JPH05218414A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH05218414A
JPH05218414A JP2129392A JP2129392A JPH05218414A JP H05218414 A JPH05218414 A JP H05218414A JP 2129392 A JP2129392 A JP 2129392A JP 2129392 A JP2129392 A JP 2129392A JP H05218414 A JPH05218414 A JP H05218414A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
gate electrode
depth
impurity
impurity layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129392A
Other languages
Japanese (ja)
Inventor
Susumu Inoue
晋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2129392A priority Critical patent/JPH05218414A/en
Publication of JPH05218414A publication Critical patent/JPH05218414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish high integration and to lessen the consumption of power by a method wherein the lower surface of a second impurity layer is arranged on the equal position, where the impurity density of the first impurity layer becomes highest, or higher than that. CONSTITUTION:A first insulating film 102 is formed on a first conductive type semiconductor substrate 101 having the first impurity density, and a gate electrode 103 is formed thereon. By having the gate electrode 103 as an ion- implantation transmitting film, a first conductive type band-like first impurity layer 104, having first conductive type and second impurity density and formed in the second depth which is deeper than the first depth on both sides of the gate electrode 103, is formed in the first depth from the surface of the semiconductor substrate 101 on the lower part of the gate electrode 10. Also, by using the gate electrode 103 as a mask, the second impurity layer 105, which is located in the position where the impurity density of the first impurity layer 104, having the lower surface of third depth and formed in the first depth, becomes equal to the position where impurity density becomes highest or on the part higher than that, is formed on both sides of the gate electrode 103.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特にMOS
型或はMIS型半導体装置の構造及び製造方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device, particularly a MOS.
The present invention relates to the structure and manufacturing method of a mold or MIS semiconductor device.

【0002】[0002]

【従来の技術】近年、半導体装置はますます微細化、高
集積化が進んでいる。MOS型トランジスタも同様でそ
の素子寸法はハーフミクロンまで微細化が進んでいる。
この様に微細化が進むとゲート電圧に関係なくソースと
ドレインの間に電流が流れてしまうパンチスルー現象が
発生するようになる。この問題を解決するために特公昭
54−16194号、特開昭53−127273号、特
開昭60−180167号、特開昭60−235471
号の様に半導体基板表面より深い部分の不純物濃度を半
導体基板より高濃度とする方法が一般に知られている。
これを図3を用いて説明する。図3において301はP
型の不純物を持つ半導体基板、302はゲート絶縁膜、
303はゲート電極、304は半導体基板301より高
濃度のP型不純物を持つ不純物層、305はN型の不純
物を持つ不純物層によるソース・ドレイン領域である。
ゲート電圧がしきい値電圧に到達しない状態でドレイン
にある電圧を印加することによりドレインから空乏層が
広がっても半導体基板301より高濃度のP型不純物を
有する不純物層304によりドレインから半導体基板側
への空乏層の伸びが抑えられることによりパンチスルー
現象が抑制される。
2. Description of the Related Art In recent years, semiconductor devices have been increasingly miniaturized and highly integrated. The same applies to MOS type transistors, and the element size is being miniaturized to half micron.
As miniaturization progresses in this way, a punch-through phenomenon occurs in which a current flows between the source and the drain regardless of the gate voltage. In order to solve this problem, Japanese Patent Publication No. 54-16194, Japanese Patent Publication No. 53-127273, Japanese Patent Publication No. 60-180167, and Japanese Patent Publication No. 60-235471.
As is known in the art, a method of increasing the impurity concentration in a portion deeper than the surface of the semiconductor substrate as compared with the semiconductor substrate is generally known.
This will be described with reference to FIG. In FIG. 3, 301 is P
Type semiconductor substrate having impurities, 302 a gate insulating film,
Reference numeral 303 is a gate electrode, 304 is an impurity layer having a P-type impurity concentration higher than that of the semiconductor substrate 301, and 305 is a source / drain region made of an impurity layer having an N-type impurity.
Even if a depletion layer spreads from the drain by applying a voltage to the drain while the gate voltage does not reach the threshold voltage, the impurity layer 304 having a higher concentration of P-type impurities than the semiconductor substrate 301 causes the drain to semiconductor substrate side. The punch-through phenomenon is suppressed by suppressing the extension of the depletion layer into the.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の半
導体装置ではパンチスルーを抑制するためにチャネル付
近に半導体基板301より高濃度のP型不純物を持つ不
純物層304を形成しようとすると、ドレイン領域のN
型不純物を持つ不純物層の下面全部に半導体基板301
より高濃度のP型不純物を持つ不純物層304が形成さ
れるため、ドレイン耐圧の低下すなわちリーク電流の増
大が起こるだけでなく、ドレインのPN接合の電気的容
量が増大することにより半導体回路を構成した場合に遅
延時間が増大するという問題点を有していた。すなわち
パンチスルー現象を抑制する為には半導体基板301よ
り高濃度のP型不純物を持つ不純物層304が半導体基
盤表面に近い方が良いのだが、ドレイン耐圧の低下及び
電気的容量の増大を抑制するためには半導体基板301
より高濃度のP型不純物を持つ不純物層304が半導体
基盤表面から遠い方が良いという、相反する特性を持つ
ため最適化を行いにくいという問題点を有していた。
However, in the conventional semiconductor device, if an impurity layer 304 having a P-type impurity with a higher concentration than that of the semiconductor substrate 301 is formed in the vicinity of the channel in order to suppress punch-through, the N in the drain region is reduced.
Type semiconductor substrate 301 on the entire lower surface of the impurity layer having type impurities
Since the impurity layer 304 having a higher concentration of P-type impurities is formed, not only the drain breakdown voltage is lowered, that is, the leak current is increased, but also the electrical capacitance of the PN junction of the drain is increased to form a semiconductor circuit. In that case, there is a problem that the delay time increases. That is, in order to suppress the punch-through phenomenon, it is better that the impurity layer 304 having a higher concentration of P-type impurities than the semiconductor substrate 301 is closer to the surface of the semiconductor substrate, but the decrease in drain breakdown voltage and the increase in electrical capacity are suppressed. To achieve this, semiconductor substrate 301
There is a problem that it is difficult to perform optimization because the impurity layer 304 having a higher concentration of P-type impurities should be farther from the surface of the semiconductor substrate, which has contradictory characteristics.

【0004】[0004]

【課題を解決するための手段】本発明の半導体装置は第
1導電型で第1の不純物濃度を持つ半導体基板、前記半
導体基板上に第1の絶縁膜を介して形成されたゲート電
極、前記ゲート電極の下部においては前記半導体基板中
に前記半導体基板表面から第1の深さに、前記ゲート電
極の両側の前記半導体基板中においては前記半導体基板
表面から第1の深さよりも深い第2の深さに形成された
第1導電型で第2の不純物濃度を持つ帯状の第1不純物
層、前記ゲート電極の両側の前記半導体基板中に互いに
離間して前記半導体基板表面から第3の深さに形成され
た第2導電型で第3の不純物濃度を持ち下面の位置が前
記第1の深さに形成された第1不純物層の不純物濃度が
最大となる位置と同等かあるいは上部に存在する第2不
純物層を有することを特徴とする。
A semiconductor device of the present invention is a semiconductor substrate of a first conductivity type having a first impurity concentration, a gate electrode formed on the semiconductor substrate via a first insulating film, A second depth deeper than the first depth from the surface of the semiconductor substrate in the semiconductor substrate under the gate electrode, and a depth deeper than the first depth in the semiconductor substrate on both sides of the gate electrode. A band-shaped first impurity layer having a first conductivity type and a second impurity concentration formed at a depth, and a third depth from a surface of the semiconductor substrate in the semiconductor substrate on both sides of the gate electrode. Of the second conductivity type having the third impurity concentration and the position of the lower surface is equal to or higher than the position where the impurity concentration of the first impurity layer formed at the first depth is maximum. Having a second impurity layer The features.

【0005】又、本発明の半導体装置の製造方法は第1
導電型で第1の不純物濃度を持つ半導体基板上に第1の
絶縁膜を形成する工程、前記第1の絶縁膜上にゲート電
極を形成する工程、前記ゲート電極をイオン注入透過膜
のひとつとすることにより前記ゲート電極の下部におい
ては前記半導体基板中に前記半導体基板表面から第1の
深さに、前記ゲート電極の両側の前記半導体基板中にお
いては前記半導体基板表面から第1の深さよりも深い第
2の深さに形成された第1導電型で第2の不純物濃度を
持つ帯状の第1不純物層をイオン注入法により形成する
工程、前記ゲート電極をマスクとすることにより前記ゲ
ート電極の両側の前記半導体基板中に互いに離間して前
記半導体基板表面から第3の深さに形成された第2導電
型で第3の不純物濃度を持ち下面の位置が前記第1の深
さに形成された第1不純物層の不純物濃度が最大となる
位置と同等かあるいは上部に存在する第2不純物層をイ
オン注入法により形成する工程を含むことを特徴とす
る。
The method of manufacturing a semiconductor device according to the present invention is the first
Forming a first insulating film on a conductive type semiconductor substrate having a first impurity concentration; forming a gate electrode on the first insulating film; and using the gate electrode as one of ion implantation / transmission films. By doing so, in the lower portion of the gate electrode, the first depth from the surface of the semiconductor substrate in the semiconductor substrate is smaller than that in the semiconductor substrate on both sides of the gate electrode from the surface of the semiconductor substrate. A step of forming a band-shaped first impurity layer having a first impurity type and a second impurity concentration formed at a deep second depth by an ion implantation method, and using the gate electrode as a mask The second conductivity type is formed in the semiconductor substrate on both sides so as to be separated from each other at a third depth from the surface of the semiconductor substrate, has a third impurity concentration, and a lower surface is formed at the first depth. Was first The second impurity layer impurity concentration of the impurity layer is present at a position equal to or upper of maximum, characterized in that it comprises a step of forming by ion implantation.

【0006】[0006]

【実施例】本発明の半導体装置は基本的に図1に示され
る様な構造をしている。図1は本発明の半導体装置の断
面図である。101は第1導電型の不純物を持つ半導体
基板であり例えばシリコンを主成分とするP型半導体基
板、102は絶縁膜であり例えばシリコン酸化膜、10
3はゲート電極、104は半導体基板101より高濃度
の第1導電型の不純物を持つ不純物層であり例えばP型
不純物層、105は第2導電型の不純物をもつ不純物層
例えばN型不純物層によるソース・ドレイン領域であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The semiconductor device of the present invention basically has a structure as shown in FIG. FIG. 1 is a sectional view of a semiconductor device of the present invention. 101 is a semiconductor substrate having impurities of the first conductivity type, for example, a P-type semiconductor substrate containing silicon as a main component, 102 is an insulating film such as a silicon oxide film, 10
Reference numeral 3 is a gate electrode, 104 is an impurity layer having a higher concentration of impurities of the first conductivity type than the semiconductor substrate 101, for example, a P-type impurity layer, and 105 is an impurity layer having impurities of the second conductivity type, for example, an N-type impurity layer. Source / drain regions.

【0007】以下、詳細は工程を追いながら説明する。
(図2参照)まず第1導電型の半導体基板、ここではP
型シリコン基板201に対して周知の技術により素子分
離領域を形成する。次に酸化性雰囲気中で850℃から
1000℃程度の高温の酸化を行うことによりゲート酸
化膜202を形成する。次にCVD法によりゲート電極
材料ここでは多結晶シリコン膜を300nm形成後、フ
ォトリソグラフィー工程とエッチング工程を行うことに
より図2(a)に示すようにゲート電極203を形成す
る。次に図2(b)に示すようにゲート電極をイオン注
入透過膜の一つとしてP型不純物例えばホウ素を100
keV〜500keVの加速電圧、1×1012cm-2
1×1014cm-2のドーズ量でイオン注入を行うことに
よりP型不純物層204を形成する。ここでゲート電極
203の下部の半導体基板201中においてはゲート電
極203とゲート酸化膜202がイオン注入透過膜とな
るために半導体基板表面から0.7μmの間でP型不純
物層204の不純物濃度の最大となり、前記ゲート電極
203の両側の前記半導体基板201中においてはゲー
ト酸化膜203がイオン注入透過膜となるためにゲート
電極203の下部における場合よりも0.3μmほど深
いところすなわち半導体基板表面201から0.3μm
〜1.1μmの間でP型不純物層204の不純物濃度の
最大となることになる。次にゲート電極203をマスク
にしてN型不純物例えば砒素を1×1016cm-2のドー
ズ量、40keV〜100keVの加速電圧でイオン注
入を行うことによりN型不純物層によるソース・ドレイ
ン領域205を形成する。この時N型不純物層によるソ
ースドレイン領域の深さは半導体基板表面より0.1μ
m〜0.4μmとなっている。以上のようにして半導体
装置を形成することによりソース・ドレイン領域205
の下面が前記ゲート電極203の両側の半導体基板20
1中に形成されたP型不純物層204の上面に接するか
もしくはソース・ドレイン領域205の下面が前記ゲー
ト電極203の両側の半導体基板201中に形成された
P型不純物層204より上部に形成されることになる。
次に不純物層の不純物を活性化するために800℃〜1
100℃のアニールを行う。
Details will be described below while following the steps.
(Refer to FIG. 2) First, a semiconductor substrate of the first conductivity type, here P
Element isolation regions are formed on the silicon substrate 201 by a known technique. Next, the gate oxide film 202 is formed by performing high temperature oxidation of about 850 ° C. to 1000 ° C. in an oxidizing atmosphere. Next, a gate electrode material, here, a polycrystalline silicon film having a thickness of 300 nm is formed by a CVD method, and then a photolithography step and an etching step are performed to form a gate electrode 203 as shown in FIG. Next, as shown in FIG. 2B, the gate electrode is used as one of the ion-implanted permeable films, and a P-type impurity such as boron is used.
acceleration voltage of keV to 500 keV, 1 × 10 12 cm −2
The P-type impurity layer 204 is formed by performing ion implantation with a dose amount of 1 × 10 14 cm −2 . Here, in the semiconductor substrate 201 below the gate electrode 203, since the gate electrode 203 and the gate oxide film 202 serve as an ion implantation / transmission film, the impurity concentration of the P-type impurity layer 204 is 0.7 μm from the semiconductor substrate surface. In the semiconductor substrate 201 on both sides of the gate electrode 203, the gate oxide film 203 serves as an ion implantation / transmission film, so that the depth is about 0.3 μm deeper than that under the gate electrode 203, that is, the semiconductor substrate surface 201. To 0.3 μm
The maximum impurity concentration of the P-type impurity layer 204 is in the range of up to 1.1 μm. Next, using the gate electrode 203 as a mask, N-type impurities such as arsenic are ion-implanted at a dose amount of 1 × 10 16 cm −2 and an acceleration voltage of 40 keV to 100 keV to form the source / drain regions 205 of the N-type impurity layer. Form. At this time, the depth of the source / drain region formed by the N-type impurity layer is 0.1 μm from the surface of the semiconductor substrate.
It is m to 0.4 μm. By forming the semiconductor device as described above, the source / drain regions 205 are formed.
The lower surface of the semiconductor substrate 20 on both sides of the gate electrode 203.
1 is in contact with the upper surface of the P-type impurity layer 204 or the lower surface of the source / drain region 205 is formed above the P-type impurity layer 204 formed in the semiconductor substrate 201 on both sides of the gate electrode 203. Will be.
Next, in order to activate the impurities in the impurity layer, 800 ° C to 1
Anneal at 100 ° C.

【0008】以上説明した本発明の半導体装置によれば
ゲート電圧がしきい値電圧に到達しない状態でドレイン
にある電圧を印加してもゲート電極下部の半導体基板中
において半導体基板より高濃度のP型不純物を有する不
純物層204の不純物濃度の最大となる位置がソースド
レイン領域より深い位置にあるとドレインの空乏層のソ
ース側への伸びが抑えられることによりパンチスルー現
象が起こり難くなる。しかし前記半導体基板より高濃度
のP型不純物を有する不純物層204の不純物濃度の最
大となる位置が深すぎると、ドレインの空乏層のソース
側への伸びが抑えられなくなりかえってパンチスルー現
象を起こし易くなる。一方、ゲート電極下部の半導体基
板中におけるP型不純物層204の不純物濃度の最大と
なる位置を深くすることによりドレイン近傍でドレイン
電界によるアバランシェ現象の起こる位置が半導体基板
表面から深い位置になるのでホットキャリア現象による
素子特性の劣化が少なくなることがわかっている。しか
しP型不純物層204の不純物濃度の最大となる位置を
ある程度以上深くしてもアバランシェ現象の起こる位置
は変化しなくなるのでホットキャリア現象による素子特
性の劣化は変化がなくなる。以上の理由によりゲート電
極下部の半導体基板中におけるP型不純物層204の不
純物濃度の最大となる位置は最適な範囲が存在し、その
範囲は半導体基板表面から0.2μm〜0.7μmの範
囲が好ましく、更に好ましくは0.3μm〜0.5μm
が良い。
According to the above-described semiconductor device of the present invention, even if the voltage applied to the drain is applied in the state where the gate voltage does not reach the threshold voltage, the P concentration in the semiconductor substrate below the gate electrode is higher than that in the semiconductor substrate. If the position where the impurity concentration of the impurity layer 204 having the type impurities is maximum is deeper than the source / drain region, the punch-through phenomenon is less likely to occur because the extension of the depletion layer of the drain to the source side is suppressed. However, if the position where the impurity concentration of the impurity layer 204 having a higher concentration of P-type impurities is higher than that of the semiconductor substrate is too deep, the extension of the depletion layer of the drain to the source side cannot be suppressed and the punch through phenomenon is likely to occur. Become. On the other hand, by deepening the position where the maximum impurity concentration of the P-type impurity layer 204 in the semiconductor substrate under the gate electrode is deep, the position where the avalanche phenomenon due to the drain electric field occurs near the drain becomes deep from the surface of the semiconductor substrate. It is known that the deterioration of device characteristics due to the carrier phenomenon is reduced. However, since the position where the avalanche phenomenon occurs does not change even if the position where the maximum impurity concentration of the P-type impurity layer 204 is deeper than a certain extent is maintained, the deterioration of the device characteristics due to the hot carrier phenomenon does not change. For the above reason, the position where the impurity concentration of the P-type impurity layer 204 is maximum in the semiconductor substrate below the gate electrode has an optimum range, and the range is 0.2 μm to 0.7 μm from the semiconductor substrate surface. Preferably, more preferably 0.3 μm to 0.5 μm
Is good.

【0009】また、ゲート電極の両側の半導体基板中に
おいてはP型不純物層204はパンチスルー現象の抑制
及びホットキャリア現象による素子特性の劣化の防止に
は効果がない。しかも、半導体基板201よりも高濃度
のP型不純物層204の不純物濃度の最大となる位置が
浅いと、ドレインに電圧を印加した場合にドレイン領域
から半導体基板側への空乏層の伸びが抑えられることか
らドレインの耐圧が低下することが分かっている。本発
明の半導体装置ではゲート電極の両側の半導体基板中に
おいてはP型不純物層204の不純物濃度の最大となる
位置はゲート電極下部の半導体基板中における場合より
も0.3μm程度深い位置に形成されるためドレイン耐
圧の低下を防ぐことができる。
Further, in the semiconductor substrate on both sides of the gate electrode, the P-type impurity layer 204 is not effective in suppressing the punch through phenomenon and preventing the deterioration of the device characteristics due to the hot carrier phenomenon. Moreover, if the position where the impurity concentration of the P-type impurity layer 204 having a higher concentration than that of the semiconductor substrate 201 is maximum is shallow, the extension of the depletion layer from the drain region to the semiconductor substrate side is suppressed when a voltage is applied to the drain. Therefore, it is known that the breakdown voltage of the drain decreases. In the semiconductor device of the present invention, in the semiconductor substrate on both sides of the gate electrode, the position where the impurity concentration of the P-type impurity layer 204 is maximum is formed at a position deeper by about 0.3 μm than in the semiconductor substrate below the gate electrode. Therefore, the drain breakdown voltage can be prevented from lowering.

【0010】ここでは実施例としてP型不純物層を形成
する際に用いる不純物としてホウ素を用いたが、本発明
はこれに限定されるものではなくアルミニウム、ガリウ
ム、インジウムを用いても良いし、ホウ素とアルミニウ
ムというようにこれらの不純物を組み合わせて用いても
良い。同様に本実施例ではN型不純物層を形成する際に
用いる不純物として砒素を用いたが、本発明はこれに限
定されるものではなく燐、アンチモンを用いても良い
し、砒素と燐というようにこれらの不純物を組み合わせ
て用いても良い。又、ここでは実施例としてゲート電極
に多結晶シリコン膜を用いたが、本発明はこれに限定さ
れるものではなく例えばチタン、モリブデン、タングス
テン等の高融点金属でも良いし、半導体膜例えば多結晶
シリコン膜の上部にチタン、モリブデン、タングステン
等の高融点金属を形成した高融点金属ポリサイド膜、あ
るいは高融点金属シリサイド膜を用いても良い。
Although boron is used as the impurity used in forming the P-type impurity layer in the embodiment, the present invention is not limited to this, and aluminum, gallium, or indium may be used, or boron may be used. These impurities may be used in combination, such as aluminum and aluminum. Similarly, in this embodiment, arsenic is used as the impurity used when forming the N-type impurity layer, but the present invention is not limited to this, and phosphorus or antimony may be used, or arsenic and phosphorus. These impurities may be used in combination. Although a polycrystalline silicon film is used for the gate electrode as an example here, the present invention is not limited to this and may be a refractory metal such as titanium, molybdenum, or tungsten, or a semiconductor film such as a polycrystalline film. A refractory metal polycide film in which a refractory metal such as titanium, molybdenum, or tungsten is formed on the silicon film, or a refractory metal silicide film may be used.

【0011】[0011]

【発明の効果】本発明の半導体装置及び半導体装置の製
造方法によればパンチスルー現象が起こり難いためにM
OS型トランジスタの微細化が可能になるだけでなく、
ホットキャリア現象による素子特性の劣化が少なく、更
にドレイン耐圧の向上とジャンクションリークの低減が
可能となるため、半導体装置の高集積化と信頼性の向
上、消費電力の低減が可能となる。
According to the semiconductor device and the method of manufacturing the semiconductor device of the present invention, the punch-through phenomenon hardly occurs.
Not only is it possible to miniaturize OS-type transistors,
Element characteristics are not deteriorated due to the hot carrier phenomenon, and further, the drain withstand voltage can be improved and the junction leak can be reduced, so that the semiconductor device can be highly integrated, the reliability can be improved, and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の断面図。FIG. 1 is a cross-sectional view of a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法の主要工程を表
す断面図。
FIG. 2 is a cross-sectional view showing main steps of a method for manufacturing a semiconductor device of the present invention.

【図3】従来の半導体装置の断面図。FIG. 3 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

101、201、301 第1導電型の不純物を持つ半
導体基板 102、202、302 絶縁膜 103、203、303 ゲート電極 104、204、304 第1導電型の不純物層 105、205、305 第2導電型の不純物層
101, 201, 301 Semiconductor substrate having impurities of the first conductivity type 102, 202, 302 Insulating films 103, 203, 303 Gate electrodes 104, 204, 304 Impurity layer of the first conductivity type 105, 205, 305 Second conductivity type Impurity layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1導電型で第1の不純物濃度を持つ半導
体基板、前記半導体基板上に第1の絶縁膜を介して形成
されたゲート電極、前記ゲート電極の下部においては前
記半導体基板中に前記半導体基板表面から第1の深さ
に、前記ゲート電極の両側の前記半導体基板中において
は前記半導体基板表面から第1の深さよりも深い第2の
深さに形成された第1導電型で第2の不純物濃度を持つ
帯状の第1不純物層、前記ゲート電極の両側の前記半導
体基板中に互いに離間して前記半導体基板表面から第3
の深さに形成された第2導電型で第3の不純物濃度を持
ち下面の位置が前記第1の深さに形成された第1不純物
層の不純物濃度が最大となる位置と同等かあるいは上部
に存在する第2不純物層を有することを特徴とする半導
体装置。
1. A semiconductor substrate of a first conductivity type having a first impurity concentration, a gate electrode formed on the semiconductor substrate via a first insulating film, and in the semiconductor substrate below the gate electrode. A first conductivity type formed at a first depth from the surface of the semiconductor substrate, and at a second depth deeper than the first depth from the surface of the semiconductor substrate in the semiconductor substrate on both sides of the gate electrode. A strip-shaped first impurity layer having a second impurity concentration, spaced apart from each other in the semiconductor substrate on both sides of the gate electrode, and separated from the semiconductor substrate surface by a third region.
Of the second conductivity type having the third impurity concentration formed at the depth of, and the position of the lower surface is equal to or higher than the position where the impurity concentration of the first impurity layer formed at the first depth has the maximum value. A semiconductor device having a second impurity layer existing in the semiconductor device.
【請求項2】第1導電型で第1の不純物濃度を持つ半導
体基板上に第1の絶縁膜を形成する工程、前記第1の絶
縁膜上にゲート電極を形成する工程、前記ゲート電極を
イオン注入透過膜のひとつとすることにより前記ゲート
電極の下部においては前記半導体基板中に前記半導体基
板表面から第1の深さに、前記ゲート電極の両側の前記
半導体基板中においては前記半導体基板表面から第1の
深さよりも深い第2の深さに形成された第1導電型で第
2の不純物濃度を持つ帯状の第1不純物層をイオン注入
法により形成する工程、前記ゲート電極をマスクとする
ことにより前記ゲート電極の両側の前記半導体基板中に
互いに離間して前記半導体基板表面から第3の深さに形
成された第2導電型で第3の不純物濃度を持ち下面の位
置が前記第1の深さに形成された第1不純物層の不純物
濃度が最大となる位置と同等かあるいは上部に存在する
第2不純物層をイオン注入法により形成する工程を含む
ことを特徴とする半導体装置の製造方法。
2. A step of forming a first insulating film on a semiconductor substrate of a first conductivity type having a first impurity concentration, a step of forming a gate electrode on the first insulating film, and a step of forming the gate electrode. By using one of the ion-implanted and permeable membranes, the semiconductor substrate surface in the semiconductor substrate below the gate electrode is at a first depth from the semiconductor substrate surface, and in the semiconductor substrate on both sides of the gate electrode is the semiconductor substrate surface. From the first depth to a second depth deeper than the first depth, a band-shaped first impurity layer having a first impurity type and a second impurity concentration is formed by an ion implantation method, and the gate electrode is used as a mask. As a result, the second conductivity type third impurity concentration is formed in the semiconductor substrate on both sides of the gate electrode so as to be spaced apart from each other at a third depth from the surface of the semiconductor substrate, and the position of the lower surface is the first. Depth of 1 The method of manufacturing a semiconductor device in which the impurity concentration of the first impurity layer is characterized in that it comprises a step of the second impurity layer is formed by ion implantation at the position equal to or upper which maximizes formed.
JP2129392A 1992-02-06 1992-02-06 Semiconductor device and manufacture thereof Pending JPH05218414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129392A JPH05218414A (en) 1992-02-06 1992-02-06 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129392A JPH05218414A (en) 1992-02-06 1992-02-06 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05218414A true JPH05218414A (en) 1993-08-27

Family

ID=12051098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129392A Pending JPH05218414A (en) 1992-02-06 1992-02-06 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05218414A (en)

Similar Documents

Publication Publication Date Title
US6524903B2 (en) Method of manufacturing a semiconductor device having two peaks in an impurity concentration distribution
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US7161213B2 (en) Low threshold voltage PMOS apparatus and method of fabricating the same
US9786657B1 (en) Semiconductor structure including a transistor including a gate electrode region provided in a substrate and method for the formation thereof
CN102834919B (en) High voltage silicon controlled rectifier metal-oxide semiconductor (MOS) in BiCMOS technique technology
KR100526366B1 (en) Semiconductor device and method for manufacturing the same
US20040262650A1 (en) Semiconductor device, method for producing the same, and information processing apparatus
KR100248507B1 (en) A silicon-on-insulator transistors and fabricating method of the same
US6160288A (en) Vertical type misfet having improved pressure resistance
JP2000196090A (en) Double-gate soi device and manufacture thereof
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
JPS62156873A (en) Semiconductor device
JP2000049344A (en) Semiconductor device and its manufacture
US6762468B2 (en) Semiconductor device and method of manufacturing the same
US6207996B1 (en) Semiconductor device and method for manufacturing the same
JP2001217418A (en) Mos transistor and its manufacturing method
US6727149B1 (en) Method of making a hybrid SOI device that suppresses floating body effects
JPS61255069A (en) Insulated gate field-effect transistor
JPH05218414A (en) Semiconductor device and manufacture thereof
JPS6158987B2 (en)
KR100863687B1 (en) Semiconductor device and manufacturing method of semiconductor device
US6720224B2 (en) Method for forming transistor of semiconductor device
JP2006120801A (en) Semiconductor device and manufacturing method therefor
KR100405450B1 (en) Dmos transistor having structure of pocket type junction layer and manufacturing method thereof
KR100448090B1 (en) Method for fabricating high-performance semiconductor device by reducing junction capacitance