JPH05227121A - Synchronous type spread spectrum modem - Google Patents

Synchronous type spread spectrum modem

Info

Publication number
JPH05227121A
JPH05227121A JP5692392A JP5692392A JPH05227121A JP H05227121 A JPH05227121 A JP H05227121A JP 5692392 A JP5692392 A JP 5692392A JP 5692392 A JP5692392 A JP 5692392A JP H05227121 A JPH05227121 A JP H05227121A
Authority
JP
Japan
Prior art keywords
output
spread
demodulation
angle
modulated wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5692392A
Other languages
Japanese (ja)
Other versions
JP2650556B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Takahisa Matsumoto
卓久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP5692392A priority Critical patent/JP2650556B2/en
Priority to US08/013,728 priority patent/US5301206A/en
Priority to EP93300861A priority patent/EP0555089B1/en
Priority to DE69326268T priority patent/DE69326268T2/en
Publication of JPH05227121A publication Critical patent/JPH05227121A/en
Application granted granted Critical
Publication of JP2650556B2 publication Critical patent/JP2650556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a synchronous type spread spectrum (SS) modem un-requiring a synchronism holding function such as a delayed locked loop(DLL) or an AGC circuit, etc. CONSTITUTION:A means 52 which performs the angle modulation of information, a means 25 which obtains a clock signal by frequency-dividing an angle modulated wave into 1/N1, a means 48 which generates a spread code based on the clock signal, and a means 10 which outputs an SS modulated wave by performing the spread modulation of the angle modulated wave by the spread code are provided on a modulator side. A means 33 which performs the reverse spread of the SS modulated wave by a spread code for demodulation, means 4. 24, and 22 which perform the angle demodulation of reverse spread output by a phase locked loop, a means 34 which performs SS synchronism detection by detecting the presence/absence of a noise from phase comparison output in the phase locked loop via a BPF 16, and means 26, 27, and 35 and a Sw which set by selecting either both frequency-dividing output by an SS synchronism detection signal as the clock signal for spread code generator for demodulation by obtaining the output in which VC022 output in the phase locked loop is frequency-divided into 1/N1 and the output frequency-divided into 1/N2 are provided on a demodulator side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は同期型スペクトル拡散変
調復調装置に係り、特に、遅延ロックループ(DLL)
等の同期保持機能やAGC回路等を不要とした、同期型
のスペクトル拡散(以下“SS”と略記することもあ
る)変調,復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous spread spectrum modulation / demodulation device, and more particularly to a delay locked loop (DLL).
The present invention relates to a synchronization-type spread spectrum (hereinafter also abbreviated as "SS") modulation / demodulation device that does not require a synchronization holding function such as AGC circuit.

【0002】[0002]

【技術的背景】最近SS通信において、SS技術による
多元接続法を用いた移動体通信が実用域に達して来てい
る。周知の如く、電波資源は有限なので周波数を有効に
利用する必要がある。その点、SS信号は原理的に周波
数利用効率の向上に寄与できるものである。その故は、
SS信号は広い周波数帯域に拡散されて、変調波のパワ
ースペクトル密度が非常に小さいので、他の従来の通信
電波等に与える影響は少なく、既存の通信周波数帯での
混用が可能になるため、その面での効用も大きい。以上
の理由により、SSによる無線通信も身近になりつつあ
り、今後、車両等に搭載しての移動体間通信応用など、
その将来性や発展性を嘱望されている。
TECHNICAL BACKGROUND Recently, in SS communication, mobile communication using the multiple access method by SS technology has reached a practical range. As is well known, since radio resources are limited, it is necessary to effectively use frequencies. In that respect, the SS signal can contribute to the improvement of frequency utilization efficiency in principle. Because,
Since the SS signal is spread over a wide frequency band and the power spectrum density of the modulated wave is very small, it has little effect on other conventional communication radio waves, etc., and can be mixed in existing communication frequency bands. The effect in that respect is also great. For the above reasons, wireless communication by SS is becoming familiar, and in the future, such as mobile-to-mobile communication applications mounted on vehicles, etc.
It is hoped for its future potential and development potential.

【0003】[0003]

【従来の技術】SS通信において、受信における同期捕
捉と同期保持は基本的に必要なものであり、今までに種
々の同期捕捉,保持方法が提案され、また、実用化され
ている。その中で、変調時に1次変調であるPSK(Pha
se Shift Keying)変調用キャリヤと、2次変調であるS
S変調に用いられる拡散符号用クロック信号とに同期関
係を持たせてSS変調を行う、同期型SS変調,復調方
式も、受信復調において回路構成を多少簡素化できる方
式として知られている。
2. Description of the Related Art In SS communication, synchronization acquisition and synchronization holding in reception are basically necessary, and various synchronization acquisition and holding methods have been proposed and put to practical use. Among them, PSK (Pha (Pha
se Shift Keying) Carrier for modulation and S that is secondary modulation
The synchronous SS modulation and demodulation method, in which the SS modulation is performed in a synchronous relationship with the spread code clock signal used for the S modulation, is also known as a method in which the circuit configuration can be somewhat simplified in the reception demodulation.

【0004】かかるSS変調,復調方式の従来技術につ
いて、図1乃至図5を併せ参照して説明する。図1は同
期型SS変調方式を実施し得る従来のSS変調装置(送
信部)のブロック構成図、図2は従来の同期型SS復調
装置(受信部)のブロック構成図、図3はDLL(遅延
ロックループ)型同期保持回路の主要部となる信号処理
回路の具体的ブロック構成図、図4はDLL型同期保持
回路における同期保持特性図、図5はスライディング相
関型同期捕捉動作を示す相関特性図である。
A conventional technique of the SS modulation and demodulation system will be described with reference to FIGS. FIG. 1 is a block configuration diagram of a conventional SS modulation device (transmission unit) capable of implementing a synchronous SS modulation system, FIG. 2 is a block configuration diagram of a conventional synchronization SS demodulation device (reception unit), and FIG. 3 is a DLL ( (Delay lock loop) type block diagram of a signal processing circuit, which is the main part of the sync hold circuit, FIG. 4 is a sync hold characteristic diagram in the DLL sync hold circuit, and FIG. 5 is a correlation characteristic showing a sliding correlation type sync acquisition operation. It is a figure.

【0005】先ず、図1に示したSS変調装置について
説明を行う。入力端子In1 からデータ等の情報信号d
(t) が、発振器19からはPSK変調用のキャリヤ cos
ωtが、夫々PSK変調用の乗算器9に供給され、ここ
で情報d(t) のPSK変調が行なわれて、PSK変調波
d(t)cosωtが得られる。更に、発振器出力を分周器2
5に供給して1/N1 に分周することによりクロック信
号を作り、これを基に拡散符号発生器(PNG)48に
て拡散符号P(t) を生成している。従って、出力される
拡散符号P(t) は、上記キャリヤ cosωtと同期関係が
保たれる。かかる拡散符号P(t) は拡散変調用の乗算器
10に供給され、ここでSS(スペクトル拡散)変調が
行なわれてSS変調波P(t)*d(t)cosωtが生成され、
BPF(帯域濾波器)11を介して出力端子Out1より出
力される。
First, the SS modulator shown in FIG. 1 will be described. Information signal d such as data from the input terminal In1
(t) is the carrier cos for PSK modulation from the oscillator 19.
ωt is supplied to the multiplier 9 for PSK modulation, and the PSK modulation of the information d (t) is performed here, and the PSK modulated wave d (t) cosωt is obtained. Furthermore, the oscillator output is divided by the frequency divider 2
A clock signal is generated by supplying it to 5 and dividing it by 1 / N 1. Based on this, a spread code generator (PNG) 48 generates a spread code P (t). Therefore, the spreading code P (t) that is output is kept in synchronization with the carrier cosωt. The spread code P (t) is supplied to the multiplier 10 for spread modulation, where SS (spread spectrum) modulation is performed to generate an SS modulated wave P (t) * d (t) cosωt,
It is output from an output terminal Out1 via a BPF (bandpass filter) 11.

【0006】次にSS復調装置の動作について、図2を
参照し乍ら説明する。アンテナ(図示せず)で受信され
たSS変調波は、入力端子In2 を介してBPF12に供
給され、ここで拡散変調信号のメインローブ以外の周波
数成分が除去されて、AGC(自動利得制御)回路2に
出力される。受信されたSS変調波のレベルが低すぎる
場合には、後述する同期捕捉動作に支障をきたしてしま
うので、このAGC回路2にて自動的に適宜増幅してか
ら、後段のスライディング相関及び逆拡散復調兼用の乗
算器3と、DLL型同期保持用信号処理回路(以下単に
「DLL用信号処理回路」等と記載する)36に供給す
るわけである。
Next, the operation of the SS demodulator will be described with reference to FIG. The SS modulated wave received by the antenna (not shown) is supplied to the BPF 12 via the input terminal In2, where the frequency components other than the main lobe of the spread modulation signal are removed, and the AGC (automatic gain control) circuit. 2 is output. If the level of the received SS modulated wave is too low, the synchronization acquisition operation described later will be hindered. Therefore, the AGC circuit 2 automatically amplifies the signal appropriately, and then the sliding correlation and despreading in the subsequent stage are performed. It is supplied to the demodulator / multiplier 3 and the DLL-type synchronization holding signal processing circuit (hereinafter simply referred to as “DLL signal processing circuit”) 36.

【0007】乗算器3に供給されたSS変調波は、ここ
でPNG(拡散符号発生器)47にて生成された拡散符
号と乗算されることにより逆拡散されるが、この逆拡散
符号生成用のクロック信号は、同期捕捉されるまでは、
同期保持時に比較してやゝ高めにVCO(電圧制御発振
器)21により設定されている。従って、スライディン
グ相関と逆拡散復調は時系列的に行なわれる。
The SS modulated wave supplied to the multiplier 3 is despread by being multiplied with the spreading code generated by the PNG (spreading code generator) 47, and is used for generating this despreading code. The clock signal of
It is set by the VCO (voltage controlled oscillator) 21 a little higher than that at the time of holding the synchronization. Therefore, the sliding correlation and the despread demodulation are performed in time series.

【0008】ここで、同期捕捉(確立)に至る動作を説
明する。BPF12にて不要な周波数帯域成分を減衰乃
至除去された入力SS変調波P(t)*d(t)cosωtは、乗
算器3において拡散符号発生器47からの拡散符号P
(t) との乗算による相関が行われる。この拡散符号P
(t) はSS変調装置(送信側)のPNG48で生成され
る拡散符号P(t) に比べ、実際には時間τの遅延を有す
るP(t−τ)であり、これをP(t) の文字Pの上にΛ
(ハット)を付けて表記するが、ここでは電子出願にお
ける使用可能文字の制約上から、“ρ(t) ”で表わすこ
とにする。従って、乗算器3からの乗算出力はP(t)*ρ
(t)*d(t)cosωtとなる。
The operation leading to synchronization acquisition (establishment) will now be described. The input SS modulated wave P (t) * d (t) cosωt from which unnecessary frequency band components have been attenuated or removed by the BPF 12 is used by the spread code P from the spread code generator 47 in the multiplier 3.
Correlation is performed by multiplication with (t). This spreading code P
(t) is actually P (t-τ) having a delay of time τ compared to the spreading code P (t) generated by the PNG 48 of the SS modulator (transmission side), and this is P (t). On the letter P of
Although notated with (hat), it will be expressed as "ρ (t)" here because of the restrictions on the characters that can be used in electronic applications. Therefore, the multiplication output from the multiplier 3 is P (t) * ρ
(t) * d (t) cosωt.

【0009】かかる乗算出力は乗算器4,5に供給さ
れ、乗算器4ではVCO22からの再生キャリヤcos(ω
t-φ)との乗算による同期検波が行われる。従って、乗
算器4からは(1/2)P(t)*ρ(t)*d(t)*{cosφ+cos(2ω
t-φ)}なる信号が出力され、次段のLPF(低域濾波
器)17でP(t)*ρ(t)*d(t)cos(2ωt-φ)/2成分が
除去されて、P(t)*ρ(t)*d(t)cosφとなる。φの値が
0に近い値であれば、LPF17出力P(t)*ρ(t)*d
(t)cosφはほぼ 1/2のレベルとなる。一方、乗算器5に
は、VCO22よりの再生キャリヤ cos(ωt-φ)が、
π/2位相シフト回路23にて位相をπ/2シフトされたsi
n(ωt-φ)なるキャリヤが供給されている。
The multiplication output is supplied to the multipliers 4 and 5, and the multiplier 4 reproduces the carrier carrier cos (ω) from the VCO 22.
Synchronous detection is performed by multiplication with t-φ). Therefore, from the multiplier 4, (1/2) P (t) * ρ (t) * d (t) * {cosφ + cos (2ω
t-φ)} is output, and the LPF (low-pass filter) 17 at the next stage removes the P (t) * ρ (t) * d (t) cos (2ωt-φ) / 2 component. , P (t) * ρ (t) * d (t) cosφ. If the value of φ is close to 0, LPF17 output P (t) * ρ (t) * d
The level of (t) cosφ is about 1/2. On the other hand, in the multiplier 5, the reproduction carrier cos (ωt-φ) from the VCO 22 is
si whose phase has been shifted by π / 2 in the π / 2 phase shift circuit 23
A carrier of n (ωt-φ) is supplied.

【0010】従って、乗算器5の出力は(−1/2)P(t)*
ρ(t)*d(t)*{sinφ+sin(2ωt-φ)}となり、LPF16
からは−P(t)*ρ(t)sinφが出力されるが、実際のレベ
ルは0に近くなっている。LPF17とLPF16の出
力は共に乗算器6に供給され、ここで両出力は乗算が行
なわれて、その出力はP2 (t)ρ2 (t)*d2 (t)*(-1/2)
sin2φなる誤差信号として得られる。かかる誤差信号
は、更にループの応答時定数を決めるループフィルタ2
4にて−Ksin2φなる誤差信号に変換された後、VCO
22に制御用信号として供給される。このような一巡の
位相同期ループからなるキャリヤ再生回路50は、入力
キャリヤに同期してPSK復調を同時に行なうことがで
きるものである。
Therefore, the output of the multiplier 5 is (-1/2) P (t) *.
ρ (t) * d (t) * {sinφ + sin (2ωt-φ)} and LPF16
Outputs -P (t) * ρ (t) sinφ, but the actual level is close to zero. The outputs of the LPF 17 and the LPF 16 are both supplied to the multiplier 6, where both outputs are multiplied and the output is P 2 (t) ρ 2 (t) * d 2 (t) * (-1/2 )
It is obtained as an error signal of sin2φ. The error signal is further filtered by the loop filter 2 which determines the response time constant of the loop.
After being converted into an error signal of -Ksin2φ in 4, the VCO
22 is supplied as a control signal. The carrier reproducing circuit 50 including such a loop of phase locked loop can simultaneously perform PSK demodulation in synchronization with the input carrier.

【0011】SS復調装置(受信部)の電源オン後、最
初に働きだすのはこのキャリヤ再生回路50であり、従
って、キャリヤ再生の後、LPF17より得られる相関
出力P(t)*ρ(t) 、即ち、図5のt0 点を中心とする3
角出力特性に基づく出力は、スライディング相関の同期
捕捉用のスレシュホールドレベル検出回路(同期判定回
路)34に供給され、ここで同期捕捉点SHL を検出され
た後、更に出力(波形)整形回路35に供給され、同期
捕捉時より一定の直流出力を得ている。この直流出力は
加算回路42に供給され、ここでDLL用信号処理回路
36からの相関出力と加算された後、VCO21に供給
される。得られた加算出力によってVCO21は制御さ
れ、制御された電圧制御発振出力は、正規の同期保持時
の拡散符号を発生させるためのクロック信号となる。
It is this carrier regeneration circuit 50 that first starts to work after the power supply of the SS demodulator (reception unit) is turned on. Therefore, after carrier regeneration, the correlation output P (t) * ρ (t) obtained from the LPF 17 is obtained. ), That is, 3 around the point t 0 in FIG.
The output based on the angular output characteristic is supplied to a threshold level detection circuit (synchronization determination circuit) 34 for synchronous acquisition of sliding correlation, and after the synchronization acquisition point SHL is detected here, an output (waveform) shaping circuit 35 is further provided. , And a constant DC output is obtained from the time of synchronization acquisition. This DC output is supplied to the adder circuit 42, where it is added to the correlation output from the DLL signal processing circuit 36 and then supplied to the VCO 21. The VCO 21 is controlled by the obtained addition output, and the controlled voltage-controlled oscillation output becomes a clock signal for generating the spread code at the time of normal synchronization holding.

【0012】次に、同期保持動作について説明する。入
力SS変調波はBPF12を介してDLL用信号処理回
路36に供給されるが、ここで、DLL用信号処理回路
36の具体的回路例を図3に示して、機能,動作を説明
する。上記SS変調波は入力端子In3 より乗算器7,8
に供給される。一方、入力端子In4 には、前記乗算器3
に供給される正規の拡散符号P(t) よりも位相がΔt早
いP(t−Δt)なる拡散符号(イ)が、入力端子In5 には
Δt遅いP(t+Δt)なる拡散符号(ロ)が、PNG47
より夫々供給されている。
Next, the synchronization holding operation will be described. The input SS modulated wave is supplied to the DLL signal processing circuit 36 via the BPF 12. Here, a specific circuit example of the DLL signal processing circuit 36 is shown in FIG. The SS modulated wave is input from the input terminal In3 to the multipliers 7 and 8
Is supplied to. On the other hand, the multiplier 3 is connected to the input terminal In4.
The spread code (a) having a phase Δt earlier than that of the regular spread code P (t) supplied to the terminal (a) and the spread code (b) having a phase Δt slower than P (t + Δt) at the input terminal In5. , PNG47
More supplied respectively.

【0013】なお、ΔtはSS方式では拡散符号の1ビ
ット分の時間,即ち1チップ時間なので、乗算器7の出
力は正規動作時の逆拡散出力であるPSK変調波であ
り、これを伝送できる狭帯域特性のBPF13を介して
絶対値回路(又はエンベロープ検出回路)38に供給さ
れる。同様に、乗算器8の出力もBPF14を介して絶
対値回路39に供給されている。従って、絶対値回路3
8の出力は、近似的にキャリヤ周波数の2倍の成分にP
(t)*P(t−Δt)が乗じられた信号となり、絶対値回路3
9出力も同様にキャリヤ周波数の2倍の成分にP(t)*P
(t+Δt)が乗じられた信号として得られる。
In the SS system, Δt is a time corresponding to one bit of the spread code, that is, one chip time. Therefore, the output of the multiplier 7 is a PSK modulated wave which is a despread output during normal operation and can be transmitted. It is supplied to the absolute value circuit (or envelope detection circuit) 38 through the narrow band characteristic BPF 13. Similarly, the output of the multiplier 8 is also supplied to the absolute value circuit 39 via the BPF 14. Therefore, the absolute value circuit 3
The output of 8 is approximately P to the component of twice the carrier frequency.
It becomes a signal multiplied by (t) * P (t−Δt), and the absolute value circuit 3
Similarly, for 9 outputs, P (t) * P is added to the component twice the carrier frequency.
It is obtained as a signal multiplied by (t + Δt).

【0014】両出力信号は引算回路40に供給されて引
算出力されるが、その特性は図4に模式的に示すような
逆S字型の相関特性となる。なお、図4中の (C)点は同
期保持点である。このようにして得られた相関出力は、
これを制御信号に加工するためのループフィルタ28を
介して出力端子Out3より図2の加算回路42に出力さ
れ、ここで前記波形整形回路35の出力と加算された後
VCO21に供給され、同期の保持が行われるわけであ
る。
Both output signals are supplied to a subtraction circuit 40 to be subtracted and calculated, and the characteristics thereof are inverse S-shaped correlation characteristics as schematically shown in FIG. It should be noted that point (C) in FIG. 4 is a synchronization holding point. The correlation output thus obtained is
It is output from the output terminal Out3 to the adder circuit 42 of FIG. 2 via the loop filter 28 for processing this into a control signal, and is added to the output of the waveform shaping circuit 35 here and then supplied to the VCO 21 for synchronization. It is held.

【0015】[0015]

【発明が解決しようとする課題】かかる従来のSS通信
における受信,復調装置は、同期保持,AGC回路等が
必要であり、回路が複雑でコストも上昇し、また、各々
の回路が必ずしも理論通りには機能しないために、エラ
ーが増えてしまう等の問題が生じていた。特に、SS同
期回路の簡略化やAGC回路2を不要とする受信,復調
装置の実現が望まれていた。また、キャリヤ再生用のV
CO22とクロック発生用VCO21の双方に発振器を
必要とし、又、同期保持回路も併用しなければならない
等、装置の複雑化や回路規模の増大化などにより、装置
を安定に動作させるのが困難になるという課題が生じて
いた。
The conventional receiving and demodulating device in SS communication requires synchronization holding, an AGC circuit, etc., the circuit is complicated and the cost increases, and each circuit does not always follow the theory. Since it doesn't work, there were problems such as an increase in errors. In particular, it has been desired to simplify the SS synchronization circuit and realize a reception / demodulation device that does not require the AGC circuit 2. Also, V for carrier reproduction
An oscillator is required for both the CO 22 and the VCO 21 for clock generation, and a synchronization holding circuit must also be used together, so that it is difficult to operate the device stably due to complication of the device and increase in circuit scale. There was a problem of becoming.

【0016】[0016]

【課題を解決するための手段】本発明の同期型スペクト
ル拡散変調復調装置は、変調装置側には、情報を角度変
調する角度変調手段と、得られた角度変調波を第1の分
周数で分周してクロック信号を得る第1の分周手段と、
クロック信号を基に拡散符号を生成する拡散符号発生手
段と、角度変調波を拡散符号で拡散変調してSS変調波
を出力する拡散変調手段とを備え、復調装置側には、S
S変調波を復調用拡散符号により逆拡散する逆拡散手段
と、逆拡散出力を位相同期ループ回路により角度復調を
行なって復調出力を得る角度復調手段と、位相同期ルー
プ内の位相比較出力より帯域濾波器を介してノイズの有
無を検出してSS同期検出を行う同期検出手段と、位相
同期ループ内の電圧制御発振器の出力を上記第1の分周
数で分周した出力と第2の分周数で分周した出力を得て
SS同期検出信号により両分周出力のいずれかを選択し
て復調用拡散符号発生器用のクロック信号とするクロッ
ク信号生成手段とを備えて構成することにより、上記課
題を解決したものである。
In the synchronous spread spectrum modulation / demodulation device of the present invention, an angle modulation means for angle-modulating information and a first frequency division number of the obtained angle-modulated wave are provided on the modulation device side. First dividing means for obtaining a clock signal by dividing by
The demodulation device side is provided with a spread code generating means for generating a spread code based on the clock signal, and a spread modulating means for spread modulating the angle modulated wave with the spread code to output an SS modulated wave.
The despreading means for despreading the S-modulated wave by the demodulation spreading code, the angle demodulating means for obtaining the demodulated output by performing the angle demodulation of the despreading output by the phase locked loop circuit, and the band from the phase comparison output in the phase locked loop. Sync detection means for detecting SS sync by detecting the presence or absence of noise through a filter, and an output obtained by dividing the output of the voltage controlled oscillator in the phase locked loop by the first division number and a second division. A clock signal generating means for obtaining a frequency-divided output and selecting either of the frequency-divided outputs by the SS synchronization detection signal as a clock signal for the demodulation spreading code generator is configured. This is a solution to the above problem.

【0017】[0017]

【実施例】本発明の同期型スペクトル拡散変調復調装置
の一実施例について、図6を参照し乍ら説明する。図6
は本発明の同期型SS変調復調装置のブロック系統図で
あり、同図(A) が送信側(同期型SS復調装置)、同図
(B) が受信側(同期型SS変調装置)を夫々示し、この
図6において、図1及び図2に夫々示した従来のSS変
調,復調装置と同一構成部分には同一符号を付して、そ
の詳細な説明を省略する。なお、図6に於いて、52は
角度変調器、43は振幅制限増幅器、26,27は入力
信号周波数を夫々1/N1 及び1/N2 に分周する分周
器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the synchronous spread spectrum modulation / demodulation device of the present invention will be described with reference to FIG. Figure 6
Is a block system diagram of the synchronous SS modulation and demodulation device of the present invention. FIG. 1A shows the transmitting side (synchronous SS demodulation device).
(B) indicates the receiving side (synchronous SS modulator), and in FIG. 6, the same components as those of the conventional SS modulator and demodulator shown in FIGS. 1 and 2 are designated by the same reference numerals. , Its detailed description is omitted. In FIG. 6, 52 is an angle modulator, 43 is an amplitude limiting amplifier, and 26 and 27 are frequency dividers for dividing the input signal frequency into 1 / N 1 and 1 / N 2 , respectively.

【0018】本発明装置の動作について、図6(A),(B)
と共に説明する。まず、送信側では入力端子In1 より情
報S(t)が角度変調器52に供給され、角度変調(周波数
変調及び位相変調)が行なわれる。得られた角度変調波
fm(t)は拡散変調用の乗算器10に供給されると共に、
分岐して分周器25に供給され、ここでN1 分の1に分
周された拡散符号発生器用クロック信号C0 (t) を得、
これを拡散符号発生器48に供給して拡散符号P(t) を
得ている。得られた拡散符号P(t) は乗算器10に供給
されて、上記角度変調波fm(t)との乗算によりスペクト
ル変調波P(t)*fm(t)を得、BPF11を介してアンテ
ナA1 より出力される。
The operation of the device of the present invention will be described with reference to FIGS. 6 (A) and 6 (B).
Will be explained together. First, on the transmitting side, the information S (t) is supplied from the input terminal In1 to the angle modulator 52, and angle modulation (frequency modulation and phase modulation) is performed. The obtained angle modulated wave fm (t) is supplied to the multiplier 10 for spread modulation, and
The signal is branched and supplied to the frequency divider 25, where the spread code generator clock signal C 0 (t) divided by N 1 is obtained,
This is supplied to the spread code generator 48 to obtain the spread code P (t). The obtained spread code P (t) is supplied to the multiplier 10, and the spectrum modulation wave P (t) * fm (t) is obtained by multiplication with the angle modulation wave fm (t), and the antenna is transmitted via the BPF 11. It is output from A 1 .

【0019】次に、同期型SS復調装置(受信側)の動
作について図6(B) と共に説明する。送信されたスペク
トル変調波は受信アンテナA2 にて受信され、BPF1
2によりメインローブ帯域外の不要な周波数成分を除去
してから逆拡散用の乗算器3に供給される。受信SS変
調波はノイズn(t) が混入したP(t)*fm(t)+n(t)と
なっている。乗算器3では、拡散符号発生器47より出
力される拡散符号ρ(t) との乗算が行われ、乗算出力P
(t)*ρ(t)*fm(t)+n(t)*ρ(t) が得られる。
Next, the operation of the synchronous SS demodulator (reception side) will be described with reference to FIG. The transmitted spectrum-modulated wave is received by the receiving antenna A 2 , and the BPF 1
The unnecessary frequency component outside the main lobe band is removed by 2 and then supplied to the despreading multiplier 3. The received SS modulated wave is P (t) * fm (t) + n (t) in which noise n (t) is mixed. In the multiplier 3, multiplication with the spread code ρ (t) output from the spread code generator 47 is performed, and the multiplication output P
(t) * ρ (t) * fm (t) + n (t) * ρ (t) is obtained.

【0020】この乗算出力は角度変調波周波数帯域幅の
通過特性を有するBPF15を介して、角度変調波成分
と他の拡散成分の一部が伝送され、振幅制限増幅器(L
IM)43にて振幅を制限された後、位相同期ループ
(PLL)用の位相比較器(乗算器)4に供給される。
位相比較器4では、電圧制御発振器(VCO)22より
のVCO出力fm'(t) との位相比較が行われ、位相比較
信号E(t)が出力される。位相比較信号E(t)は、ループフ
ィルタ24を介してVCO22に供給されることにより
PLLとしての制御が行われ、角度変調波にVCO出力
が同期追従される。 一方、VCO出力は分周器27及
びスイッチ回路Swを介してクロック信号C1 (t) として
拡散符号発生器47にも供給され、拡散符号ρ(t) を発
生させている。位相比較器4よりの位相比較信号中、情
報周波数より少し高目のノイズ周波数成分はBPF16
を介して同期検出回路34に供給される。
The multiplication output is transmitted through the BPF 15 having the pass characteristic of the frequency bandwidth of the angle modulation wave, the angle modulation wave component and a part of the other diffusion component, and the amplitude limiting amplifier (L
After the amplitude is limited by the IM) 43, it is supplied to the phase comparator (multiplier) 4 for the phase locked loop (PLL).
The phase comparator 4 performs a phase comparison with the VCO output fm ′ (t) from the voltage controlled oscillator (VCO) 22 and outputs a phase comparison signal E (t). The phase comparison signal E (t) is supplied to the VCO 22 via the loop filter 24 so that the phase control signal E (t) is controlled as a PLL so that the VCO output synchronously follows the angle modulated wave. On the other hand, the VCO output is also supplied to the spread code generator 47 as the clock signal C 1 (t) via the frequency divider 27 and the switch circuit Sw to generate the spread code ρ (t). In the phase comparison signal from the phase comparator 4, the noise frequency component slightly higher than the information frequency is BPF16.
Is supplied to the synchronization detection circuit 34 via.

【0021】ところで同期検出回路34では、ノイズの
有無の識別をも行なっている。即ち、スライディング相
関による同期ポイントでは角度変調波(キャリヤ)は最
大で且つノイズは極小となるので、同期ポイントは検出
可能となる。同期検出信号出力において、ノイズが大の
時は同期が確立していない場合である。即ち、角度変調
波は拡散状態であり、他のノイズも拡散ノイズとなり、
C/Nとしては最小となっている。従って、角度復調に
おける復調ノイズは最大となり、その場合は整形回路3
5の出力には2値信号としてのハイレベル信号が得られ
る。
By the way, the synchronization detection circuit 34 also identifies the presence or absence of noise. That is, since the angle-modulated wave (carrier) is maximum and the noise is minimal at the synchronization point due to the sliding correlation, the synchronization point can be detected. When the noise is large in the synchronization detection signal output, the synchronization is not established. That is, the angle-modulated wave is in a diffused state, and other noise also becomes diffused noise,
It is the smallest C / N. Therefore, the demodulation noise in the angle demodulation becomes maximum, and in that case, the shaping circuit 3
At the output of 5, a high level signal as a binary signal is obtained.

【0022】同様に、ノイズが小の時は同期が確立して
いる場合であり、その場合の整形回路35の2値信号は
ローレベル信号として得られる。従って、整形回路35
の出力がローレベル信号になると、スイッチ回路Swは分
周器26の方に切り換えられる。分周器26の分周数は
1 であるから、変調時のクロック周波数と等しく、時
間(位相)的に一致したクロック信号C0 (t) を得、拡
散符号発生器47に供給されて拡散符号P(t) を得て乗
算器3で逆拡散が行われる。
Similarly, when the noise is small, it means that the synchronization is established, and the binary signal of the shaping circuit 35 in that case is obtained as a low level signal. Therefore, the shaping circuit 35
When the output of is a low level signal, the switch circuit Sw is switched to the frequency divider 26. Since the frequency division number of the frequency divider 26 is N 1 , a clock signal C 0 (t) which is equal to the clock frequency at the time of modulation and coincides in time (phase) is obtained and supplied to the spread code generator 47. The spreading code P (t) is obtained and the despreading is performed in the multiplier 3.

【0023】従って、逆拡散出力はP2 (t)*fm(t)+P
(t)*n(t) となり、P2 (t) は1(直流)であるから、
逆拡散出力はfm(t)+P(t)*n(t) となり、BPF15
を介してfm(t)+n'(t)が振幅制限増幅器43に供給さ
れる。このようにSS同期が確立されて正規のSS復調
動作へと移り、位相比較器4,ループフィルタ24,及
びVCO22より成るPLL回路でのPLL角度復調が
行えることになり、復調帯域内の微少な拡散ノイズしか
含まれない復調情報出力S'(t)が、LPF19を介して
出力端子Out2より出力される。
Therefore, the despread output is P 2 (t) * fm (t) + P
(t) * n (t) and P 2 (t) is 1 (DC),
The despread output is fm (t) + P (t) * n (t), and BPF15
Fm (t) + n ′ (t) is supplied to the amplitude limiting amplifier 43 via In this way, the SS synchronization is established and the normal SS demodulation operation is started, and the PLL angle demodulation can be performed by the PLL circuit including the phase comparator 4, the loop filter 24, and the VCO 22. The demodulation information output S '(t) containing only diffused noise is output from the output terminal Out2 via the LPF 19.

【0024】[0024]

【発明の効果】叙上の如く、本発明装置は、角度変調回
路の変調波を分周して拡散符号用クロック信号とするこ
とにより、キャリヤ周波数と拡散符号を同期関係にする
ことができ、これにより、PLL復調を用いることによ
りPLL復調におけるVCO出力を分周して、復調のた
めの拡散符号用クロック信号とすることができるため、
従来より用いられていた遅延ロックループ型同期保持回
路は不要となり、復調回路が簡単になる。また、SS通
信における受信部にAGC(自動利得制御)回路は必要
となるが、本発明では、角度復調の入力部に振幅制限増
幅器を使用することができるため、AGC回路は不要に
することができる。
As described above, the device of the present invention can synchronize the carrier frequency and the spread code by dividing the modulated wave of the angle modulation circuit to obtain the spread code clock signal. With this, by using the PLL demodulation, the VCO output in the PLL demodulation can be divided to be a spread code clock signal for demodulation.
The delay lock loop type sync holding circuit used conventionally is not required, and the demodulation circuit is simplified. Further, although an AGC (automatic gain control) circuit is required for the receiving section in SS communication, in the present invention, since the amplitude limiting amplifier can be used for the input section for angle demodulation, the AGC circuit can be omitted. it can.

【0025】従って、角度復調に際して何等の問題も生
じなく、また、AGC回路はスライディング相関型同期
捕捉回路に必要となるが、本発明では、SS同期が非同
期状態か同期状態かを検知するのに、角度復調ノイズレ
ベルの大小を識別して同期捕捉を行なっているため、従
来より用いられているAGC回路は不要となり、AGC
特性が理想特性でなければ基本的に生じる同期捕捉時の
同期検出エラー問題も起こらない。また、分周数N2
若干少な目に設定することにより、同期捕捉時間の短縮
化にもある程度の効果が得られる等の、優れた特長を有
する。
Therefore, no problem arises in angle demodulation, and the AGC circuit is required for the sliding correlation type synchronization acquisition circuit. In the present invention, it is possible to detect whether SS synchronization is in an asynchronous state or a synchronous state. Since the angle demodulation noise level is identified and the synchronization is acquired, the AGC circuit conventionally used is no longer necessary.
If the characteristics are not ideal characteristics, the problem of synchronization detection error at the time of synchronization acquisition that basically occurs does not occur. Further, by setting the frequency division number N 2 to be slightly smaller, there are excellent features such as a certain effect in shortening the synchronization acquisition time.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の同期型SS変調装置のブロック構成図。FIG. 1 is a block diagram of a conventional synchronous SS modulator.

【図2】従来の同期型SS復調装置のブロック構成図。FIG. 2 is a block configuration diagram of a conventional synchronous SS demodulation device.

【図3】従来装置の主要部であるDLL型同期保持用信
号処理回路の具体的構成図。
FIG. 3 is a specific configuration diagram of a DLL-type synchronization holding signal processing circuit which is a main part of a conventional device.

【図4】DLL型同期保持用信号処理回路における同期
保持特性を示す特性図。
FIG. 4 is a characteristic diagram showing a sync holding characteristic in a DLL-type sync holding signal processing circuit.

【図5】スライディング相関型同期捕捉動作の説明用相
関特性図。
FIG. 5 is a correlation characteristic diagram for explaining a sliding correlation type synchronous capturing operation.

【図6】本発明の同期型スペクトル拡散変調復調装置の
一実施例を示すブロック図。
FIG. 6 is a block diagram showing an embodiment of a synchronous spread spectrum modulation / demodulation device of the present invention.

【符号の説明】[Explanation of symbols]

1…同期型スペクトル拡散変調復調装置、3〜10…乗
算器、11〜16…BPF(帯域濾波器)、17〜19
…LPF(低域濾波器)、21,22…VCO(電圧制
御発振器)、24…ループフィルタ、25〜27…分周
器、34…同期判定回路(スレシュホールドレベル検出
回路)、35…整形回路、43…振幅制限増幅器、4
7,48…PNG(拡散符号発生器)、50…キャリヤ
再生回路、52…角度変調器、Sw…スイッチ回路。
1 ... Synchronous spread spectrum modulation / demodulation device, 3-10 ... Multiplier, 11-16 ... BPF (Band filter), 17-19
... LPF (low-pass filter) 21, 22 ... VCO (voltage controlled oscillator), 24 ... Loop filter, 25-27 ... Frequency divider, 34 ... Synchronization determination circuit (threshold level detection circuit), 35 ... Shaping circuit , 43 ... Amplitude limiting amplifier, 4
7, 48 ... PNG (spreading code generator), 50 ... Carrier reproducing circuit, 52 ... Angle modulator, Sw ... Switch circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】変調装置側には、情報を角度変調する角度
変調手段と、得られた角度変調波を第1の分周数で分周
してクロック信号を得る第1の分周手段と、該クロック
信号を基に拡散符号を生成する拡散符号発生手段と、上
記角度変調波を該拡散符号で拡散変調してスペクトル拡
散(SS)変調波を出力する拡散変調手段とを備え、 復調装置側には、上記SS変調波を復調用拡散符号によ
り逆拡散する逆拡散手段と、逆拡散出力を位相同期ルー
プ回路により角度復調を行なって復調出力を得る角度復
調手段と、上記位相同期ループ内の位相比較出力より帯
域濾波器を介してノイズの有無を検出してSS同期検出
を行う同期検出手段と、上記位相同期ループ内の電圧制
御発振器の出力を上記第1の分周数で分周した出力と第
2の分周数で分周した出力を得て上記SS同期検出信号
により両分周出力のいずれかを選択して復調用拡散符号
発生器用のクロック信号とするクロック信号生成手段と
を備えて構成して成る、同期型スペクトル拡散変調復調
装置。
1. A modulator, on the side of the modulator, angle modulating means for angle-modulating information, and first frequency dividing means for dividing the obtained angle-modulated wave by a first frequency division number to obtain a clock signal. A demodulation device comprising: spread code generating means for generating a spread code based on the clock signal; and spread modulating means for spread modulating the angle modulated wave with the spread code to output a spread spectrum (SS) modulated wave. On the side, despreading means for despreading the SS modulated wave by a spreading code for demodulation, angle demodulation means for performing angle demodulation on the despread output by a phase locked loop circuit to obtain demodulated output, and inside the phase locked loop The synchronization detection means for detecting the presence or absence of noise from the phase comparison output of the above through the bandpass filter and the output of the voltage controlled oscillator in the phase locked loop are divided by the first division number. Divided by the output and the second division number And a clock signal generating means for selecting either of the divided outputs according to the SS synchronization detection signal as a clock signal for a demodulation spreading code generator, and a synchronous spread spectrum Modulation and demodulation device.
JP5692392A 1992-02-07 1992-02-07 Synchronous spread spectrum modulation demodulator Expired - Lifetime JP2650556B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5692392A JP2650556B2 (en) 1992-02-07 1992-02-07 Synchronous spread spectrum modulation demodulator
US08/013,728 US5301206A (en) 1992-02-07 1993-02-04 Spread spectrum communication system
EP93300861A EP0555089B1 (en) 1992-02-07 1993-02-05 Spread spectrum communication system
DE69326268T DE69326268T2 (en) 1992-02-07 1993-02-05 Spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5692392A JP2650556B2 (en) 1992-02-07 1992-02-07 Synchronous spread spectrum modulation demodulator

Publications (2)

Publication Number Publication Date
JPH05227121A true JPH05227121A (en) 1993-09-03
JP2650556B2 JP2650556B2 (en) 1997-09-03

Family

ID=13041018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5692392A Expired - Lifetime JP2650556B2 (en) 1992-02-07 1992-02-07 Synchronous spread spectrum modulation demodulator

Country Status (1)

Country Link
JP (1) JP2650556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223082A (en) * 1995-02-10 1996-08-30 Rohm Co Ltd Information communication equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340422A (en) * 1986-08-06 1988-02-20 Kyocera Corp Synchronization tracer for spread spectrum communication
JPH0272731A (en) * 1988-09-07 1990-03-13 Nippon Soken Inc Spread spectrum communication equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340422A (en) * 1986-08-06 1988-02-20 Kyocera Corp Synchronization tracer for spread spectrum communication
JPH0272731A (en) * 1988-09-07 1990-03-13 Nippon Soken Inc Spread spectrum communication equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223082A (en) * 1995-02-10 1996-08-30 Rohm Co Ltd Information communication equipment

Also Published As

Publication number Publication date
JP2650556B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JP2744644B2 (en) Delay locked loop circuit in spread spectrum receiver.
US5303258A (en) Spread spectrum communications system
EP0555089B1 (en) Spread spectrum communication system
JPH0810839B2 (en) Spread spectrum communication device
JP3191841B2 (en) Spread spectrum modulation and / or demodulation device
JPH05227121A (en) Synchronous type spread spectrum modem
JP2650557B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2591398B2 (en) Spread spectrum wireless communication equipment
JP2650550B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2650572B2 (en) Demodulator in spread spectrum system
JP2591401B2 (en) Spread spectrum wireless communication equipment
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2682363B2 (en) Spread spectrum modulation and / or demodulation device
JP3457099B2 (en) Parallel combination spread spectrum transmission and reception system.
JP3074752B2 (en) Minimum displacement modulation wave demodulation circuit
JPH07177057A (en) Spread spectrum modulator and/or demodulator
JP2000091911A (en) Delay phase locked loop circuit for spread spectrum communication device
JP3190808B2 (en) Carrier synchronization circuit
JPH1188290A (en) Spread spectrum communication system
JPH05276143A (en) Signal transmitter
JPH05244117A (en) Multichannel type spread spectrum modem
JPS60171839A (en) Space diversity
JPS61177054A (en) Receiving circuit of phase modulating signal
JPH06120992A (en) Demodulation circuit for digital modulation wave
JPH01208942A (en) Receiver