of anhydrous aluminum chloride was placed, and 58.12 g (740 mmol) of acetyl chloride was gradually added thereto so as not to generate heat, and reacted. The vessel was transferred to an ice bath, and 54.1 g (369 mmol) of hexamethyldisilane obtained in 1) was added dropwise over 1 hour. The mixture was stirred for 30 minutes as it was, heated to 50 ° C., and reacted for 16 hours. After the reaction, the mixture was filtered in a nitrogen stream, the solid matter was washed with dry hexane, the filtrates were collected and distilled to obtain the desired product, dichlorotetramethyldisilane, in a yield of 85%. 1 H-NMR (ppm): 0.4 (Si-Me: solvent C
2 H 2 Cl 4 ), 13 C-NMR (ppm): 18.0
(Si-Me) IR (cm -1 ): 2960, 2900, 1460, 14
00 (Si-Me), 1290, 760, 630 (Si
-C), 470 (-Cl)

【0014】3)α,ω−ビス(ジメチルクロロシリ
ル)−2−ブテン類の合成 (a)x=1の合成 上記2)で得られたジクロロテトラメチルジシラン1
8.73g(100ミリモル)と乾燥テトラヒドロフラ
ン30mlとテトラキス(トリフェニルホスフィン)パ
ラジウム(0)[Pd(PPh3 4 (0)]0.53
8g(1ミリモル)を、乾燥窒素下で、内容量100m
lのガラスオートクレーブ中に入れた後、オートクレー
ブを液体窒素中に入れて冷却し、真空下で脱気を3回繰
り返した。室温まで昇温した後、ブタジエンガスを2気
圧まで圧入し、攪拌反応させた。反応が進行するに従
い、圧力ゲージが下がり、1気圧になった時点で、更に
ブタジエンガスをチャージし、圧力ゲージの低下が無く
なるまで繰り返した。反応終了後、ブタジエンガスを放
出し、内容物をセライトで濾過した後、セライトを乾燥
テトラヒドロフランで充分に洗浄し、濾液を濃縮し、粗
生成物を得た。粗生成物を減圧下に蒸留し、83−84
℃/40mmHgの留分を収率48%(シス体のみ)で
得た。 分析結果
3) Synthesis of α, ω-bis (dimethylchlorosilyl) -2-butenes (a) Synthesis of x = 1 Dichlorotetramethyldisilane 1 obtained in 2) above
8.73 g (100 mmol) and dry tetrahydrofuran 30ml and tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 (0)] 0.53
8 g (1 mmol) of the content of 100 m under dry nitrogen
After being placed in a glass autoclave (1), the autoclave was placed in liquid nitrogen for cooling, and deaeration was repeated 3 times under vacuum. After the temperature was raised to room temperature, butadiene gas was pressured up to 2 atm and reacted with stirring. As the reaction progressed, the pressure gauge decreased, and when the pressure became 1 atm, butadiene gas was further charged, and the operation was repeated until the pressure gauge did not decrease. After the reaction was completed, butadiene gas was released, the content was filtered through Celite, the Celite was thoroughly washed with dry tetrahydrofuran, and the filtrate was concentrated to obtain a crude product. The crude product was distilled under reduced pressure to give 83-84
A fraction of ° C / 40 mmHg was obtained with a yield of 48% (cis form only). result of analysis

【化5】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
(s) 12H(Si−Me:α)、1.30(d)
4H(Si−CH2 −CH=:β)、5.3(q) 2
H(C=C:γ)13 C−NMR(溶媒 CDCl3 )(ppm):18.
1(Si−Me:α)、34.3(−Si−2 −C
H=:β)、123.1(=H−CH2 :γ) IR(cm-1):2965,2910,2880(−C
3 、−CH2 −、=CH−の伸縮),1461,14
09,1293,765,637(Si−Cの変角),
1640(−CH=CH−面内変角),962,694
(−CH=CH−面外変角),472(−Cl)
[Chemical 5] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
(S) 12H (Si- Me : α), 1.30 (d)
4H (Si- CH 2 -CH =: β), 5.3 (q) 2
H (C H = C H : γ) 13 C-NMR (solvent CDCl 3 ) (ppm): 18.
1 (Si- Me: α), 34.3 (-Si- C H 2 -C
H =: β), 123.1 (= C H-CH 2 : γ) IR (cm −1 ): 2965, 2910, 2880 (-C
H 3, -CH 2 -, = CH- telescopic), 1461,14
09,1293,765,637 (Si-C bending angle),
1640 (-CH = CH-in-plane bending angle), 962, 694
(-CH = CH-out-of-plane bending angle), 472 (-Cl)

【0015】(b)x=2の場合の合成 上記x=1の場合におけるパラジウム系触媒のテトラキ
ス(トリフェニルホスフィン)パラジウム(0)[Pd
(PPh3 4 (0)]0.538g(1ミリモル)
を、ジクロロビス(ベンゾニトリル)パラジウム(II)
[PdCl2 (PhCN)2 (II)]0.383g(1
ミリモル)に代えた以外は、同様の操作を行い、99−
100℃/0.38mmHgの留分を収率57%で得
た。 分析結果
(B) Synthesis in the case of x = 2 Tetrakis (triphenylphosphine) palladium (0) [Pd of the palladium catalyst in the case of x = 1 above
(PPh 3 ) 4 (0)] 0.538 g (1 mmol)
Dichlorobis (benzonitrile) palladium (II)
[PdCl 2 (PhCN) 2 (II)] 0.383 g (1
Except that it was replaced with
A fraction of 100 ° C./0.38 mmHg was obtained with a yield of 57%. result of analysis

【化6】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
(s) 12H(Si−Me:α)、5.3(q) 2
H(C=CH:γ)、5.0(q) 2H(C=C
H:γ′)、1.30(d) 4H(Si−CH2 −C
H=:β)、1.60(q) 4H(Si−CH2 −C
H=:β′)(cis/trans=15/8)13 C−NMR(溶媒 CDCl3 )(ppm):18.
3(Si−Me:α)、34.2(−Si−2 −C
H=:β)、37.2(−CH2 2 −CH=:
β′)、123.1(H=CH2 :γ)、128.1
H=CH2 :γ′) IR(cm-1):2962,2905,2879(−C
3 、−CH2 −、=CH−の伸縮),1464,14
05,1297,763,636(Si−Cの変角),
1642(−CH=CH−面内変角),965,692
(−CH=CH−面外変角),468(−Cl)
[Chemical 6] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
(S) 12H (Si- Me : α), 5.3 (q) 2
H (C H = CH: γ ), 5.0 (q) 2H (C = C
H: γ ′), 1.30 (d) 4H (Si— CH 2 —C
H =: β), 1.60 (q) 4H (Si- CH 2 -C
H =: β ′) (cis / trans = 15/8) 13 C-NMR (solvent CDCl 3 ) (ppm): 18.
3 (Si- Me: α), 34.2 (-Si- C H 2 -C
H =: β), 37.2 ( -CH 2 - C H 2 -CH =:
β '), 123.1 (C H = CH 2: γ), 128.1
(C H = CH 2: γ ') IR (cm -1): 2962,2905,2879 (-C
H 3, -CH 2 -, = CH- telescopic), 1464,14
05, 1297, 763, 636 (Si-C bending angle),
1642 (-CH = CH-in-plane bending angle), 965,692
(-CH = CH-out-of-plane bending angle), 468 (-Cl)

【0016】4)還元体の合成 (a)x=1の場合 上記3)で得られたα,ω−ビス(ジメチルクロロシリ
ル)−2−ブテン2.50g(10.3ミリモル)と乾
燥テトラヒドロフラン40mlを、乾燥窒素ラインとジ
ムロウト還流冷却器と30ml並行管付き滴下ロウトを
装備した100ml三口フラスコに入れ、−10℃に調
製したアイスバスに浸し、滴下ロウトより、リチウムア
ルミニウムハイドライド(LiAlH4 )0.39g
(1ミリモル)のテトラヒドロフラン溶液40mlを発
熱しないよう40分間で滴下し、−10℃にて1時間反
応させた。その後、室温まで昇温し、そのまま24時間
反応を続けた。反応後、過剰のリチウムアルミニウムハ
イドライドを塩化アンモニウムで中和処理した後、固形
物と溶液を乾燥窒素下で濾別し、濃縮後、減圧蒸留によ
り83−84℃/40mmHgの留分を収率70%で得
た。 分析結果
4) Synthesis of reductant (a) In the case of x = 1 2.50 g (10.3 mmol) of α, ω-bis (dimethylchlorosilyl) -2-butene obtained in 3) above and dry tetrahydrofuran 40 ml was placed in a 100 ml three-necked flask equipped with a dry nitrogen line, a Dimroth reflux condenser, and a dropping funnel with a parallel tube of 30 ml, immersed in an ice bath adjusted to -10 ° C, and lithium aluminum hydride (LiAlH 4 ) 0 was added from the dropping funnel. .39 g
40 ml of a tetrahydrofuran solution (1 mmol) was added dropwise for 40 minutes so as not to generate heat and reacted at -10 ° C for 1 hour. Then, the temperature was raised to room temperature and the reaction was continued for 24 hours. After the reaction, the excess lithium aluminum hydride was neutralized with ammonium chloride, the solid matter and the solution were filtered off under dry nitrogen, concentrated and then distilled under reduced pressure to obtain a fraction of 83-84 ° C./40 mmHg in a yield of 70. Earned in%. result of analysis

【化7】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
(s) 12H(Si−Me:α)、0.20(s)
2H(Si−:δ)、1.30(d) 4H(Si−
CH2 −CH=:β)、5.3(q) 2H(C
:γ)13 C−NMR(溶媒 CDCl3 )(ppm):18.
1(Si−Me:α)、34.3(−Si−2 −C
H=:β)、123.1(=H−CH2 :γ)、12
8.1(H=CH2 :γ′) IR(cm-1):2965,2910,2880(−C
3 、−CH2 −、=CH−の伸縮),1461,14
09,1293,765,637(Si−Cの変角),
1640(−CH=CH−面内変角),962,694
(−CH=CH−面外変角)
[Chemical 7] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
(S) 12H (Si- Me : α), 0.20 (s)
2H (Si- H :?), 1.30 (d) 4H (Si-
CH 2 -CH =: β), 5.3 (q) 2H (C H = C
H : γ) 13 C-NMR (solvent CDCl 3 ) (ppm): 18.
1 (Si- Me: α), 34.3 (-Si- C H 2 -C
H =: β), 123.1 (= C H-CH 2 : γ), 12
8.1 (C H = CH 2: γ ') IR (cm -1): 2965,2910,2880 (-C
H 3, -CH 2 -, = CH- telescopic), 1461,14
09,1293,765,637 (Si-C bending angle),
1640 (-CH = CH-in-plane bending angle), 962, 694
(-CH = CH-out-of-plane bending angle)

【0017】(b)x=2の場合 上述の合成方法において、α,ω−ビス(ジクロロシリ
ル)−2−ブテン2.50g(10.3ミリモル)を
α,ω−ビス(ジメチルクロロシリル)−2,6−オク
タジエン2.95g(10ミリモル)に代えた以外は、
同様の反応処理を行い、89−90℃/0.45mmH
gの留分を収率72%で得た。 分析結果
(B) When x = 2 In the above synthesis method, 2.50 g (10.3 mmol) of α, ω-bis (dichlorosilyl) -2-butene was added to α, ω-bis (dimethylchlorosilyl). Except that 2.95 g (10 mmol) of -2,6-octadiene was used.
Perform the same reaction treatment, 89-90 ℃ / 0.45mmH
A fraction of g was obtained with a yield of 72%. result of analysis

【化8】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
1(s) 12H(Si−Me:α)、5.25(q)
2H(C=CH:γ)、5.10(q) 2H(C
=CH:γ′)、1.36(d) 4H(Si−CH
2 −CH=:β)、1.64(q) 4H(Si−CH
2 −CH=:β′)(cis/trans=15/
8)、0.20(s) 4H(Si−:δ)13 C−NMR(溶媒 CDCl3 )(ppm):18.
1(Si−Me:α)、34.4(−Si−2 −C
H=:β)、37.0(−CH2 2 −CH=:
β′)、123.7(H=CH2 :γ)、128.0
H=CH2 :γ′) IR(cm-1):2964,2902,2878(−C
3 、−CH2 −、=CH−の伸縮),1461,14
08,1294,765,632(Si−Cの変角),
1640(−CH=CH−面内変角),967,693
(−CH=CH−面外変角),465(−Cl)
[Chemical 8] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
1 (s) 12H (Si- Me : α), 5.25 (q)
2H (C H = CH: γ ), 5.10 (q) 2H (C
H = CH: γ ′), 1.36 (d) 4H (Si— CH
2- CH =: β), 1.64 (q) 4H (Si- CH
2- CH =: β ') (cis / trans = 15 /
8), 0.20 (s) 4H (Si- H: δ) 13 C-NMR ( solvent CDCl 3) (ppm): 18 .
1 (Si- Me: α), 34.4 (-Si- C H 2 -C
H =: β), 37.0 ( -CH 2 - C H 2 -CH =:
β '), 123.7 (C H = CH 2: γ), 128.0
(C H = CH 2: γ ') IR (cm -1): 2964,2902,2878 (-C
H 3, -CH 2 -, = CH- telescopic), 1461,14
08, 1294, 765, 632 (Variation of Si-C),
1640 (-CH = CH-in-plane bending angle), 967, 693
(-CH = CH-out-of-plane bending angle), 465 (-Cl)

【0018】5)シロキサン部分の鎖長延長 J.F.Hyde「J.Am.Chem.Soc.」7
5巻,2166頁(1953)、およびE.N.Tin
yskova他「J.Polym.Sci.」52巻1
59頁(1961)などの記載のオリゴシラノール間で
脱水素を伴う重縮合方法に従い、鎖長を延長し、種々組
成の異なる所定鎖長のオリゴマーを定量的に得た。
5) Chain Length Extension of Siloxane Moiety J. F. Hyde “J. Am. Chem. Soc.” 7
5, p. 2166 (1953), and E. N. Tin
yskova et al., "J. Polym. Sci." 52 vol. 1
According to the polycondensation method involving dehydrogenation between oligosilanols described on page 59 (1961) and the like, the chain length was extended to quantitatively obtain oligomers having a predetermined chain length and different compositions.

【化9】 [Chemical 9]

【0019】6)末端に二重結合を有するカルボン酸と
のカップリング反応 上記5)で得られたシロキサン部分の鎖長が延長された
直鎖ブタジエン単量体単位を含むシリコーンオリゴマー
のうち、x=1、n=8の化合物2.716g(2ミリ
モル)を、ジムロウト型還流冷却器と滴下漏斗と乾燥窒
素導入管を装備した100ml三口丸底フラスコ中に置
き、乾燥テトラヒドロフラン50mlを加え、塩化白金
酸を5ml注射器より2滴加え室温で15分撹拌した。
次いで、ビニル酢酸0.189g(2.2ミリモル)の
テトラヒドロフラン溶液(10ml)を20分間で滴下
し、そのまま24時間室温で撹拌した。反応終了後、
0.1N水酸化ナトリウム水溶液を加え、分液漏斗中に
移し、激しく振り混ぜ、水相とテトロヒドロフラン層を
分離し、過剰のビニル酢酸と塩化白金酸を除去した。テ
トラヒドロフラン層を無水硫酸マグネシウムで乾燥した
後、濃縮し、減圧乾燥して、収率95%でブタジエン単
量体単位を含むカルボキシル基末端シリコーンを得た。
6) Coupling reaction with a carboxylic acid having a double bond at the terminal Among the silicone oligomers containing a linear butadiene monomer unit in which the chain length of the siloxane moiety obtained in 5) above is extended, x 2.16g (2 mmol) of the compound of n = 1 and n = 8 was placed in a 100 ml three-necked round bottom flask equipped with a Dimroth type reflux condenser, a dropping funnel and a dry nitrogen introducing tube, and 50 ml of dry tetrahydrofuran was added thereto, and platinum chloride was added thereto. Two drops of acid were added from a 5 ml syringe and stirred at room temperature for 15 minutes.
Then, a tetrahydrofuran solution (10 ml) of 0.189 g (2.2 mmol) of vinyl acetic acid was added dropwise over 20 minutes, and the mixture was stirred for 24 hours at room temperature. After the reaction,
A 0.1N aqueous sodium hydroxide solution was added, and the mixture was transferred to a separating funnel and shaken vigorously to separate the aqueous phase and the tetrohydrofuran layer, and excess vinyl acetic acid and chloroplatinic acid were removed. The tetrahydrofuran layer was dried over anhydrous magnesium sulfate, concentrated and dried under reduced pressure to obtain a carboxyl group-terminated silicone containing a butadiene monomer unit with a yield of 95%.

【化10】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
1−0.45 108H(Si−Me:α,α′)、
5.20(q) 2H(C=CH:γ)、1.34
(d) 4H(Si−CH2 −CH=:β)、0.90
(t) 4H(δ)、1.62(m) 4H(ε)、
2.40(t) 4H(ζ) IR(cm-1):3100−3400(−COOH),
2960,2900,2875(−CH3 、−CH
2 −、=CH−の伸縮),1720(−COOH),1
462,1410,1290,768,635(Si−
Cの変角),1643(−CH=CH−面内変角),9
67,693(−CH=CH−面外変角)
[Chemical 10] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
1-0.45 108H (Si- Me : α, α '),
5.20 (q) 2H (C H = CH: γ), 1.34
(D) 4H (Si- CH 2 -CH =: β), 0.90
(T) 4H (δ), 1.62 (m) 4H (ε),
2.40 (t) 4H (ζ) IR (cm −1 ): 3100-3400 (—CO OH ),
2960,2900,2875 (-CH 3, -CH
2 -, = CH- telescopic), 1720 (- CO OH) , 1
462, 1410, 1290, 768, 635 (Si-
Deflection of C), 1643 (-CH = CH-in-plane variation), 9
67,693 (-CH = CH-out-of-plane bending angle)

【0020】実施例2 実施例1のブタジエン単量体単位を含むシリコーンオリ
ゴマー(x=1、n=8)を同じくブタジエン単量体単
位を含むシリコーンオリゴマー(x=2、n=2)に代
えた以外は、同様の方法により、収率91%でオリゴブ
タジエン単位を含む末端カルボキシル基含有シリコーン
を得た。
Example 2 The silicone oligomer containing a butadiene monomer unit (x = 1, n = 8) of Example 1 was replaced with a silicone oligomer containing a butadiene monomer unit (x = 2, n = 2). A terminal carboxyl group-containing silicone containing oligobutadiene units was obtained in a yield of 91% by the same method except for the above.

【化11】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
1−0.45 36H(Si−Me:α,α′)、5.
20(q) 2H(C=CH:γ)、5.05(q)
2H(C=CH:γ′)、1.34(d) 4H
(Si−CH2 −CH=:β)、1.64(q) 4H
(CH2 CH2 −CH=:β′)、0.90(t)
4H(δ)、1.62(m) 4H(ε)、2.40
(t) 4H(ζ) IR(cm-1):3100−3400(−COOH),
2960,2900,2875(−CH3 、−CH
2 −、=CH−の伸縮),1720(−COOH),1
462,1410,1290,768,635(Si−
Cの変角),1643(−CH=CH−面内変角),9
67,693(−CH=CH−面外変角)
[Chemical 11] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
1-0.45 36H (Si- Me : α, α '), 5.
20 (q) 2H (C H = CH: γ), 5.05 (q)
2H (C H = CH: γ ′), 1.34 (d) 4H
(Si- CH 2 -CH =: β ), 1.64 (q) 4H
(CH 2 - CH 2 -CH = : β '), 0.90 (t)
4H (δ), 1.62 (m) 4H (ε), 2.40
(T) 4H (ζ) IR (cm −1 ): 3100-3400 (—CO OH ),
2960,2900,2875 (-CH 3, -CH
2 -, = CH- telescopic), 1720 (- CO OH) , 1
462, 1410, 1290, 768, 635 (Si-
Deflection of C), 1643 (-CH = CH-in-plane variation), 9
67,693 (-CH = CH-out-of-plane bending angle)

【0021】実施例3 実施例1のビニル酢酸0.189g(2.2ミリモル)
を10−ウンデセン酸0.405g(2.2ミリモル)
に代えた以外は、同様に反応を行い、収率89%でブタ
ジエン単量体単位を含む末端カルボキシル基含有シリコ
ーンを得た。
Example 3 0.189 g (2.2 mmol) of the vinyl acetic acid of Example 1
0.405 g (2.2 mmol) of 10-undecenoic acid
The reaction was performed in the same manner except that the above was replaced with to obtain a terminal carboxyl group-containing silicone containing a butadiene monomer unit in a yield of 89%.

【化12】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
1−0.45 108H(Si−Me:α,α′)、
5.20(q) 2H(C=CH:γ)、1.34
(d) 4H(Si−CH2 −CH=:β)、0.90
〜2.40(c) 40H(δ) IR(cm-1):3100−3400(−COOH),
2964,2910,2872(−CH3 、−CH
2 −、=CH−の伸縮),1719(−COOH),1
468,1414,1289,765,633(Si−
Cの変角),1648(−CH=CH−面内変角),9
64,690(−CH=CH−面外変角)
[Chemical 12] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
1-0.45 108H (Si- Me : α, α '),
5.20 (q) 2H (C H = CH: γ), 1.34
(D) 4H (Si- CH 2 -CH =: β), 0.90
~2.40 (c) 40H (δ) IR (cm -1): 3100-3400 (-CO OH),
2964,2910,2872 (-CH 3, -CH
2 -, = CH- telescopic), 1719 (- CO OH) , 1
468, 1414, 1289, 765, 633 (Si-
Deflection of C), 1648 (-CH = CH-in-plane deflection), 9
64,690 (-CH = CH-out-of-plane bending angle)

【0022】実施例4 実施例2のビニル酢酸0.189g(2.2ミリモル)
を10−ウンデセン酸0.343g(2.2ミリモル)
に代えた以外は、同様に反応を行い、収率87%で直鎖
オリゴブタジエン単位を含む末端カルボキシル基含有シ
リコーンを得た。
Example 4 0.189 g (2.2 mmol) of vinyl acetic acid of Example 2
0.343 g (2.2 mmol) of 10-undecenoic acid
The reaction was performed in the same manner except that the above was replaced with, to obtain a terminal carboxyl group-containing silicone containing a linear oligobutadiene unit with a yield of 87%.

【化13】 1 H−NMR(溶媒 CDCl3 )(ppm):0.4
1−0.45 36H(Si−Me:α,α′)、5.
20(q) 2H(C=CH:γ)、5.05(q)
2H(C=CH:γ′)、1.34(d) 4H
(Si−CH2 −CH=:β)、1.64(q) 4H
(CH2 CH2 −CH=:β′)、0.90〜1.6
2(m) 40H(δ) IR(cm-1):3100−3400(−COOH),
2962,2905,2874(−CH3 、−CH
2 −、=CH−の伸縮),1722(−COOH),1
464,1413,1294,765,631(Si−
Cの変角),1640(−CH=CH−面内変角),9
65,694(−CH=CH−面外変角)
[Chemical 13] 1 H-NMR (solvent CDCl 3 ) (ppm): 0.4
1-0.45 36H (Si- Me : α, α '), 5.
20 (q) 2H (C H = CH: γ), 5.05 (q)
2H (C H = CH: γ ′), 1.34 (d) 4H
(Si- CH 2 -CH =: β ), 1.64 (q) 4H
(CH 2 - CH 2 -CH = : β '), 0.90~1.6
2 (m) 40H (δ) IR (cm −1 ): 3100-3400 (—CO OH ),
2962,2905,2874 (-CH 3, -CH
2 -, = CH- telescopic), 1722 (- CO OH) , 1
464, 1413, 1294, 765, 631 (Si-
Deflection of C), 1640 (-CH = CH-in-plane variation), 9
65,694 (-CH = CH-out-of-plane bending angle)

【0023】上記実施例で得られた末端カルボキシル基
含有シリコーンと公知のシリコーンゴムおよびブタジエ
ンゴムとについて、熱分解開始温度および50重量%分
解温度を調査した。試験は、島津製作所製の熱重量測定
器TGA−30によって、試料100mgを用い、昇温
温度10℃/minの下で行なった。結果は下記表1に
示す通りであった。
The thermal decomposition initiation temperature and the 50% by weight decomposition temperature of the silicone containing terminal carboxyl group and the known silicone rubber and butadiene rubber obtained in the above examples were investigated. The test was performed using a thermogravimetric analyzer TGA-30 manufactured by Shimadzu Corporation, using a sample of 100 mg, at a temperature rising temperature of 10 ° C./min. The results are as shown in Table 1 below.

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の末端カルボキシル基含有反応性
シリコーン化合物は、新規な化合物であって、上記の比
較からも明らかなように、熱的に非常に安定であり、ま
た、シリコーンゴムとブタジエンゴムの両者の特性を保
持している。また、他の樹脂との相溶性が良好であるの
で、他の樹脂の改質のために使用することができる。さ
らに、ポリイミドやポリアミド等の樹脂原料としても有
用である。
INDUSTRIAL APPLICABILITY The reactive silicone compound containing a terminal carboxyl group of the present invention is a novel compound, which is very stable thermally and, as is clear from the above comparison, silicone rubber and butadiene. It retains both properties of rubber. Further, since it has good compatibility with other resins, it can be used for modifying other resins. Further, it is also useful as a resin raw material such as polyimide or polyamide.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で示される末端カルボ
キシル基含有反応性シリコーン化合物。 【化1】 (式中、Zは、直接結合、炭素数1〜20の直鎖状また
は分岐鎖状の二価の炭化水素基または二価の芳香族基を
表わし、xは1または2の整数を表わし、nは1〜20
0の整数を表わす。)
1. A reactive silicone compound containing a terminal carboxyl group represented by the following general formula (I). [Chemical 1] (In the formula, Z represents a direct bond, a linear or branched divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic group, and x represents an integer of 1 or 2, n is 1 to 20
Represents an integer of 0. )
JP7213792A 1992-02-24 1992-02-24 New reactive silicone compound Withdrawn JPH05230078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7213792A JPH05230078A (en) 1992-02-24 1992-02-24 New reactive silicone compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7213792A JPH05230078A (en) 1992-02-24 1992-02-24 New reactive silicone compound

Publications (1)

Publication Number Publication Date
JPH05230078A true JPH05230078A (en) 1993-09-07

Family

ID=13480605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7213792A Withdrawn JPH05230078A (en) 1992-02-24 1992-02-24 New reactive silicone compound

Country Status (1)

Country Link
JP (1) JPH05230078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116863A1 (en) * 2007-03-26 2008-10-02 Momentive Performance Materials Gmbh Surface active organosilicone compounds
JP2021518458A (en) * 2018-03-19 2021-08-02 ダウ シリコーンズ コーポレーション Polyolefin-Polydiorganosiloxane Block Copolymers and Methods for Their Synthesis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116863A1 (en) * 2007-03-26 2008-10-02 Momentive Performance Materials Gmbh Surface active organosilicone compounds
US7872053B2 (en) * 2007-03-26 2011-01-18 Momentive Performance Materials GmbH & Co., KG Surface active organosilicone compounds
JP2021518458A (en) * 2018-03-19 2021-08-02 ダウ シリコーンズ コーポレーション Polyolefin-Polydiorganosiloxane Block Copolymers and Methods for Their Synthesis

Similar Documents

Publication Publication Date Title
US6911518B2 (en) Polyhedral oligomeric -silsesquioxanes, -silicates and -siloxanes bearing ring-strained olefinic functionalities
JP2583412B2 (en) Hydroxyl group-containing siloxane compound
US5087720A (en) Polysilethylenesiloxane
EP0530496B1 (en) Organosilicon compounds and method for preparing same
JPH10501022A (en) Functionalized polyorganosiloxanes and one method of making them
US20030065117A1 (en) Modified silicone compound, process of producing the same, and cured object obtained therefrom
WO2021004286A1 (en) Compound, preparation method therefor, use thereof, and composition composed of same
CA2043383C (en) Sterically hindered aminohydrocarbyl silanes and process of preparation
JPH05230078A (en) New reactive silicone compound
EP1149837B1 (en) Organosilicon compounds
JP2018528204A (en) Platinum (II) diene complexes with chelating dianionic ligands and their use in hydrosilylation reactions
JPH05230077A (en) New reactive diaminosilicone compound
JPH01132591A (en) Dimerized vinylcycloheptyl group-containing silicon compound and its production
JPH09227688A (en) Preparation of hydroxy-containing siloxane compound
JP4054952B2 (en) Fluorine-containing amide compound and method for producing the same
JPH09100352A (en) Polysiloxane and its production
JPH0717981A (en) Organosilicon compound and production thereof
JPH06256526A (en) Organic polymer containing silicon in main chain and its production
TW460436B (en) Bridged cyclopentadienyl derivatives and process for their preparation
JP5311091B2 (en) Polycarbosilane and method for producing the same
JPH0196188A (en) Production of 5-vinylbicyclo(2,2,1)heptyltrichlorosilane
JP2800051B2 (en) Organopolysiloxane and method for producing the same
JP3882682B2 (en) Polycarbosilane, method for producing the same, and organosilicon compound
JPH0453869B2 (en)
JPH11152337A (en) Production of hydroxyl-containing siloxane compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518