JPH05226273A - Formation of impurity diffusion area on semiconductor substrate - Google Patents

Formation of impurity diffusion area on semiconductor substrate

Info

Publication number
JPH05226273A
JPH05226273A JP4028693A JP2869392A JPH05226273A JP H05226273 A JPH05226273 A JP H05226273A JP 4028693 A JP4028693 A JP 4028693A JP 2869392 A JP2869392 A JP 2869392A JP H05226273 A JPH05226273 A JP H05226273A
Authority
JP
Japan
Prior art keywords
groove
region
impurity diffusion
semiconductor substrate
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4028693A
Other languages
Japanese (ja)
Inventor
Yuji Suzuki
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4028693A priority Critical patent/JPH05226273A/en
Publication of JPH05226273A publication Critical patent/JPH05226273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To make it possible to easily form an impurity diffusion area for a gate area required to embody an electrostatic induction thyristor which is high in breakdown strength and minimizes continuity loss and whose inverse breakdown strength between a gate and a cathode is high and, what is more, without incurring the generation of an electrode coverage failure. CONSTITUTION:Windows 8 are bored on oxide films on the bottom of a semiconductor substrate grooves 5 formed on the surface and coated with the oxide films including groove inner planes on the groove formation side so as to carry out anisotropic etching, thereby forming new grooves 9. Impurities are implanted from the inside of the new grooves so as to form an impurity diffusion region 12, thereby developing an impurity diffusion region formation method on a semiconductor substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板への不純
物拡散領域形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an impurity diffusion region on a semiconductor substrate.

【0002】[0002]

【従来の技術】従来、有用な半導体装置の一つとして、
図10に示す静電誘導サイリスタが知られている。静電
誘導サイリスタ60は、半導体基板61の表面側にゲー
ト領域(p+ 領域)62とカソード領域(n+ 領域)6
3を備え、裏面側にアノード領域(p+ 領域)64を備
え、カソード領域63とアノード領域64の間に主電流
通路となる高比抵抗領域(n- 領域)65を備えてい
る。そして、ゲート領域62にはゲート電極72が、カ
ソード領域63にはカソード電極73が、そしてアノー
ド領域64にはアノード電極74が、それぞれ設けられ
ている。
2. Description of the Related Art Conventionally, as one of useful semiconductor devices,
The static induction thyristor shown in FIG. 10 is known. The static induction thyristor 60 includes a gate region (p + region) 62 and a cathode region (n + region) 6 on the surface side of the semiconductor substrate 61.
3, a back surface side is provided with an anode region (p + region) 64, and a high specific resistance region (n region) 65 serving as a main current path is provided between the cathode region 63 and the anode region 64. A gate electrode 72 is provided in the gate region 62, a cathode electrode 73 is provided in the cathode region 63, and an anode electrode 74 is provided in the anode region 64.

【0003】静電誘導サイリスタ60は、ゲート電極7
2とカソード電極73の間の電圧を制御することによ
り、主電流を導通・遮断させることが出来、近年、ター
ンオン時間・ターンオフ時間の短い構造のものも考えら
れたりしており、次世代の大電力制御用の半導体装置と
して注目されている。この静電誘導サイリスタ60のゲ
ート領域62の拡散深さL1は、主電流遮断時のカソー
ド・アノード間耐圧(順方向阻止電圧)で主に決まる。
耐圧が高いほどゲート領域62の拡散深さL1は深くな
る。ただ、拡散深さL1が深くなると、それに比例して
ゲート領域62の横方向の拡散距離L2が長くなる。こ
のように耐圧の向上に伴って拡散距離L2が長くなる
と、1ユニットセル当たり(単位面積当たり)に占める
ゲート領域の割合が多くなり、その分、主電流通路(チ
ャネル面積)の占める割合が減少する。主電流通路の占
める割合が減少すると、主電流通路の抵抗が増大しオン
抵抗が上昇するため、導通時の損失が大きくなるという
問題が出てくる。
The electrostatic induction thyristor 60 has a gate electrode 7
By controlling the voltage between the cathode 2 and the cathode electrode 73, the main current can be conducted / interrupted, and in recent years, a structure with a short turn-on time / turn-off time has been considered. It has been attracting attention as a semiconductor device for power control. The diffusion depth L1 of the gate region 62 of the electrostatic induction thyristor 60 is mainly determined by the breakdown voltage between the cathode and the anode (forward blocking voltage) when the main current is cut off.
The higher the breakdown voltage is, the deeper the diffusion depth L1 of the gate region 62 becomes. However, as the diffusion depth L1 becomes deeper, the lateral diffusion distance L2 of the gate region 62 becomes proportionally longer. As the diffusion distance L2 becomes longer as the breakdown voltage is improved, the ratio of the gate region to one unit cell (per unit area) is increased, and the ratio of the main current passage (channel area) is decreased accordingly. To do. When the proportion occupied by the main current path decreases, the resistance of the main current path increases and the on-resistance increases, which causes a problem that the loss during conduction increases.

【0004】そこで、図11にみるように、拡散深さL
1が深くとも拡散距離L2が余り長くならない堀り込み
ゲート型の静電誘導サイリスタ80が考えられた。この
静電誘導サイリスタ80では、半導体基板61のゲート
領域形成域に予め溝81を形成しておいて、この溝81
の内面に対して不純物の導入を行い、ゲート領域82を
形成するようにしている。溝81がある分、拡散時間が
短くてすみ、横方向の拡散距離L2は余り長くならな
い。その結果、耐圧を高くしても、主電流通路の占める
割合がさほど減少せず、オン抵抗の上昇を抑えられる。
Therefore, as shown in FIG. 11, the diffusion depth L
A digging gate type electrostatic induction thyristor 80 in which the diffusion distance L2 does not become too long even if 1 is deep was considered. In this static induction thyristor 80, a groove 81 is previously formed in the gate region formation region of the semiconductor substrate 61, and the groove 81 is formed.
Impurities are introduced into the inner surface of the gate to form the gate region 82. Since the groove 81 is provided, the diffusion time is short, and the lateral diffusion distance L2 is not so long. As a result, even if the breakdown voltage is increased, the proportion occupied by the main current path does not decrease so much, and the increase in ON resistance can be suppressed.

【0005】一方、静電誘導サイリスタでは、ゲート・
カソード間の逆耐圧が大きいことも望まれる。主電流の
高速遮断駆動が可能となるからである。主電流の遮断時
には、高比抵抗領域65内の少数キャリア(正孔)を引
き抜く必要があるが、ゲート・カソード間にかける逆電
圧が高いほど少数キャリアを引き抜く時間が短くなり、
遮断に要する時間が短くなるからである。ゲート・カソ
ード間の逆耐圧向上策の一つに、ゲート領域とカソード
領域の距離を長くすることが挙げられる。
On the other hand, in the electrostatic induction thyristor,
A large reverse breakdown voltage between the cathodes is also desired. This is because the main current can be driven at high speed. When the main current is cut off, it is necessary to extract minority carriers (holes) in the high specific resistance region 65, but the higher the reverse voltage applied between the gate and the cathode, the shorter the time for extracting the minority carriers,
This is because the time required for interruption is shortened. One of the measures for improving the reverse breakdown voltage between the gate and the cathode is to increase the distance between the gate region and the cathode region.

【0006】そこで、図12にみるように、ゲート・カ
ソード間の逆耐圧が大きい静電誘導サイリスタ85が考
えられた。この静電誘導サイリスタ85では、半導体基
板61のゲート領域形成域に予め溝81を形成しておい
て、この溝81の底に開けた窓89から不純物の拡散を
行って半導体基板61の深い部分だけにゲート領域88
を形成し、ゲート領域88とカソード領域63の間の距
離L3を長くするようにしている。
Therefore, as shown in FIG. 12, an electrostatic induction thyristor 85 having a large reverse breakdown voltage between the gate and the cathode was considered. In this static induction thyristor 85, a groove 81 is formed in advance in the gate region formation region of the semiconductor substrate 61, and impurities are diffused through a window 89 formed in the bottom of the groove 81 to deepen the semiconductor substrate 61. Only gate area 88
Is formed to increase the distance L3 between the gate region 88 and the cathode region 63.

【0007】このような耐圧向上を可能とするゲート領
域88は、以下の方法により形成することが出来る。ま
ず、図13にみるように、半導体基板61の表面を覆う
酸化膜90上に所定パターンのレジストマスク91を設
け、選択エッチングを施して溝形成域に窓92を開け、
窓92の開いた酸化膜90をマスクにして異方性エッチ
ングを行い、図14にみるように、溝81を形成する。
溝81の側面は電極のカバレージが良好になるように、
先細りのテーパーが付くようにするのがよい。
The gate region 88 capable of improving the withstand voltage can be formed by the following method. First, as shown in FIG. 13, a resist mask 91 having a predetermined pattern is provided on the oxide film 90 covering the surface of the semiconductor substrate 61, and selective etching is performed to open a window 92 in the groove formation region.
Anisotropic etching is performed using the oxide film 90 with the window 92 opened as a mask to form a groove 81 as shown in FIG.
The side surface of the groove 81 should have good electrode coverage.
It is better to have a tapered taper.

【0008】溝81形成後、酸化処理して溝81の内面
を覆う酸化膜93を形成し全体が酸化膜で覆われた状態
にしてから、図15にみるように、酸化膜90,93の
上にシリコン窒化膜(Si3 4 膜:poly・Si
膜)94を堆積しておいて、マスク無しで異方性エッチ
ングを施し、図16にみるように、窒化シリコン膜94
の溝81の側壁を覆う部分だけを残し、他の部分を除去
する。
After forming the trench 81, an oxidation treatment is performed to form an oxide film 93 covering the inner surface of the trench 81 so that the entire surface is covered with the oxide film. Then, as shown in FIG. Silicon nitride film (Si 3 N 4 film: poly-Si on top)
Film) 94 is deposited and anisotropically etched without a mask, and as shown in FIG. 16, a silicon nitride film 94 is formed.
Only the portion covering the side wall of the groove 81 is left, and the other portions are removed.

【0009】ついで、溝81の側面に残ったシリコン窒
化膜94をマスクにして、図17にみるように、異方性
エッチングで酸化膜93の溝81の底のシリコン窒化膜
94で覆われていない部分を除去し窓89を開ける。酸
化膜90もエッチングされるが、この酸化膜90の厚み
を酸化膜93よりも厚くしておけば半導体基板61表面
が露出することはない。
Then, using the silicon nitride film 94 left on the side surface of the groove 81 as a mask, as shown in FIG. 17, the oxide film 93 is covered with the silicon nitride film 94 at the bottom of the groove 81 by anisotropic etching. The non-existing portion is removed and the window 89 is opened. The oxide film 90 is also etched, but if the oxide film 90 is made thicker than the oxide film 93, the surface of the semiconductor substrate 61 is not exposed.

【0010】窓89を形成した後、図18にみるよう
に、シリコン窒化膜94をエッチングで除去してから、
窓89からp型不純物を導入しゲート領域88となるp
+ 領域(p型不純物拡散領域)を形成するようにする。
上記の不純物拡散領域形成方法で設けたゲート領域88
を備えた静電誘導サイリスタ85は、耐圧が高く、しか
も、導通時の損失が少なく、ゲート・カソード間の逆耐
圧が高くて高速遮断駆動が可能なため、非常に有用であ
る。
After forming the window 89, the silicon nitride film 94 is removed by etching as shown in FIG.
A p-type impurity is introduced through the window 89 to form the gate region 88.
A + region (p-type impurity diffusion region) is formed.
Gate region 88 provided by the above-described impurity diffusion region forming method
The electrostatic induction thyristor 85 provided with is highly useful because it has a high withstand voltage, a small loss during conduction, a high reverse withstand voltage between the gate and the cathode, and a high-speed cutoff drive.

【0011】しかしながら、前述の不純物拡散領域形成
方法の場合、実際にゲート領域を形成することは易しく
ない。というのは、工程が結構に複雑だし、深い溝の底
のシリコン窒化膜や酸化膜を選択的に除去することは難
しいからである。それ以外に、溝81に形成するゲート
電極のカバレージの不良が発生し易いという問題もあ
る。というのは、溝81の形が、図19にみるように先
細りとは逆のテーパ状になったり、図20にみるように
樽状になったりし易く、電極のカバレージの不良が起こ
り易いからである。
However, in the case of the above-mentioned impurity diffusion region forming method, it is not easy to actually form the gate region. This is because the process is quite complicated and it is difficult to selectively remove the silicon nitride film or oxide film at the bottom of the deep groove. In addition to this, there is a problem that defective coverage of the gate electrode formed in the groove 81 is likely to occur. This is because the shape of the groove 81 is apt to have a taper shape opposite to the taper shape as shown in FIG. 19 or a barrel shape as shown in FIG. 20, so that poor coverage of electrodes is apt to occur. Is.

【0012】[0012]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、高耐圧で導通時の損失が少ないだけでなくゲー
ト・カソード間の逆耐圧が高い静電誘導サイリスタを実
現するのに必要なゲート領域用の不純物拡散領域を、容
易に、しかも、電極のカバレージ不良の発生を招来せず
にすむように半導体基板に形成することができる方法を
提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is necessary to realize an electrostatic induction thyristor which has a high breakdown voltage, a small loss during conduction, and a high reverse breakdown voltage between the gate and the cathode. An object of the present invention is to provide a method capable of forming an impurity diffusion region for a gate region on a semiconductor substrate easily and without causing a coverage defect of an electrode.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる半導体基板への不純物拡散領域形
成方法では、表面に溝が形成され溝形成側の面が溝内面
を含めて酸化膜で覆われている半導体基板の前記溝の底
の酸化膜に、窓を開けておいて、異方性エッチングを行
うことにより前記溝の底に新たな溝を形成し、この新た
な溝の内面から不純物を導入し不純物拡散領域を形成す
るようにしている。
In order to solve the above problems, in the method for forming an impurity diffusion region in a semiconductor substrate according to the present invention, a groove is formed on the surface, and the surface on the groove forming side includes an oxide film including the inner surface of the groove. A new groove is formed on the bottom of the groove by opening a window in the oxide film on the bottom of the groove of the semiconductor substrate covered with and anisotropically etching the inner surface of the new groove. Impurities are introduced to form an impurity diffusion region.

【0014】この発明の場合、加えて、窓の大きさが、
溝の底面の大きさより小さ目であるのが好ましい。そし
て、この発明で形成する対象の不純物拡散領域として
は、静電誘導サイリスタのゲート領域用の不純物拡散領
域が挙げられるが、これに限らないことは言うまでもな
い。
In the case of the present invention, in addition, the size of the window is
It is preferably smaller than the size of the bottom surface of the groove. The impurity diffusion region to be formed according to the present invention includes the impurity diffusion region for the gate region of the static induction thyristor, but it goes without saying that it is not limited to this.

【0015】[0015]

【作用】この発明にかかる方法の場合、溝の形成を深さ
方向に2回に分けて行っている。すなわち、最初の溝の
底に後の溝が形成されていて、最初の溝の側面は酸化膜
で覆われており、後の(新たな)溝の内面だけから不純
物の導入を行って不純物拡散領域を形成している。
In the method according to the present invention, the groove is formed twice in the depth direction. That is, the latter groove is formed on the bottom of the first groove, the side surface of the first groove is covered with an oxide film, and impurities are introduced only from the inner surface of the latter (new) groove to diffuse impurities. Forming a region.

【0016】不純物の拡散時間は、溝を掘り下げた分だ
け短くなり、これに従い、横方向の拡散距離が短くなる
ため、ゲート領域の占有割合の増大が抑えられ、主電流
路のオン抵抗の増加を招かずに耐圧を向上させられる。
それに、完成した不純物拡散領域は深い方に位置する後
の溝の近傍に形成されており、半導体基板の表面からは
離れている。その結果、この不純物拡散領域を、静電誘
導サイリスタのゲート領域とした場合には、半導体基板
の表面に形成するカソード領域との間の距離は長くな
り、ゲート・カソード間の逆耐圧が高くなる。
The impurity diffusion time is shortened by the depth of the trench, and accordingly the lateral diffusion distance is shortened, so that the increase of the occupation ratio of the gate region is suppressed and the on-resistance of the main current path is increased. Withstand voltage can be improved without causing
In addition, the completed impurity diffusion region is formed in the vicinity of the rear trench located deeper, and is separated from the surface of the semiconductor substrate. As a result, when the impurity diffusion region is used as the gate region of the electrostatic induction thyristor, the distance between the impurity diffusion region and the cathode region formed on the surface of the semiconductor substrate becomes long, and the reverse breakdown voltage between the gate and the cathode becomes high. ..

【0017】この発明の方法の場合、後の溝の底に窓を
設ける必要はなく、浅い位置にある最初の溝の底に後の
溝形成用の窓を設けるだけでよい。浅い位置にある最初
の溝の底に窓を開ける場合、マスク形成が容易である
し、エッチングも楽であって、何らの困難性もない。従
来のように、深い位置にある溝の底に窓を開ける場合
は、シリコン窒化膜を使った複雑なマスク形成工程が必
要だし、エッチングも余り楽でない。
In the case of the method of the present invention, it is not necessary to provide a window at the bottom of the subsequent groove, only the window for forming the subsequent groove is provided at the bottom of the first groove at the shallow position. When a window is opened at the bottom of the first groove at a shallow position, mask formation is easy, etching is easy, and there is no difficulty. When opening a window at the bottom of a groove at a deep position as in the conventional case, a complicated mask forming process using a silicon nitride film is required, and etching is not so easy.

【0018】それに、溝を深さ方向に2回に分けて形成
する場合、各溝の深さが浅いため、各回の異方性エッチ
ング時間が短く、エッチング条件が不安定であっても、
溝に現れる変動量が少なくなるため、溝の形状不良の程
度は、溝の形成を1回で行う場合に比べてずっと小さく
て、溝に後で形成する電極のカバレージ不良が起こり難
くなる。
In addition, when the groove is formed twice in the depth direction, since the depth of each groove is shallow, the anisotropic etching time for each time is short and the etching conditions are unstable.
Since the amount of variation that appears in the groove is small, the degree of the defective shape of the groove is much smaller than that in the case where the formation of the groove is performed once, and the coverage failure of the electrode formed later in the groove is less likely to occur.

【0019】加えて、最初の溝の底の酸化膜に開ける窓
の大きさが、溝の底面の大きさより小さ目であれば、後
の溝が最初の溝より狭くなり、最初の溝と後の溝を合わ
せた溝全体の形状が先細り的な形状となるため、電極の
カバレージ不良がより起こり難くなる。
In addition, if the size of the window formed in the oxide film on the bottom of the first groove is smaller than the size of the bottom surface of the groove, the subsequent groove will be narrower than the first groove, and the first groove and the latter groove. Since the shape of the entire groove including the grooves is tapered, defective coverage of the electrode is less likely to occur.

【0020】[0020]

【実施例】以下、この発明の実施例を説明する。この発
明は下記の実施例に限らないことは言うまでもない。こ
の実施例では静電誘導サイリスタのゲート領域用の不純
物拡散領域を形成する。まず、図2にみるように、半導
体基板1の表面を覆う酸化膜2上に所定パターンのレジ
ストマスク3を設け、図3にみるように、異方性エッチ
ングを行い酸化膜2に溝形成域に窓4を開けたあとレジ
ストマスク3を除去する。そして、図4にみるように、
窓4の開いた酸化膜2をマスクにして異方性エッチング
を行い、溝5を形成する。この溝5の深さは後の溝の底
と表面の間の距離の半分程度でよい。
Embodiments of the present invention will be described below. Needless to say, the present invention is not limited to the following embodiments. In this embodiment, an impurity diffusion region for the gate region of the static induction thyristor is formed. First, as shown in FIG. 2, a resist mask 3 having a predetermined pattern is provided on the oxide film 2 covering the surface of the semiconductor substrate 1, and anisotropic etching is performed as shown in FIG. After opening the window 4 in the above, the resist mask 3 is removed. Then, as shown in FIG.
Anisotropic etching is performed using the oxide film 2 having the window 4 opened as a mask to form a groove 5. The depth of the groove 5 may be about half the distance between the bottom and the surface of the groove later.

【0021】続いて、図5にみるように、酸化処理して
溝5の内面も酸化膜6で覆い、その後、図6にみるよう
に、レジストマスク7を形成する。半導体基板1の溝形
成側にレジスト剤を塗布しパターン化するのである。溝
5が浅いため、レジストマスク7の形成は何ら問題なく
容易である。特に、溝5のアスペクト比(溝5の深さL
A/溝5の底の幅LB)が1以下であれば、レジストマ
スク7の形成(パターン化)が易しくなる。
Subsequently, as shown in FIG. 5, oxidation treatment is performed to cover the inner surface of the groove 5 with the oxide film 6, and then a resist mask 7 is formed as shown in FIG. A resist agent is applied to the groove forming side of the semiconductor substrate 1 to form a pattern. Since the groove 5 is shallow, the resist mask 7 can be easily formed without any problem. In particular, the aspect ratio of the groove 5 (the depth L of the groove 5
If A / the width LB of the bottom of the groove 5 is 1 or less, the formation (patterning) of the resist mask 7 becomes easy.

【0022】このように、レジストマスク7を形成して
おいて、図7にみるように、エッチングし溝5の底の酸
化膜6に窓8を開ける。この窓8は、図6にみるよう
に、溝5の底面の大きさよりも小さ目である。レジスト
マスク7の略幅分だけ狭くなっている。窓8の形成後、
再び異方性エッチングを行い、図8にみるように、新た
な溝9を形成する。この溝9のアスペクト比(溝9の深
さLC/溝9の底の幅LD)は、例えば、1.3程度と
する。
In this way, the resist mask 7 is formed, and as shown in FIG. 7, etching is performed to open a window 8 in the oxide film 6 at the bottom of the groove 5. The window 8 is smaller than the size of the bottom surface of the groove 5, as shown in FIG. It is narrowed by the width of the resist mask 7. After forming the window 8,
Anisotropic etching is performed again to form a new groove 9 as shown in FIG. The aspect ratio of the groove 9 (depth LC of the groove 9 / width LD of the bottom of the groove 9) is, eg, about 1.3.

【0023】新たな溝9を形成した後、図9にみるよう
に、溝9の内面からp型不純物を導入しゲート領域12
用のp+ 領域(p型不純物拡散領域)を完成する。図1
は、上に説明した半導体基板への不純物拡散領域形成方
法で形成したゲート領域を備えた静電誘導サイリスタを
あらわす。ゲート領域以外の部分は、通常の方法に従っ
て形成されている。この静電誘導サイリスタについて、
以下に説明する。
After forming the new trench 9, as shown in FIG. 9, p-type impurities are introduced from the inner surface of the trench 9 to form the gate region 12.
To complete the p + region (p-type impurity diffusion region). Figure 1
Represents an electrostatic induction thyristor having a gate region formed by the method for forming an impurity diffusion region in a semiconductor substrate described above. The portion other than the gate region is formed according to a usual method. About this static induction thyristor,
This will be described below.

【0024】静電誘導サイリスタ10は、半導体基板1
の深い位置にゲート領域(p+ 領域)12を備えるとと
もに表面部分にカソード領域(n+ 領域)13を備え、
裏面側にアノード領域(p+ 領域)14を備え、カソー
ド領域13とアノード領域14の間に主電流通路となる
高比抵抗領域(n- 領域)15を備えている。そして、
ゲート領域12にはゲート電極22が、カソード領域1
3にはカソード電極23が、そしてアノード領域14に
はアノード電極24が、それぞれ設けられている。
The electrostatic induction thyristor 10 is a semiconductor substrate 1.
The gate region (p + region) 12 at a deep position of the cathode region and the cathode region (n + region) 13 at the surface portion,
An anode region (p + region) 14 is provided on the back surface side, and a high specific resistance region (n region) 15 serving as a main current path is provided between the cathode region 13 and the anode region 14. And
A gate electrode 22 is provided in the gate region 12 and a cathode region 1 is provided.
3 is provided with a cathode electrode 23, and the anode region 14 is provided with an anode electrode 24.

【0025】静電誘導サイリスタ10は、ゲート電極2
2とカソード電極23の間の電圧を制御することによ
り、主電流を導通・遮断できるようになっている。この
静電誘導サイリスタ10のゲート領域12の先端が基板
深くに達しているため、カソード・アノード間の耐圧が
高く、しかも、溝5,9を形成して不純物の導入を行っ
ているため、横方向の拡散距離が短くて導通時の損失が
少ない。それに、不純物の導入が深い位置の溝9の内面
からだけ導入されていて、カソード領域13とゲート領
域12の間の距離L3が長いために、ゲート・カソード
間の逆耐圧が高くて高速遮断駆動が可能である。そし
て、このような利点を生むゲート領域12の形成は容易
であり、溝5,9の中に形成されたゲート電極22のカ
バレージが良好であることは前述の通りである。
The electrostatic induction thyristor 10 has a gate electrode 2
By controlling the voltage between the cathode 2 and the cathode electrode 23, the main current can be conducted or interrupted. Since the tip of the gate region 12 of the electrostatic induction thyristor 10 reaches deep in the substrate, the breakdown voltage between the cathode and the anode is high, and the grooves 5 and 9 are formed to introduce impurities. The diffusion distance in the direction is short, and the loss during conduction is small. In addition, since impurities are introduced only from the inner surface of the groove 9 at a deep position and the distance L3 between the cathode region 13 and the gate region 12 is long, the reverse breakdown voltage between the gate and the cathode is high and the high-speed cutoff drive is performed. Is possible. As described above, it is easy to form the gate region 12 that produces such an advantage, and the coverage of the gate electrode 22 formed in the trenches 5 and 9 is good.

【0026】[0026]

【発明の効果】以上に述べたように、この発明にかかる
不純物拡散領域形成方法の場合、最初の溝の底に後の溝
を形成する2段階法であり、最初の溝の側面が酸化膜で
覆われている状態で後の溝の内面だけから不純物の導入
を行うため、不純物の横方向の拡散距離が短く、完成し
た不純物拡散領域は半導体基板の表面から離れており、
しかも、実施困難な工程も無く、さらに、溝の形状不良
の程度はずっと小さくなるため、高耐圧で導通時の損失
が少ないだけでなくゲート・カソード間の逆耐圧が高い
静電誘導サイリスタを実現するのに必要なゲート領域用
の不純物拡散領域を、容易に、しかも、電極のカバレー
ジ不良の発生を招来せずにすむように半導体基板に形成
することができる。
As described above, the impurity diffusion region forming method according to the present invention is a two-step method in which a second groove is formed at the bottom of the first groove, and the side surface of the first groove is an oxide film. Since the impurities are introduced only from the inner surface of the groove after being covered with, the lateral diffusion distance of the impurities is short, and the completed impurity diffusion region is separated from the surface of the semiconductor substrate.
Moreover, since there are no difficult steps to perform and the extent of groove shape defects is much smaller, a static induction thyristor with a high breakdown voltage, low loss during conduction, and high reverse breakdown voltage between the gate and cathode is realized. The impurity diffusion region for the gate region necessary for this can be easily formed in the semiconductor substrate without causing the occurrence of the coverage defect of the electrode.

【0027】また、加えて、最初の溝の底の酸化膜に開
ける窓の大きさが、溝の底面の大きさより小さ目であれ
ば、溝全体の形状が先細り的な形状となるため、溝に後
で形成する電極のカバレージ不良がより起こり難くなる
という利点がある。
In addition, if the size of the window formed in the oxide film at the bottom of the first groove is smaller than the size of the bottom surface of the groove, the entire shape of the groove becomes a tapered shape. There is an advantage that the coverage failure of the electrode formed later becomes less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法の一例を利用して製造した静電
誘導サイリスタの要部構成をあらわす断面図である。
FIG. 1 is a cross-sectional view showing a main part configuration of an electrostatic induction thyristor manufactured by using an example of the method of the present invention.

【図2】この発明の方法の一例での酸化膜上へのマスク
形成工程を示す断面図である。
FIG. 2 is a sectional view showing a mask forming step on an oxide film in an example of the method of the present invention.

【図3】この発明の方法の一例での酸化膜の窓開け工程
を示す断面図である。
FIG. 3 is a cross-sectional view showing a step of opening an oxide film window in an example of the method of the present invention.

【図4】この発明の方法の一例での最初の溝形成工程を
示す断面図である。
FIG. 4 is a sectional view showing a first groove forming step in an example of the method of the present invention.

【図5】この発明の方法の一例での最初の溝内面の酸化
工程を示す断面図である。
FIG. 5 is a cross-sectional view showing the first step of oxidizing the inner surface of the groove in the example of the method of the present invention.

【図6】この発明の方法の一例での最初の溝へのマスク
形成工程を示す断面図である。
FIG. 6 is a cross-sectional view showing a mask forming step for the first groove in the example of the method of the present invention.

【図7】この発明の方法の一例での最初の溝の底の窓開
け工程を示す断面図である。
FIG. 7 is a cross-sectional view showing a window opening process for the bottom of the first groove in the example of the method of the present invention.

【図8】この発明の方法の一例での新たな溝の形成工程
を示す断面図である。
FIG. 8 is a sectional view showing a step of forming a new groove in an example of the method of the present invention.

【図9】この発明の方法の一例での新たな溝への不純物
導入工程を示す断面図である。
FIG. 9 is a cross-sectional view showing a step of introducing impurities into a new groove in the example of the method of the present invention.

【図10】従来の静電誘導サイリスタをあらわす断面図で
ある。
FIG. 10 is a cross-sectional view showing a conventional static induction thyristor.

【図11】埋め込みゲート型の静電誘導サイリスタをあら
わす断面図である。
FIG. 11 is a cross-sectional view showing an embedded gate type static induction thyristor.

【図12】他の埋め込みゲート型の静電誘導サイリスタを
あらわす断面図である。
FIG. 12 is a cross-sectional view showing another embedded gate type static induction thyristor.

【図13】従来法での酸化膜の窓開け工程を示す断面図で
ある。
FIG. 13 is a cross-sectional view showing a step of opening a window of an oxide film by a conventional method.

【図14】従来法での溝形成工程を示す断面図である。FIG. 14 is a cross-sectional view showing a groove forming step by a conventional method.

【図15】従来法でのマスク用のシリコン窒化膜積層工程
を示す断面図である。
FIG. 15 is a cross-sectional view showing a silicon nitride film laminating step for a mask in a conventional method.

【図16】従来法でのシリコン窒化膜マスク形成工程を示
す断面図である。
FIG. 16 is a cross-sectional view showing a silicon nitride film mask forming step by a conventional method.

【図17】従来法での溝の底の窓開け工程を示す断面図で
ある。
FIG. 17 is a cross-sectional view showing a step of opening a window at the bottom of a groove by a conventional method.

【図18】従来法での溝の底への不純物導入工程を示す断
面図である。
FIG. 18 is a cross-sectional view showing a step of introducing impurities into the bottom of a groove by a conventional method.

【図19】従来法における形状不良の溝を示す断面図であ
る。
FIG. 19 is a cross-sectional view showing a groove having a defective shape in a conventional method.

【図20】従来法における他の形状不良の溝を示す断面図
である。
FIG. 20 is a cross-sectional view showing another groove having a defective shape in the conventional method.

【符号の説明】[Explanation of symbols]

1 半導体基板 5 溝 9 新たな溝 12 不純物拡散領域(ゲート領域) 1 semiconductor substrate 5 groove 9 new groove 12 impurity diffusion region (gate region)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に溝が形成され溝形成側の面が溝内
面を含めて酸化膜で覆われている半導体基板の前記溝の
底の酸化膜に、窓を開けておいて、異方性エッチングを
行うことにより前記溝の底に新たな溝を形成し、この新
たな溝の内面から不純物を導入し不純物拡散領域を形成
するようにする半導体基板への不純物拡散領域形成方
法。
1. An anisotropic method in which a window is opened in the oxide film at the bottom of the groove of a semiconductor substrate in which a groove is formed on the surface and the surface on the groove formation side is covered with the oxide film including the inner surface of the groove A method for forming an impurity diffusion region in a semiconductor substrate, in which a new groove is formed at the bottom of the groove by performing a selective etching, and impurities are introduced from the inner surface of the new groove to form an impurity diffusion region.
【請求項2】 窓の大きさが、溝の底面の大きさより小
さ目である請求項1記載の半導体基板への不純物拡散領
域形成方法。
2. The method for forming an impurity diffusion region in a semiconductor substrate according to claim 1, wherein the size of the window is smaller than the size of the bottom surface of the groove.
JP4028693A 1992-02-15 1992-02-15 Formation of impurity diffusion area on semiconductor substrate Pending JPH05226273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4028693A JPH05226273A (en) 1992-02-15 1992-02-15 Formation of impurity diffusion area on semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4028693A JPH05226273A (en) 1992-02-15 1992-02-15 Formation of impurity diffusion area on semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH05226273A true JPH05226273A (en) 1993-09-03

Family

ID=12255563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028693A Pending JPH05226273A (en) 1992-02-15 1992-02-15 Formation of impurity diffusion area on semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH05226273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010468A1 (en) * 1996-09-05 1998-03-12 Northrop Grumman Corporation Static induction transistors
WO1998012756A1 (en) * 1996-09-19 1998-03-26 Ngk Insulators, Ltd. Semiconductor device and process for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010468A1 (en) * 1996-09-05 1998-03-12 Northrop Grumman Corporation Static induction transistors
WO1998012756A1 (en) * 1996-09-19 1998-03-26 Ngk Insulators, Ltd. Semiconductor device and process for manufacturing the same
EP0862222A1 (en) * 1996-09-19 1998-09-02 Ngk Insulators, Ltd. Semiconductor device and process for manufacturing the same
EP0862222A4 (en) * 1996-09-19 1999-12-01 Ngk Insulators Ltd Semiconductor device and process for manufacturing the same
US6075269A (en) * 1996-09-19 2000-06-13 Ngk Insulators, Ltd. Semiconductor device and process for manufacturing the same

Similar Documents

Publication Publication Date Title
EP1160852B1 (en) Method of fabricating a trenched semiconductor device
KR100205320B1 (en) Mosfet and fabrication thereof
KR0144165B1 (en) Improved Manufacturing Method of Inverse Tee (T) Transistor
US6528355B2 (en) Method for fabricating a trench MOS power transistor
US6713333B2 (en) Method for fabricating a MOSFET
JPH05109758A (en) Manufacture of mosfet
US4859620A (en) Graded extended drain concept for reduced hot electron effect
JP2008251620A (en) Semiconductor device and manufacturing method therefor
JP2810821B2 (en) Semiconductor device and manufacturing method thereof
US7226872B2 (en) Lightly doped drain MOS transistor
JP2623635B2 (en) Bipolar transistor and method of manufacturing the same
JPH10107267A (en) Field-effect transistor and its manufacture
JPH05198569A (en) Manufacture of field oxide region
KR100362873B1 (en) Semiconductor device capable of reducing dispersion in electrical characteristics and operating at high speed and method for fabricating the same
JPH05226273A (en) Formation of impurity diffusion area on semiconductor substrate
JP3189576B2 (en) Semiconductor device
JPS59144175A (en) Manufacture of field effect transistor
JPH11191622A (en) Fabrication of semiconductor device
JPH0465549B2 (en)
JPH07297393A (en) Semiconductor device and manufacture thereof
KR20010083626A (en) Transistor forming method
JPH06177146A (en) Manufacture of mosfet
KR0167671B1 (en) Method of making thin film transistor
US20030190787A1 (en) Process for realizing a channel scaled and small body gradient VDMOS for high current densities and low driving voltages
KR100235980B1 (en) Manufacturing method of mosfet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100310

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees