JPH0522050A - Complementary amplifier circuit - Google Patents

Complementary amplifier circuit

Info

Publication number
JPH0522050A
JPH0522050A JP19858391A JP19858391A JPH0522050A JP H0522050 A JPH0522050 A JP H0522050A JP 19858391 A JP19858391 A JP 19858391A JP 19858391 A JP19858391 A JP 19858391A JP H0522050 A JPH0522050 A JP H0522050A
Authority
JP
Japan
Prior art keywords
transistors
amplifier circuit
transistor
base
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19858391A
Other languages
Japanese (ja)
Other versions
JP3180821B2 (en
Inventor
Jun Hirai
井 順 平
Kuniya Araki
木 邦 彌 荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N F KAIRO SEKKEI BLOCK KK
Original Assignee
N F KAIRO SEKKEI BLOCK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N F KAIRO SEKKEI BLOCK KK filed Critical N F KAIRO SEKKEI BLOCK KK
Priority to JP19858391A priority Critical patent/JP3180821B2/en
Publication of JPH0522050A publication Critical patent/JPH0522050A/en
Application granted granted Critical
Publication of JP3180821B2 publication Critical patent/JP3180821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To stabilize operations by compensating the deviation of symmetry based on the characteristic non-coincidence of positive and negative transistors by adjusting a resistance value connected to the bases of the respective transistors. CONSTITUTION:An emitter follower amplifier circuit is constituted by connecting the emitters of an NPN transistor 1 and a PNP transistor 2 through output resistors R1 and R2 and connecting a load RL to the connecting point of output resistors R01 and R02. The DC operating point of the transistors 1 and 2 is set by connecting a constant voltage source V1 through a resistor RB1 to the base of the NPN transistor 1 and connecting a constant voltage source V2 through a resistor RB2 to the base of the PNP transistor 2. DC voltage sources V3 and V4 are respectively connected to the collectors of the transistors 1 and 2, and AC signals from a signal source 3 are amplified by the transistors 1 and 2 and supplied through the output resistors R01 and R02 to the load RL. Therefore, the characteristic dispersion of the transistors 1 and 2 is compensated by adjusting the resistance value of the resistors R01 and R02.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、コンプリメンタリ増幅
回路に関し、特に正負トランジスタの特性バラツキに起
因する特性劣化を防止するコンプリメンタリ増幅回路に
関する。 【0002】 【従来の技術】従来のコンプリメンタリ増幅回路とし
て、NPNトランジスタとPNPトランジスタのエミッ
タ間が直列接続された2つの出力抵抗を介して接続さ
れ、この2つの出力抵抗の接続点に負荷を接続するコン
プリメンタリエミッタフォロア増幅回路がある。これら
NPNトランジスタと、PNPトランジスタのベースに
は直流定電圧が供給されて、両トランジスタの直流動作
点が設定され、信号源からの交流信号が、NPNトラン
ジスタとPNPトランジスタで増幅され、それらのエミ
ッタに接続された負荷に供給されるように構成されてい
る。 【0003】 【発明が解決しようとする課題】上述のように、従来の
コンプリメンタリ増幅回路は、一対の正負(NPNとP
NP)のトランジスタのエミッタ間を接続し、この接続
点から負荷に出力電流を供給するものであり、正負トラ
ンジスタの動作特性の対称性が確保されている場合には
高性能な増幅特性が得られる。 【0004】しかしながら、一対の正負トランジスタの
特性の完全な対称性は通常得られず、製造過程、材料不
均一性等、種々原因により両特性には違いがある。この
ような特性対称性のズレは、両トランジスタのエミッタ
間に短絡電流を発生させ、消費電流が増大してしまい、
トランジスタの発熱が生ずる。また、上記対称性のズレ
は、低周波数動作においては、大きな問題とはならない
が、高周波数帯域での動作の際には以下に述べるような
問題が生ずる。すなわち、各トランジスタのベース・コ
レクタ間およびベース・エミッタ間には浮遊容量が存在
し、この浮遊容量の違いが両トランジスタの特性バラツ
キとなる。ベースに接続された抵抗やトランジスタ内部
のベースに形成される抵抗は、これらの浮遊容量との間
でローパスフィルタを構成する。 【0005】したがって、2つのトランジスタのそれぞ
れの浮遊容量が異なると、上記ローパスフィルタの遮断
周波数に違いが生ずる。これら遮断周波数よりも充分低
い周波数の入力信号に対しては出力電流に影響は及ぼさ
ないが、遮断周波数に近い高周波入力信号に対しては、
フィルタ特性の違いに起因して各トランジスタの出力電
圧に差が生じ、このため短絡電流が流れ、消費電流が増
大してしまう。短絡電流が増大すると、各トランジスタ
は、負荷電流に加えてこの短絡電流をも供給しなければ
ならず、過度な動作を強いられてしまい、動作が不安定
となるばかりでなく、出力信号の波形にもひずみが生ず
るという問題がある。以上のような問題は、一対のトラ
ンジスタから成るコンプリメンタリ増幅回路を多段構成
して使用する場合、ドライブ段のようにそれぞれの出力
が低インピーダンスで接続されるようなときに、その影
響がより顕著になってくる。 【0006】そこで、本発明の目的は、一対のトランジ
スタの特性バラツキに起因する短絡電流を除去するとと
もに高周波においても安定に動作するコンプリメンタリ
増幅回路を提供することにある。 【0007】 【課題を解決するための手段】前述の課題を解決するた
め、本発明によるコンプリメンタリ増幅回路は、正負の
一対のトランジスタのそれぞれのベースに接続されたベ
ース抵抗を介して入力信号が供給され、増幅された出力
信号を負荷に供給するコンプリメンタリ増幅回路におい
て、前記一対のトランジスタに接続されたベース抵抗と
前記一対のトランジスタのベースに等価的に接続されて
いる容量との積が各トランジスタにおいて等しく設定さ
れている。 【0008】 【作用】本発明では、正負の一対のトランジスタの間の
特性のバラツキを各トランジスタに接続されるベース抵
抗の値を調整して補償することによって、コンプリメン
タリ増幅回路の高精度な対称性が維持されることによ
り、高周波入力における短絡電流を激減して、安定な動
作を得ている。 【0009】 【実施例】次に、本発明について図面を参照しながら説
明する。図1は、本発明によるコンプリメンタリ増幅回
路の一実施例を示す回路図である。NPNトランジスタ
1とPNPトランジスタ2のエミッタ間が出力抵抗R1
とR2を介して接続され、出力抵抗RO1とRO2の接続点
に負荷RLが接続され、エミッタフォロワ増幅回路を構
成する。NPNトランジスタ1のベースには抵抗RB1
介して定電圧源V1が接続され、PNPトランジスタ2
のベースには抵抗RB2を介して定電圧源V2が接続され
て、トランジスタ1と2の直流的な動作点を設定されて
いる。また、トランジスタ1と2のコレクタには直流電
圧源V3とV4がそれぞれ接続されている。信号源3か
らの交流信号は、トランジスタ1と2で増幅され、出力
抵抗RO1とRO2を介して負荷RLに供給される。 【0010】図1に示されるコンプリメンタリ増幅回路
の等価回路が図2に示されている。図2において、トラ
ンジスタ1の増幅機能はアンプ1Aで、トランジスタ2
の増幅機能がアンプ2Aで表され、トランジスタ1と2
に存在する浮遊容量がC1とC2で表されている。この
場合はベースとコレクタ間の浮遊容量がトランジスタ特
性に大きく寄与するので、この浮遊容量がC1とC2で
表される。尚、図中では、トランジスタ内部のベース抵
抗は無視できるので省略してある。前述のように、一対
のトランジスタによる増幅系のそれぞれには、抵抗RB1
と浮遊容量C1とで構成される第1のフィルタと、抵抗
B2と浮遊容量C2とで構成される第2のフィルタとが
構成されている。入力信号の周波数が、これらフィルタ
の遮断周波数よりも充分低い場合には、影響は大きくな
いが、入力信号周波数が上記遮断周波数に近付くと、ト
ランジスタ1と2の出力には電圧差が生じ、双方の出力
間に短絡電流が流れてしまう。 【0011】本発明では、上述一対のトランジスタの特
性のバラツキを各トランジスタのベースに接続されるベ
ース抵抗の抵抗値を調整して、各浮遊容量の差を補償し
て、つまり、上記2つのフィルタの遮断周波数を同一と
し、結果的に両トランジスタの特性の対称性を確保し、
出力間の短絡電流の発生を阻止している。このベース抵
抗の最適値設定は、理論的に求めることもできるし、実
験的に求めることもできる。 【0012】図3は、本発明の他の実施例を示すコンプ
リメンタリコレクタ出力増幅回路図である。PNPトラ
ンジスタ21とNPNトランジスタ22のエミッタとベ
ース間には定電圧源V1とV2が接続され、各トランジ
スタの直流的な動作点が設定されている。トランジスタ
21のベースとエミッタ間にはベース抵抗RB3を介して
信号源23から入力信号が供給され、トランジスタ22
のベースとエミッタ間にはベース抵抗RB4を介して信号
源24から入力信号が供給される。両トランジスタ21
と22のコレクタ間が接続され、負荷抵抗RLに出力電
流が流れる。 【0013】図4は、図3に示すコンプリメンタリ増幅
回路の等価回路図であり、トランジスタ21と22の増
幅機能をアンプ21Aと22Aで示し、各トランジスタ
21と22の特性に影響を与える浮遊容量をそれぞれC
3とC4で示している。かかる構成において、信号源2
0からの入力信号は、ベース抵抗RB3とRB4を介してア
ンプ21Aと22Aで増幅され、コレクタ出力抵抗RO3
とRO4を介して負荷RLに供給される。本実施例におい
ても、浮遊容量C3とC4の違いは、ベース抵抗RB3
B4の抵抗値を調整することにより補償することがで
き、両トランジスタの特性の対称性が維持される。以上
の実施例においては、使用される一対の正負トランジス
タは、PNPトランジスタとNPNトランジスタであっ
たが、かかる種類のトランジスタに限らず、FET等の
トランジスタについても本発明が適用できることは勿論
である。 【0014】 【発明の効果】以上説明したように、本発明によるコン
プリメンタリ増幅回路は、正負トランジスタの特性不一
致に基づく対称性のズレを各トランジスタのベースに接
続される抵抗値を調整することによって補償しているの
で、コンプリメンタリ増幅回路の高精度な対称性が維持
され、高周波入力においても短絡電流の発生が著しく軽
減され、過渡特性の大幅な改善やひずみや異常な発振現
象を抑制でき、安定な動作が得られる。また、基板パタ
ーンや配線により生ずる浮遊容量も同様の原理により併
せて補償することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a complementary amplifier circuit, and more particularly to a complementary amplifier circuit which prevents characteristic deterioration due to characteristic variations of positive and negative transistors. As a conventional complementary amplifier circuit, the emitters of an NPN transistor and a PNP transistor are connected through two output resistors connected in series, and a load is connected to the connection point of these two output resistors. There is a complementary emitter follower amplifier circuit. A constant DC voltage is supplied to the bases of the NPN transistor and the PNP transistor to set the DC operating points of both transistors, and the AC signal from the signal source is amplified by the NPN transistor and the PNP transistor, and their emitters are supplied to their emitters. It is configured to supply the connected load. As described above, the conventional complementary amplifier circuit has a pair of positive and negative electrodes (NPN and P).
NP) is connected between the emitters of the transistors, and an output current is supplied from this connection point to the load. When the symmetry of the operating characteristics of the positive and negative transistors is ensured, high-performance amplification characteristics are obtained. .. However, a perfect symmetry of the characteristics of the pair of positive and negative transistors is not usually obtained, and there are differences between the two characteristics due to various causes such as the manufacturing process and material nonuniformity. Such a deviation in characteristic symmetry causes a short-circuit current between the emitters of both transistors, resulting in an increase in current consumption.
The transistor heat is generated. Further, the above-mentioned symmetry deviation does not pose a serious problem in low frequency operation, but the following problems occur in operation in a high frequency band. That is, stray capacitance exists between the base and collector and between the base and emitter of each transistor, and the difference in stray capacitance causes characteristic variations between both transistors. The resistance connected to the base and the resistance formed in the base inside the transistor form a low-pass filter with these stray capacitances. Therefore, if the stray capacitances of the two transistors are different, the cutoff frequency of the low-pass filter is different. Output current is not affected for input signals with frequencies sufficiently lower than these cutoff frequencies, but for high frequency input signals close to the cutoff frequency,
Due to the difference in filter characteristics, a difference occurs in the output voltage of each transistor, which causes a short-circuit current to flow, resulting in an increase in current consumption. As the short-circuit current increases, each transistor must supply this short-circuit current in addition to the load current, which forces excessive operation, resulting in unstable operation and a waveform of the output signal. However, there is a problem that distortion occurs. The problems described above are more noticeable when using a multi-stage complementary amplification circuit consisting of a pair of transistors when the outputs are connected with low impedance like a drive stage. Is coming. Therefore, an object of the present invention is to provide a complementary amplifier circuit which eliminates a short circuit current due to characteristic variations of a pair of transistors and operates stably even at high frequencies. In order to solve the above-mentioned problems, a complementary amplifier circuit according to the present invention supplies an input signal via a base resistor connected to each base of a pair of positive and negative transistors. In the complementary amplifier circuit that supplies the amplified output signal to the load, the product of the base resistance connected to the pair of transistors and the capacitance equivalently connected to the bases of the pair of transistors is equal in each transistor. Are set equal. According to the present invention, the characteristic variation between a pair of positive and negative transistors is compensated by adjusting the value of the base resistance connected to each transistor, whereby the highly accurate symmetry of the complementary amplifier circuit is obtained. By maintaining, the short-circuit current at the high frequency input is drastically reduced and stable operation is obtained. The present invention will now be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a complementary amplifier circuit according to the present invention. Output resistance R1 is between the emitters of NPN transistor 1 and PNP transistor 2.
And R2, and the load R L is connected to the connection point between the output resistors R O1 and R O2 , forming an emitter follower amplifier circuit. A constant voltage source V1 is connected to the base of the NPN transistor 1 via a resistor R B1 , and the PNP transistor 2 is connected.
A constant voltage source V2 is connected to the base of the transistor through a resistor R B2 to set the DC operating points of the transistors 1 and 2. Direct current voltage sources V3 and V4 are connected to the collectors of the transistors 1 and 2, respectively. The AC signal from the signal source 3 is amplified by the transistors 1 and 2 and supplied to the load R L via the output resistors R O1 and R O2 . An equivalent circuit of the complementary amplifier circuit shown in FIG. 1 is shown in FIG. In FIG. 2, the amplifying function of the transistor 1 is the amplifier 1A and the amplifying function of the transistor 2 is
The amplification function of is represented by amplifier 2A, and transistors 1 and 2
The stray capacitances existing at 1 are represented by C1 and C2. In this case, since the stray capacitance between the base and the collector greatly contributes to the transistor characteristics, the stray capacitance is represented by C1 and C2. In the figure, the base resistance inside the transistor is negligible and is omitted. As described above, the resistor R B1 is provided in each of the amplification systems formed by the pair of transistors.
And a stray capacitance C1 and a second filter constituted by a resistor R B2 and a stray capacitance C2. When the frequency of the input signal is sufficiently lower than the cutoff frequencies of these filters, the influence is not so large, but when the input signal frequency approaches the cutoff frequency, a voltage difference occurs between the outputs of the transistors 1 and 2, and Short-circuit current will flow between the outputs of. According to the present invention, the variation of the characteristics of the pair of transistors is adjusted by adjusting the resistance value of the base resistance connected to the bases of the respective transistors to compensate for the difference between the respective stray capacitances, that is, the above two filters. The cut-off frequency of is the same, and as a result, the symmetry of the characteristics of both transistors is secured,
It prevents the occurrence of short circuit current between outputs. The optimum value setting of the base resistance can be obtained theoretically or experimentally. FIG. 3 is a complementary collector output amplifier circuit diagram showing another embodiment of the present invention. Constant voltage sources V1 and V2 are connected between the emitters and bases of the PNP transistor 21 and the NPN transistor 22, and the DC operating point of each transistor is set. An input signal is supplied from the signal source 23 between the base and the emitter of the transistor 21 through the base resistor R B3 , and the transistor 22
An input signal is supplied from the signal source 24 between the base and the emitter of the signal via the base resistor R B4 . Both transistors 21
The collectors 22 and 22 are connected, and an output current flows through the load resistance R L. FIG. 4 is an equivalent circuit diagram of the complementary amplifier circuit shown in FIG. 3, in which the amplifiers 21A and 22A represent the amplifying function of the transistors 21 and 22, and the stray capacitance that affects the characteristics of the transistors 21 and 22 is shown. Each C
3 and C4. In such a configuration, the signal source 2
The input signal from 0 is amplified by amplifiers 21A and 22A via base resistors R B3 and R B4 , and collector output resistor R O3
And R O4 to load R L. Also in this embodiment, the difference between the stray capacitances C3 and C4 can be compensated by adjusting the resistance values of the base resistors R B3 and R B4 , and the symmetry of the characteristics of both transistors is maintained. In the above embodiments, the pair of positive and negative transistors used are the PNP transistor and the NPN transistor, but the present invention is not limited to such types of transistors, and it goes without saying that the present invention can be applied to transistors such as FETs. As described above, in the complementary amplifier circuit according to the present invention, the symmetry shift due to the characteristic mismatch between the positive and negative transistors is compensated by adjusting the resistance value connected to the base of each transistor. As a result, the high-precision symmetry of the complementary amplifier circuit is maintained, the occurrence of short-circuit current is remarkably reduced even at high frequency input, and transient characteristics can be greatly improved, distortion and abnormal oscillation phenomena can be suppressed, and stable The motion is obtained. In addition, stray capacitance caused by the substrate pattern and wiring can also be compensated by the same principle.

【図面の簡単な説明】 【図1】本発明にはコンプリメンタリ増幅回路の一実施
例を示す回路で、コンプリメンタリエミッタフォロワ増
幅回路図である。 【図2】図1の回路の等価回路図である。 【図3】本発明にはコンプリメンタリ増幅回路の他の実
施例を示す回路で、コンプリメンタリコレクタ出力増幅
回路図である。 【図4】図3の回路の等価回路図である。 【符号の説明】 1,2,21,22 トランジスタ 1A,2A,21A,22A アンプ 3,20,23,24 信号源
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing one embodiment of a complementary amplifier circuit according to the present invention, which is a complementary emitter follower amplifier circuit diagram. FIG. 2 is an equivalent circuit diagram of the circuit of FIG. FIG. 3 is a circuit diagram showing another embodiment of the complementary amplifier circuit according to the present invention, which is a complementary collector output amplifier circuit diagram. FIG. 4 is an equivalent circuit diagram of the circuit of FIG. [Explanation of reference numerals] 1,2,21,22 Transistors 1A, 2A, 21A, 22A Amplifiers 3, 20, 23, 24 Signal sources

Claims (1)

【特許請求の範囲】 正負の一対のトランジスタのそれぞれのベースに接続さ
れたベース抵抗を介して入力信号が供給され、増幅され
た出力信号を負荷に供給するコンプリメンタリ増幅回路
において、 前記一対のトランジスタに接続されたベース抵抗と前記
一対のトランジスタのベースに等価的に接続されている
容量との積が各トランジスタにおいて等しく設定されて
成ることを特徴とするコンプリメンタリ増幅回路。
Claims: In a complementary amplifier circuit, an input signal is supplied through a base resistor connected to each base of a pair of positive and negative transistors, and an amplified output signal is supplied to a load. A complementary amplifier circuit, wherein a product of a connected base resistance and a capacitance equivalently connected to the bases of the pair of transistors is set to be equal in each transistor.
JP19858391A 1991-07-12 1991-07-12 Complementary amplifier circuit Expired - Lifetime JP3180821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19858391A JP3180821B2 (en) 1991-07-12 1991-07-12 Complementary amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19858391A JP3180821B2 (en) 1991-07-12 1991-07-12 Complementary amplifier circuit

Publications (2)

Publication Number Publication Date
JPH0522050A true JPH0522050A (en) 1993-01-29
JP3180821B2 JP3180821B2 (en) 2001-06-25

Family

ID=16393594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19858391A Expired - Lifetime JP3180821B2 (en) 1991-07-12 1991-07-12 Complementary amplifier circuit

Country Status (1)

Country Link
JP (1) JP3180821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030040085A (en) * 2001-11-12 2003-05-22 산요 덴키 가부시키가이샤 Semiconductor integrated circuit
JP5674656B2 (en) * 2009-06-12 2015-02-25 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic probe used therefor
CN110109498A (en) * 2019-05-16 2019-08-09 武汉大学 A kind of device and method of linear AC voltage adjusting and voltage filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030040085A (en) * 2001-11-12 2003-05-22 산요 덴키 가부시키가이샤 Semiconductor integrated circuit
JP5674656B2 (en) * 2009-06-12 2015-02-25 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic probe used therefor
CN110109498A (en) * 2019-05-16 2019-08-09 武汉大学 A kind of device and method of linear AC voltage adjusting and voltage filter

Also Published As

Publication number Publication date
JP3180821B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US5291149A (en) Operational amplifier
US4885548A (en) Wideband amplifier
US5736899A (en) Fully differential voltage controlled operational transconductance amplifier
JPH0846454A (en) Amplifier with differential input and output
US4442400A (en) Voltage-to-current converting circuit
US4547744A (en) Integrated amplifier arrangement
EP0586251B1 (en) Power amplifier having high output voltage swing and high output drive current
US4068187A (en) Audio-frequency power amplifiers
US4357578A (en) Complementary differential amplifier
Harvey Current feedback opamp limitations: A state-of-the-art review
JPH0522050A (en) Complementary amplifier circuit
US4922207A (en) So-called bridge audio amplifier
Van de Plassche A wide-band operational amplifier with a new output stage and a simple frequency compensation
US3821656A (en) Transistor circuit for the driver stage of a class b amplifier
JPH04369105A (en) Amplifier
JP3414454B2 (en) Amplifier bias circuit
JP4221131B2 (en) Variable gain amplifier circuit
JP3114927B2 (en) Current supply circuit and filter circuit using the same
JPS6123852Y2 (en)
US6281750B1 (en) Transistor amplifier
JPS5918368Y2 (en) Current detection circuits such as power amplifier circuits
JPH071858Y2 (en) Operational amplifier
JPH01213008A (en) Amplification circuit
JPH0516767B2 (en)
JPS5818334Y2 (en) amplifier circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080420

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090420

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100420

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100420

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120420