JPH05218425A - Field effect semiconductor device and manufacturing method thereof - Google Patents

Field effect semiconductor device and manufacturing method thereof

Info

Publication number
JPH05218425A
JPH05218425A JP4053892A JP4053892A JPH05218425A JP H05218425 A JPH05218425 A JP H05218425A JP 4053892 A JP4053892 A JP 4053892A JP 4053892 A JP4053892 A JP 4053892A JP H05218425 A JPH05218425 A JP H05218425A
Authority
JP
Japan
Prior art keywords
active layer
drain
conductivity type
single crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4053892A
Other languages
Japanese (ja)
Inventor
Yasuhisa Omura
泰久 大村
Katsutoshi Izumi
勝俊 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4053892A priority Critical patent/JPH05218425A/en
Publication of JPH05218425A publication Critical patent/JPH05218425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the title field effect semiconductor device to be rapidly actuated even at high power supply voltage by a method wherein an active region is composed of the first conductivity type active region and the second conductivity type regions opposing to each other having the first active region for restraining the deterioration in the breakdown voltage between drain and source. CONSTITUTION:A substrate 11 and a source electrode 21 are grounded while the space between a gate electrode 17 and a drain electrode is imposed with a voltage. When a drain voltage VD is boosted, an electron.hole coupling is to be started by an avalanche phenomenon near a drain junction. At this time, the electrons theta among the couple run into a drain region 19 while holes (+) gather at the bottom of a p type active layer 15 to be later implanted in an n type active layer 13. On the other hand, the electrons are to be inversely implanted from the n type active layer 13 but the amount of the inversely implanted electrons shall be notably reduced due to the lower impurity of the concentration of the n type active layer 13 than that of the p type active layer 15. Accordingly, the deterioration in the breakdown voltage between source and drain due to the parasitic bipolar effect can be effectively restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速動作および高耐圧
動作を行う電界効果型半導体装置およびその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect semiconductor device which operates at high speed and a high breakdown voltage, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図11は従来のこの種の半導体装置の構
成を示す断面図である。同図において、1はシリコン基
板、2は第1導電形の能動層3とシリコン基板1とを電
気的に絶縁するための絶縁膜、4はゲート絶縁膜、5は
ゲート電極、6は第2導電形のソース領域、7は第2導
電形のドレイン領域、8は配線間を電気的に絶縁するた
めの絶縁膜、9はソース電極、10はドレイン電極であ
る。
2. Description of the Related Art FIG. 11 is a sectional view showing the structure of a conventional semiconductor device of this type. In the figure, 1 is a silicon substrate, 2 is an insulating film for electrically insulating the active layer 3 of the first conductivity type and the silicon substrate 1, 4 is a gate insulating film, 5 is a gate electrode, and 6 is a second. A conductivity type source region, 7 is a second conductivity type drain region, 8 is an insulating film for electrically insulating between wirings, 9 is a source electrode, and 10 is a drain electrode.

【0003】このように構成された半導体装置において
は、ゲート電極5から広がりうる空乏層の厚さが能動層
3の厚さtS1よりも厚くなるように能動層3の不純物濃
度を設計し、半導体装置の動作時に能動層3の全領域が
空乏化するように構成する。
In the semiconductor device configured as described above, the impurity concentration of the active layer 3 is designed so that the depletion layer that can spread from the gate electrode 5 is thicker than the thickness t S1 of the active layer 3, The entire region of the active layer 3 is depleted when the semiconductor device operates.

【0004】このように構成する理由は、能動層3内に
実効的な電界強度を低減することによるゲート絶縁膜4
直下の反転層キャリアの移動度劣化の抑制とこれによる
ドレイン電流の増大と、能動層3内に空乏層の電荷量の
減少に対応する反転層キャリアの増大によるドレイン電
流の増大とを実現できるからである。
The reason for such a configuration is that the gate insulating film 4 is formed by reducing the effective electric field strength in the active layer 3.
Since it is possible to suppress the mobility deterioration of the inversion layer carrier immediately below and increase the drain current due to this, and to increase the drain current by increasing the inversion layer carrier corresponding to the decrease in the charge amount of the depletion layer in the active layer 3. Is.

【0005】また、このように構成される半導体装置で
は、能動層3内がゲート電界により空乏化されているた
め、ドレイン接合から能動層3へのドレイン電界の侵入
を抑制でき、閾値電圧の短チャネル効果を抑制できる。
したがってこの種の半導体装置は、寸法の微細化による
半導体装置の高集積化と高速動作の双方を期待でき、近
年その将来性が注目されている。
Further, in the semiconductor device having such a structure, since the inside of the active layer 3 is depleted by the gate electric field, entry of the drain electric field from the drain junction into the active layer 3 can be suppressed, and the threshold voltage is short. The channel effect can be suppressed.
Therefore, this type of semiconductor device can be expected to achieve both high integration and high speed operation of the semiconductor device due to the miniaturization of dimensions, and its future potential has been drawing attention in recent years.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この種
の半導体装置では、ドレイン・ソース間耐圧が通常期待
される値よりも低いことが最近明らかになっている。図
12はゲート長0.5μmのこの種のnチャネル形半導
体装置のドレイン電圧・ドレイン電流特性の一例を示し
たものである。従来の半導体装置では、ゲート長0.5
μmの場合、ドレイン電流は破線で示すように続き、ド
レイン・ソース間耐圧は5〜6V程度である。これに対
してこの種の半導体装置においては、実線で示すように
折れ曲がり、約3V程度の耐圧しか得られない。
However, it has recently been clarified that in this type of semiconductor device, the drain-source breakdown voltage is lower than the normally expected value. FIG. 12 shows an example of drain voltage / drain current characteristics of this type of n-channel semiconductor device having a gate length of 0.5 μm. In the conventional semiconductor device, the gate length is 0.5
In the case of μm, the drain current continues as shown by the broken line, and the drain-source breakdown voltage is about 5 to 6V. On the other hand, in this type of semiconductor device, it bends as shown by the solid line, and only a withstand voltage of about 3 V is obtained.

【0007】この原因は、構造に由来する寄生バイポー
ラ効果にあると考えられる。これを図11を用いて説明
する。図11はnチャネル形の半導体装置の一例であ
る。この種の半導体装置は、通常、シリコン基板1とソ
ース電極9とを接地し、ゲート電極5とドレイン電極1
0との間に正の電圧を印加して動作させる。ドレイン電
圧VD が高くなると、ドレイン接合近傍で弱いアバラン
シェ現象による電子・正孔対が発生し始める。なお、同
図において、丸−は電子を、丸+は正孔を、点線で囲む
丸−および丸+は電子・正孔対をそれぞれ示している。
このうち、電子はドレイン領域7にそのまま流れ込む
が、正孔は正孔から見て能動層内で最もポテンシャルの
低い能動層3と下部絶縁膜2との界面近傍に移動する。
正孔はここに集まった後、ドレイン電界によってソース
接合内に順方向注入される。これに対応してソース領域
6から多量の電子が能動層3内に逆注入される。
The cause is considered to be the parasitic bipolar effect derived from the structure. This will be described with reference to FIG. FIG. 11 shows an example of an n-channel type semiconductor device. In this type of semiconductor device, usually, the silicon substrate 1 and the source electrode 9 are grounded, and the gate electrode 5 and the drain electrode 1 are grounded.
A positive voltage is applied between 0 and it to operate. When the drain voltage V D increases, electron-hole pairs due to the weak avalanche phenomenon start to occur near the drain junction. In the figure, a circle − indicates an electron, a circle + indicates a hole, and a circle − and a circle + surrounded by a dotted line indicate an electron-hole pair.
Of these, the electrons flow into the drain region 7 as they are, but the holes move to the vicinity of the interface between the active layer 3 and the lower insulating film 2 having the lowest potential in the active layer when viewed from the holes.
After holes are collected here, they are forward-injected into the source junction by the drain electric field. Correspondingly, a large amount of electrons are back-injected from the source region 6 into the active layer 3.

【0008】その量は、 [順方向注入正孔の量]×[ソースの不純物濃度]/
[能動層の不純物濃度]・・・・・(1) 程度に及ぶ。逆注入された電子の一部はドレイン接合近
傍で新たなアバランシェ現象を誘起しつつドレイン接合
内に流れ込む。これは正帰還現象であるために急激にド
レイン電流が増大する結果となり、ドレイン・ソース間
耐圧が低下することとなる。このようにこの種の半導体
装置は、幾つかの大きな特徴を持ちながらも、同時に前
述したような問題を持つためにまだ実用化されるに至っ
ていない。
The amount is [amount of holes injected in the forward direction] × [impurity concentration of source] /
[Impurity concentration of active layer] ... (1) A part of the back-injected electrons flows into the drain junction while inducing a new avalanche phenomenon near the drain junction. Since this is a positive feedback phenomenon, the drain current rapidly increases, resulting in a decrease in drain-source breakdown voltage. As described above, this type of semiconductor device has not been put into practical use yet because it has some of the great features but at the same time has the problems described above.

【0009】したがって本発明は、前述した従来の半導
体装置において問題となっていたドレイン・ソース間の
耐圧低下を飛躍的に改善し、高い電源電圧のもとで高速
動作を行いうる半導体装置およびその製造方法を提供す
ることを目的としている。
Therefore, the present invention drastically improves the reduction in the breakdown voltage between the drain and the source, which has been a problem in the conventional semiconductor device described above, and the semiconductor device which can operate at high speed under a high power supply voltage. It is intended to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】このような目的を達成す
るために本発明による電界効果型半導体装置は、1つの
第1導電形の能動領域と、この第1導電形の能動領域を
挟んで対向する第2導電形の能動領域とから能動層を構
成するものである。
In order to achieve such an object, a field effect semiconductor device according to the present invention has one active region of the first conductivity type and an active region of the first conductivity type interposed therebetween. The active layer is composed of the opposing second conductivity type active regions.

【0011】[0011]

【作用】本発明における電界効果型半導体装置において
は、ドレイン接合近傍で発生した電子・正孔対のうち、
第2導電形を担うキャリアが第1導電形能動層に注入さ
れるが、第1導電形の能動層の不純物濃度は第1導電形
のソース領域と比較して通常4桁程度低く、逆注入する
第1導電形のキャリア量が著しく抑制されるとともに第
1導電形の能動層ではゲート電界が第1導電形のキャリ
アをゲート絶縁膜直下に束縛するので、自ずと第1導電
形のキャリアの供給が制限され、寄生バイポーラ効果が
十分に抑制され、動作特性の向上が図れる。
In the field effect semiconductor device of the present invention, of the electron-hole pairs generated near the drain junction,
Carriers of the second conductivity type are injected into the active layer of the first conductivity type, but the impurity concentration of the active layer of the first conductivity type is usually lower than that of the source region of the first conductivity type by about four orders of magnitude. The amount of carriers of the first conductivity type is significantly suppressed, and the gate electric field binds the carriers of the first conductivity type directly below the gate insulating film in the active layer of the first conductivity type, so that the carriers of the first conductivity type are naturally supplied. Is limited, the parasitic bipolar effect is sufficiently suppressed, and the operating characteristics can be improved.

【0012】[0012]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。図1は本発明による電界効果型半導体装置の
一実施例による構成を示すnチャネル型半導体装置の断
面図である。同図において、11はシリコン基板、12
は能動層13,14,15とシリコン基板11とを電気
的に絶縁するための例えばシリコン酸化膜からなる絶縁
膜、13は第1導電形として例えばn形の能動層、14
は第2導電形として例えばp形の能動層、15は第2導
電形として例えばp形の能動層、16は例えばシリコン
酸化膜からなるゲート絶縁膜、17は例えば多結晶シリ
コンからなるゲート電極、18は第1導電形として例え
ばn形のソース領域、19は第1導電形として例えばn
形のドレイン領域、20は例えばシリコン酸化膜からな
る絶縁膜、21は例えばAl膜からなるソース電極、2
2は例えばAlからなるドレイン電極である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view of an n-channel type semiconductor device showing a configuration according to an embodiment of a field effect type semiconductor device according to the present invention. In the figure, 11 is a silicon substrate, 12
Is an insulating film made of, for example, a silicon oxide film for electrically insulating the active layers 13, 14 and 15 from the silicon substrate 11, 13 is an active layer having a first conductivity type of, for example, n-type, 14
Is a p-type active layer as the second conductivity type, 15 is a p-type active layer as the second conductivity type, 16 is a gate insulating film made of, for example, a silicon oxide film, 17 is a gate electrode made of, for example, polycrystalline silicon, Reference numeral 18 denotes a source region having a first conductivity type, for example, n-type, and 19 denotes a first conductivity type, for example, n.
Shaped drain region, 20 is an insulating film made of, for example, a silicon oxide film, 21 is a source electrode made of, for example, an Al film, 2
Reference numeral 2 is a drain electrode made of Al, for example.

【0013】このような構成において、図1に示すよう
に能動層13の厚さtS2は、ゲート絶縁膜16の直下か
ら広がりうる空乏層の厚さより薄く設計する。一方、能
動層14の幅dは能動層13から能動層14側に広がる
空乏層幅と、ソース領域18から能動層14側に広がる
空乏層幅との和よりも大きくする。
In such a structure, as shown in FIG. 1, the thickness t S2 of the active layer 13 is designed to be thinner than the thickness of the depletion layer that can spread from immediately below the gate insulating film 16. On the other hand, the width d of the active layer 14 is made larger than the sum of the depletion layer width extending from the active layer 13 to the active layer 14 side and the depletion layer width extending from the source region 18 to the active layer 14 side.

【0014】この場合、能動層14の幅dをこのように
設計する理由は以下の通りである。能動層13がソース
領域18を基準としてドレイン領域19に印加した電位
の中間の電位を有するため、能動層14の両側からある
程度の空乏層が発生する。このとき、両空乏層が接する
と、能動層14が能動層13とソース領域18との間の
障壁の役割を果たさなくなり、相互に少数キャリアが注
入され易くなって高い動作電圧を実現できなくなるから
である。
In this case, the reason why the width d of the active layer 14 is designed in this way is as follows. Since the active layer 13 has a potential intermediate to the potential applied to the drain region 19 with the source region 18 as a reference, a depletion layer is generated to some extent on both sides of the active layer 14. At this time, when the two depletion layers are in contact with each other, the active layer 14 does not serve as a barrier between the active layer 13 and the source region 18, and minority carriers are easily injected into each other, so that a high operating voltage cannot be realized. Is.

【0015】このように構成された半導体装置は、シリ
コン基板11とソース電極21とを接地し、ゲート電極
17とドレイン電極22との間に適当な正の電圧を印加
する。ドレイン電圧VD が高くなると、従来の半導体装
置と同様にドレイン接合近傍で弱いアバランシェ現象に
よる電子・正孔対が発生し始める。なお、同図において
も、丸−は電子を、丸+は正孔を、点線で囲む丸−およ
び丸+は電子・正孔対をそれぞれ示している。このう
ち、電子はドレイン領域19にそのまま流れ込む。他
方、正孔はp形能動層15の底部に集まり、その後、n
形能動層13に注入される。一方、n形能動層13から
は電子の逆注入が起こるが、通常の構成では、n形能動
層13の不純物濃度よりもp形能動層15の不純物濃度
の方が高いので、前述した式(1)から明らかなように
図11に示した従来の電界効果型半導体装置の場合と比
較して逆注入電子の量は著しく少なくなる。したがって
寄生バイポーラ効果によるソース・ドレイン間耐圧の劣
化を効果的に抑制することができる。
In the semiconductor device thus constructed, the silicon substrate 11 and the source electrode 21 are grounded, and an appropriate positive voltage is applied between the gate electrode 17 and the drain electrode 22. When the drain voltage V D increases, electron-hole pairs due to the weak avalanche phenomenon start to occur near the drain junction, as in the conventional semiconductor device. Also in this figure, circle − indicates an electron, circle + indicates a hole, and circle − and circle + surrounded by a dotted line indicate an electron-hole pair, respectively. Of these, the electrons flow into the drain region 19 as they are. On the other hand, holes collect at the bottom of the p-type active layer 15 and then n
The active layer 13 is implanted. On the other hand, although reverse injection of electrons occurs from the n-type active layer 13, the impurity concentration of the p-type active layer 15 is higher than the impurity concentration of the n-type active layer 13 in the normal configuration. As is clear from 1), the amount of back-injected electrons is significantly smaller than that in the case of the conventional field effect semiconductor device shown in FIG. Therefore, deterioration of the breakdown voltage between the source and the drain due to the parasitic bipolar effect can be effectively suppressed.

【0016】図2〜図7は本発明による電界効果型半導
体装置の製造方法の一実施例を説明する工程の断面図で
ある。同図において、まず、図2に示すように例えばシ
リコン基板31中に絶縁物層32として例えばシリコン
酸化物が埋め込まれてこの絶縁物層32上にシリコン層
33を有する半導体基板を用意する。
2 to 7 are sectional views of steps for explaining an embodiment of the method for manufacturing a field effect semiconductor device according to the present invention. In the figure, first, as shown in FIG. 2, for example, a semiconductor substrate is prepared in which, for example, silicon oxide is embedded as an insulator layer 32 in a silicon substrate 31 and a silicon layer 33 is provided on the insulator layer 32.

【0017】次に図3に示すようにこのシリコン層33
の主面に異方性エッチング法、例えば反応性イオンエッ
チング法によりシリコン能動層33′を所定の寸法に形
成する。引き続き能動層33′の表面に図示しない酸化
膜を形成した後、例えばイオン注入法により例えば燐あ
るいは砒素を導入して第1導電形として例えばn形とす
る。引き続いて能動層33′の表面の酸化膜を除去した
後、改めて能動層33′の表面を酸化してゲート酸化膜
34を形成する。
Next, as shown in FIG. 3, this silicon layer 33 is formed.
A silicon active layer 33 'having a predetermined size is formed on the main surface of the substrate by an anisotropic etching method, for example, a reactive ion etching method. Subsequently, after forming an oxide film (not shown) on the surface of the active layer 33 ', for example, phosphorus or arsenic is introduced by, for example, an ion implantation method to make the first conductivity type n-type. Subsequently, after removing the oxide film on the surface of the active layer 33 ', the surface of the active layer 33' is again oxidized to form the gate oxide film 34.

【0018】次に図4に示すようにゲート絶縁膜34上
にゲート電極形成用の半導体膜、例えばシリコン膜を堆
積し、その後、異方性エッチング法、例えば反応性イオ
ンエッチング法により所定の寸法に加工してゲート電極
35を形成する。
Next, as shown in FIG. 4, a semiconductor film for forming a gate electrode, for example, a silicon film is deposited on the gate insulating film 34, and thereafter, a predetermined size is obtained by an anisotropic etching method such as a reactive ion etching method. Then, the gate electrode 35 is formed.

【0019】その後、図5に示すようにシリコン基板3
1の主面側から例えばイオン注入法により第2導電形と
してp形の不純物を導入し、かつ適当な熱処理によって
イオン注入した不純物を拡散させてp形の能動層36お
よびp形の能動層37を形成する。
Thereafter, as shown in FIG. 5, the silicon substrate 3
The p-type active layer 36 and the p-type active layer 37 are formed by introducing a p-type impurity as the second conductivity type from the main surface side of the first conductive layer by ion implantation and diffusing the ion-implanted impurities by an appropriate heat treatment. To form.

【0020】次に図6に示すようにシリコン基板31の
主面側から例えばイオン注入法により第1導電形として
n形の不純物を導入してn形のソース領域38およびn
形のドレイン領域39を形成する。この工程により、p
形の能動層36はソース領域38と能動層33″とに挟
まれた局所的な能動領域36′となる。同様にして局所
的な能動領域37′が形成される。
Next, as shown in FIG. 6, an n-type impurity as the first conductivity type is introduced from the main surface side of the silicon substrate 31 by, for example, an ion implantation method to form n-type source regions 38 and n.
A drain region 39 having a shape is formed. By this process, p
The shaped active layer 36 becomes a local active region 36 'sandwiched between a source region 38 and an active layer 33 ". Similarly, a local active region 37' is formed.

【0021】最後に図7に示すようにこのシリコン基板
31の主面側に絶縁膜40を堆積した後、ソース領域3
8上およびドレイン領域39上にそれぞれコンタクトホ
ールを形成し、その後、ソース電極41およびドレイン
電極42を形成して半導体装置を完成する。
Finally, as shown in FIG. 7, after depositing an insulating film 40 on the main surface side of the silicon substrate 31, the source region 3 is formed.
8 and the drain region 39 are respectively formed with contact holes, and then the source electrode 41 and the drain electrode 42 are formed to complete the semiconductor device.

【0022】図8〜図10は本発明による電界効果型半
導体装置の製造方法の他の実施例を説明する工程の断面
図である。この製造方法は、前述した図2〜図4までの
工程を実施したシリコン基板を用いて図8に示すように
シリコン基板31の主面側から例えばイオン注入法によ
り第2導電形としてp形の不純物を導入する。この工程
では、熱処理によってイオン注入した不純物を特に拡散
させる必要はなく、不純物の活性化のみを実施すれば良
い。このようにしてp形の能動層36およびp形の能動
層37を形成する。
8 to 10 are sectional views of steps for explaining another embodiment of the method for manufacturing a field effect semiconductor device according to the present invention. This manufacturing method uses a silicon substrate which has been subjected to the steps of FIGS. 2 to 4 described above, as shown in FIG. Introduce impurities. In this step, it is not necessary to particularly diffuse the ion-implanted impurities by heat treatment, and only the activation of the impurities may be performed. In this way, the p-type active layer 36 and the p-type active layer 37 are formed.

【0023】次に図9に示すようにシリコン基板31の
主面側に例えばシリコン窒化膜あるいはシリコン酸化膜
のような絶縁膜を堆積した後、異方性エッチング法、例
えば反応性イオンエッチング法によりエッチングを行っ
てゲート電極35の側壁に絶縁膜43′を形成する。そ
の後、シリコン基板31の主面側から例えばイオン注入
法により第1導電形としてのn形の不純物を導入してn
形のソース領域38およびn形のドレイン領域39を形
成する。この工程によりp形の能動領域36はソ−ス領
域38と能動層33″とに挟まれて局所的な能動領域3
6′となる。同様にして局所的な能動領域37′が形成
される。
Next, as shown in FIG. 9, after depositing an insulating film such as a silicon nitride film or a silicon oxide film on the main surface side of the silicon substrate 31, an anisotropic etching method such as a reactive ion etching method is used. Etching is performed to form an insulating film 43 'on the side wall of the gate electrode 35. After that, an n-type impurity as the first conductivity type is introduced from the main surface side of the silicon substrate 31 by, for example, an ion implantation method to obtain n.
Forming a source region 38 and an n-type drain region 39. By this step, the p-type active region 36 is sandwiched between the source region 38 and the active layer 33 ", and the local active region 3 is formed.
6 '. Similarly, a local active area 37 'is formed.

【0024】最後に図10に示すようにこのシリコン基
板31の主面側に絶縁膜40を堆積した後、ソース領域
38上およびドレイン領域39上にそれぞれコンタクト
ホールを形成し、その後、ソース電極41およびドレイ
ン電極42を形成して半導体装置を完成する。
Finally, as shown in FIG. 10, an insulating film 40 is deposited on the main surface side of the silicon substrate 31, contact holes are formed on the source region 38 and the drain region 39, respectively, and then a source electrode 41 is formed. Then, the drain electrode 42 is formed to complete the semiconductor device.

【0025】[0025]

【発明の効果】以上、説明したように本発明によれば、
以下に説明するような極めて優れた効果が得られる。 第1導電形のソース領域およびドレイン領域に隣接し
て第2導電形の能動層を設け、さらにそれらに隣接して
ソース領域およびドレイン領域に比べて十分に低い不純
物濃度の第1導電形の能動領域を設けているので、ドレ
イン接合近傍で発生した電子・正孔対のうち第2導電形
を担うキャリアが第1導電形の能動領域に注入されて
も、逆キャリア量が著しく抑制される。 上記で説明した効果により、寄生バイポーラ効果が
発生する契機となる多数キャリアのソース接合への注入
量を飛躍的に抑制でき、ドレイン・ソース間耐圧を大幅
に改善することができる。
As described above, according to the present invention,
An extremely excellent effect as described below can be obtained. An active layer of the second conductivity type is provided adjacent to the source region and the drain region of the first conductivity type, and an active layer of the first conductivity type having an impurity concentration sufficiently lower than that of the source region and the drain region is provided adjacent to the active layer. Since the region is provided, the amount of reverse carriers is remarkably suppressed even if the carriers of the second conductivity type among the electron-hole pairs generated near the drain junction are injected into the active region of the first conductivity type. With the effects described above, the amount of majority carriers injected into the source junction, which triggers the occurrence of the parasitic bipolar effect, can be dramatically reduced, and the drain-source breakdown voltage can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電界効果型半導体装置の一実施例
による構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the configuration of an example of a field effect semiconductor device according to the present invention.

【図2】本発明による電界効果型半導体装置の製造方法
の一実施例を説明する工程の断面図である。
FIG. 2 is a cross-sectional view of a step illustrating an embodiment of a method for manufacturing a field effect semiconductor device according to the present invention.

【図3】図2に引き続く工程の断面図である。FIG. 3 is a sectional view of a step following the step of FIG.

【図4】図3に引き続く工程の断面図である。FIG. 4 is a sectional view of a step following the step of FIG. 3;

【図5】図4に引き続く工程の断面図である。FIG. 5 is a sectional view of a step following the step of FIG. 4;

【図6】図5に引き続く工程の断面図である。FIG. 6 is a sectional view of a step following the step of FIG. 5;

【図7】図6に引き続く工程の断面図である。FIG. 7 is a sectional view of a step following the step of FIG. 6;

【図8】本発明による電界効果型半導体装置の製造方法
の他の実施例を説明する工程の断面図である。
FIG. 8 is a cross-sectional view of a step illustrating another embodiment of the method for manufacturing a field effect semiconductor device according to the present invention.

【図9】図8に引き続く工程の断面図である。FIG. 9 is a sectional view of a step following the step of FIG.

【図10】図9に引き続く工程の断面図である。FIG. 10 is a sectional view of a step following the step of FIG. 9;

【図11】従来の電界効果型半導体装置の構成を示す断
面図である。
FIG. 11 is a cross-sectional view showing a configuration of a conventional field effect semiconductor device.

【図12】ゲート長0.5μmのこの種のnチャネル形
半導体装置のドレイン電圧・ドレイン電流特性の一例を
示す図である。
FIG. 12 is a diagram showing an example of drain voltage / drain current characteristics of an n-channel semiconductor device of this type having a gate length of 0.5 μm.

【符号の説明】[Explanation of symbols]

11 シリコン基板 12 絶縁膜 13 n形能動層 14 p形能動層 15 p形能動層 16 ゲート絶縁膜 17 ゲート電極 18 n形ソース領域 19 n形ドレイン領域 20 絶縁膜 21 ソース電極 22 ドレイン電極 31 シリコン基板 32 絶縁物層 33 シリコン層 33′ シリコン能動層 33″ 能動層 34 ゲート絶縁膜 35 ゲ−ト電極 36 p形能動層 36′ 能動領域 37 p形能動層 38 n形ソ−ス領域 39 n形ドレイン領域 40 絶縁膜 41 ソース電極 42 ドレイン電極 43′ 絶縁膜 11 Silicon Substrate 12 Insulating Film 13 n-type Active Layer 14 p-type Active Layer 15 p-type Active Layer 16 Gate Insulating Film 17 Gate Electrode 18 n-type Source Region 19 n-type Drain Region 20 Insulating Film 21 Source Electrode 22 Drain Electrode 31 Silicon Substrate 32 Insulator layer 33 Silicon layer 33 'Silicon active layer 33 "Active layer 34 Gate insulating film 35 Gate electrode 36 p-type active layer 36' Active region 37 p-type active layer 38 n-type source region 39 n-type drain Region 40 Insulating film 41 Source electrode 42 Drain electrode 43 'Insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁物層上に第1導電形の第1の単結晶
半導体層と第2導電形の第2の単結晶半導体層と第1導
電形の第3の単結晶半導体層と第2導電形第4の単結晶
半導体層と第1導電形の第5の単結晶半導体層とが面方
向に順次配置され、かつ前記第2の単結晶半導体層の厚
さが隣接する第1の単結晶半導体層との接合面から第2
の単結晶半導体層側に発生する空乏層の厚さと、対向し
て隣接する第3の単結晶半導体層との接合面から第2の
単結晶半導体層側に発生する空乏層の厚さとの和より大
きく、少なくとも前記第2の単結晶半導体層と第3の単
結晶半導体層と第4の単結晶半導体層上に連続して形成
されたゲート絶縁膜と、前記ゲート絶縁膜上に形成され
たゲート電極とを備えたことを特徴とする電界効果型半
導体装置。
1. A first single crystal semiconductor layer of a first conductivity type, a second single crystal semiconductor layer of a second conductivity type, a third single crystal semiconductor layer of a first conductivity type, and a third single crystal semiconductor layer of a first conductivity type on an insulator layer. A second conductivity type fourth single crystal semiconductor layer and a first conductivity type fifth single crystal semiconductor layer are sequentially arranged in a plane direction, and a thickness of the second single crystal semiconductor layer is adjacent to the first single crystal semiconductor layer. Second from the bonding surface with the single crystal semiconductor layer
Of the thickness of the depletion layer generated on the side of the single crystal semiconductor layer and the thickness of the depletion layer generated on the side of the second single crystal semiconductor layer from the joint surface with the third single crystal semiconductor layer facing and adjacent to each other. A gate insulating film which is larger than the gate insulating film and which is continuously formed on at least the second single crystal semiconductor layer, the third single crystal semiconductor layer and the fourth single crystal semiconductor layer, and formed on the gate insulating film. A field effect semiconductor device comprising a gate electrode.
【請求項2】 半導体中に第1の絶縁物層が埋め込まれ
て前記第1の絶縁物層上に第1の半導体層を有する半導
体基板の主面の前記第1の半導体層上に第1導電形の第
1の半導体領域を形成する工程と、 前記第1導電形の第1の半導体領域上に第2の絶縁膜を
形成する工程と、 前記第2の絶縁膜上にゲート電極を形成する工程と、 前記半導体基板の主面から不純物を導入することによっ
て前記第1の半導体領域に隣接し、かつ第1の半導体領
域を介して対向する位置に第2導電形の第2の半導体領
域および第3の半導体領域を形成する工程と、 前記半導体基板の主面側から不純物を導入することによ
って前記第2の半導体領域に隣接し、かつ第2の半導体
領域を介して第1の半導体領域と対向する位置に第1導
電形の第4の半導体領域を形成する工程と、 前記半導体基板の主面側から不純物を導入することによ
って前記第3の半導体領域に隣接し、かつ第3の半導体
領域を介して第1の半導体領域と対向する位置に第1導
電形の第5の半導体領域を形成する工程と、 を含むことを特徴とする電界効果型半導体装置の製造方
法。
2. A first insulator layer is embedded in a semiconductor and has a first semiconductor layer on the first insulator layer. A semiconductor substrate having a first semiconductor layer on the first insulator layer has a first surface on the first semiconductor layer. Forming a first semiconductor region of conductivity type; forming a second insulating film on the first semiconductor region of first conductivity type; forming a gate electrode on the second insulating film; And a second semiconductor region of the second conductivity type at a position adjacent to the first semiconductor region by introducing an impurity from the main surface of the semiconductor substrate and opposed to the first semiconductor region via the first semiconductor region. And a step of forming a third semiconductor region, and a first semiconductor region adjacent to the second semiconductor region by introducing an impurity from the main surface side of the semiconductor substrate and via the second semiconductor region. Forming a fourth semiconductor region of the first conductivity type at a position facing And a step of introducing the impurities from the main surface side of the semiconductor substrate to adjoin the third semiconductor region and to face the first semiconductor region via the third semiconductor region. And a step of forming a fifth semiconductor region having a rectangular shape, and a method of manufacturing a field effect semiconductor device.
JP4053892A 1992-01-31 1992-01-31 Field effect semiconductor device and manufacturing method thereof Pending JPH05218425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4053892A JPH05218425A (en) 1992-01-31 1992-01-31 Field effect semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4053892A JPH05218425A (en) 1992-01-31 1992-01-31 Field effect semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05218425A true JPH05218425A (en) 1993-08-27

Family

ID=12583234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4053892A Pending JPH05218425A (en) 1992-01-31 1992-01-31 Field effect semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05218425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803911A2 (en) 1996-04-25 1997-10-29 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
EP0902482A1 (en) * 1997-09-05 1999-03-17 Sharp Kabushiki Kaisha SOI-MOSFET and fabrication process thereof
US6204534B1 (en) 1997-01-20 2001-03-20 Sharp Kabushiki Kaisha SOI MOS field effect transistor
US6693326B2 (en) 2000-04-04 2004-02-17 Sharp Kabushiki Kaisha Semiconductor device of SOI structure
KR100531237B1 (en) * 2003-12-03 2005-11-28 전자부품연구원 High-sensitivity image sensor and fabrication method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803911A2 (en) 1996-04-25 1997-10-29 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
US5841170A (en) * 1996-04-25 1998-11-24 Sharp Kabushiki Kaisha Field effect transistor and CMOS element having dopant exponentially graded in channel
US6204534B1 (en) 1997-01-20 2001-03-20 Sharp Kabushiki Kaisha SOI MOS field effect transistor
EP0902482A1 (en) * 1997-09-05 1999-03-17 Sharp Kabushiki Kaisha SOI-MOSFET and fabrication process thereof
US6288425B1 (en) 1997-09-05 2001-09-11 Sharp Kabushiki Kaisha SOI-MOSFET device
US6693326B2 (en) 2000-04-04 2004-02-17 Sharp Kabushiki Kaisha Semiconductor device of SOI structure
KR100531237B1 (en) * 2003-12-03 2005-11-28 전자부품연구원 High-sensitivity image sensor and fabrication method thereof

Similar Documents

Publication Publication Date Title
JP2504862B2 (en) Semiconductor device and manufacturing method thereof
US5973364A (en) MIS semiconductor device having body-contact region
US9385202B2 (en) Semiconductor device having a patterned gate dielectric
JPH08222735A (en) Vertical trench misfet and manufacturing method thereof
US5929490A (en) Semiconductor device with an improved body contact hole structure
US5428241A (en) High breakdown voltage type semiconductor device
JP3742845B2 (en) Manufacturing method of SOI device having double gate structure and SOI device having double gate structure manufactured by the manufacturing method
JPH1154748A (en) Semiconductor device and manufacture thereof
US5440165A (en) Semiconductor device with means for suppressing electric fields
KR950011782B1 (en) Mos type semiconductor and its making mehtod
JP3582890B2 (en) Semiconductor device
EP0905789A1 (en) Semiconductor device having soi structure and method for manufacturing the device
JPH05218425A (en) Field effect semiconductor device and manufacturing method thereof
JP2000260990A (en) High-voltage element and its manufacture
US5847433A (en) Integrated switching circuit with CMOS circuit and method for producing isolated active regions of a CMOS circuit
JP2001217418A (en) Mos transistor and its manufacturing method
US5925899A (en) Vertical type insulated gate bipolar transistor having a planar gate structure
JP2888857B2 (en) Semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JP3312683B2 (en) MOS type semiconductor device and manufacturing method thereof
JPH02148852A (en) Semiconductor device and manufacture thereof
JPH07273340A (en) Soi type transistor
JP2776891B2 (en) Semiconductor integrated circuit device
KR100197656B1 (en) Fabricating method of s.o.i. semiconductor device
KR100201779B1 (en) Semiconductor device and method of manufacturing the same