JPH05217902A - Heat treating apparatus - Google Patents

Heat treating apparatus

Info

Publication number
JPH05217902A
JPH05217902A JP11246191A JP11246191A JPH05217902A JP H05217902 A JPH05217902 A JP H05217902A JP 11246191 A JP11246191 A JP 11246191A JP 11246191 A JP11246191 A JP 11246191A JP H05217902 A JPH05217902 A JP H05217902A
Authority
JP
Japan
Prior art keywords
gas
heat treatment
furnace
hydrogen
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11246191A
Other languages
Japanese (ja)
Inventor
Masanori Inoko
正憲 猪子
Shohei Kosaka
昌平 小坂
Masaru Awaya
優 粟屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP11246191A priority Critical patent/JPH05217902A/en
Publication of JPH05217902A publication Critical patent/JPH05217902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To suppress mixture of impurities with a material to be treated so as to heat-treat the material to be treated such as a semiconductor wafer, etc. CONSTITUTION:All or only surfaces of a heat-treating furnace 4, a susceptor 6, a shaft 5 and a gas inlet tube 1 near the furnace 4 are formed of nickel or a material containing nickel as a main ingredient. More particularly, such a structure can be formed of a nickel-plated member, for example, of stainless steel. The furnace 4 is heated therein to a predetermined temperature by a heater 3, SiHCl3, H2 gas are introduced into the furnace 4, and a wafer W is, for example, CVD-treated. Then, hydrogen chloride gas is generated by heat-treating decomposition and recombination, but even if the gas is brought into contact with the inner surface of an apparatus, no impurity is generated therefrom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体ウエハなどの熱処
理装置に関するものであり、特に熱処理炉などの材質に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus for semiconductor wafers and the like, and more particularly to materials for heat treatment furnaces and the like.

【0002】[0002]

【従来の技術】半導体ウエハからデバイスを得るために
は、種々の工程が組み合わされ、また繰り返されるが、
その中でもCVDやエッチングなどの熱処理は、リソグ
ラフィーと並んで重要な工程である。この種の熱処理装
置においては、通常石英あるいはステンレス鋼よりなる
熱処理炉内に多数枚のウエハを収納し、ヒータにより熱
処理炉内を例えば800℃付近まで加熱すると共に、ス
テンレス鋼よりなるガス供給管を介して処理ガスを導入
し、所定の真空度を維持しながら熱処理を行うようにし
ている。
2. Description of the Related Art In order to obtain a device from a semiconductor wafer, various steps are combined and repeated,
Among them, heat treatment such as CVD and etching is an important step along with lithography. In this type of heat treatment apparatus, a large number of wafers are normally housed in a heat treatment furnace made of quartz or stainless steel, and the inside of the heat treatment furnace is heated to about 800 ° C. by a heater, and a gas supply pipe made of stainless steel is provided. The processing gas is introduced through the heat treatment, and the heat treatment is performed while maintaining a predetermined degree of vacuum.

【0003】[0003]

【発明が解決しようとする課題】ところで最近において
は、DRAMが4Mから16M、32Mさらにはそれ以
上の大容量化の移行を狙っているように、急ピッチでデ
バイスの高集積化が図られている。
By the way, recently, as DRAMs are aiming for a large capacity transition from 4M to 16M, 32M and further, high integration of devices has been attempted at a rapid pitch. There is.

【0004】このようなデバイスの高集積化を達成する
ためには、従来に増して各プロセスに厳しい条件が課さ
れ、熱処理においても、処理ガスの純度や、エッチング
における選択比、ウエハ上の不純物の付着などに対し
て、より一層の改善が要求されると共に、今まで取り上
げられなかった要因についても考慮しなければならない
レベルにきている。
In order to achieve high integration of such a device, more severe conditions are imposed on each process than ever before, and even in the heat treatment, the purity of the processing gas, the etching selection ratio, the impurities on the wafer, and the like. Further improvement is required for adhesion of substances, and factors that have not been taken up until now have been considered.

【0005】本発明はこのような事情のもとになされた
ものであり、その目的は、半導体ウエハなどの被処理体
を熱処理するにあたって、被処理体への不純物の混入を
抑えることのできる装置を提供することにある。
The present invention has been made under such circumstances, and an object thereof is an apparatus capable of suppressing the mixing of impurities into the object to be processed when the object to be processed such as a semiconductor wafer is heat-treated. To provide.

【0006】[0006]

【課題を解決するための手段】本発明は半導体デバイス
の高集積化を達成する要素の一つとして、熱処理中のウ
エハ内への不純物の混入の要因が、処理ガス中にもとも
と含まれる不純物のみならず、現在不純物の発生源とし
ては着眼されていない、熱処理炉自体の材質に関連して
いることを見出だし、その要因が現在の集積度ではさほ
ど問題にならないにしても、いわゆる次世代の高集積素
子においては影響が出てくるオーダーであることを把握
し、本発明はこれを具体的データに基づいて熱処理装置
の材質を選定したものである。
According to the present invention, as one of the factors for attaining high integration of a semiconductor device, the factor of the contamination of impurities into the wafer during the heat treatment is only the impurities originally contained in the processing gas. However, we have found that it is related to the material of the heat treatment furnace itself, which is not currently focused on as a source of impurities, and even if the factor is not so problematic at the present degree of integration, so-called next-generation It is understood that the influence is high in highly integrated devices, and the present invention selects the material of the heat treatment apparatus based on concrete data.

【0007】即ち本発明者は、現在不純物の発生につい
ては問題ないとされている、熱処理炉の材質であるステ
ンレス鋼に注目し、後述する実施例のごとくステンレス
鋼について実際に加熱雰囲気で極めて高純度のハロゲン
化水素ガスと接触させ、そのガス中の微量分析を行った
ところ、Feが例えば32MDRAMの製造に対しては
汚染源となる量だけ含まれていたが、ニッケル(Ni)
については含まれていないことを把握した。
[0007] That is, the present inventor pays attention to stainless steel which is a material of the heat treatment furnace, which is considered to have no problem in generation of impurities at present, and as shown in Examples to be described later, the stainless steel is actually extremely high in a heating atmosphere. When contacted with a pure hydrogen halide gas and microanalyzed in the gas, it was found that Fe was contained in an amount that would be a pollution source for the production of, for example, 32M DRAM, but nickel (Ni)
I found that it was not included.

【0008】ここで熱処理の一つであるエッチングにお
いては通常処理ガスとして塩化水素(HCl)ガスが用
いられ、またCVDなどの成膜処理においては、水素及
びハロゲンを含むガス例えばSiHCl、SiHC
などを用いることが多く、この場合熱分解した水素
と塩素が再結合して一部塩化水素が生成され、この塩化
水素が結晶表面に付着する不純物を叩き出すようにして
いる。しかしながら周囲の不純物の量が多ければ結果的
に膜の中に混入する量も多くなってしまう。そこで本発
明ではこのような熱処理装置において、処理ガスに接触
しかつ加熱される部分を、ニッケルを主成分とする材質
で作るようにした。したがって本発明では例えば半導体
ウエハの熱処理を行うにあたって、装置から不純物が発
生しないか、あるいはその発生を極力抑えることができ
るので、被処理体への不純物の混入が抑えられる。
In etching, which is one of the heat treatments, a hydrogen chloride (HCl) gas is usually used as a processing gas, and in a film forming process such as CVD, a gas containing hydrogen and halogen such as SiH 2 Cl 2 , SiHC
is often used like l 3, in this case the thermal decomposition hydrogen and chlorine recombine some hydrogen chloride generated, the hydrogen chloride is to dislodge the impurities that adhere to the crystal surface. However, if the amount of impurities in the surroundings is large, the amount mixed in the film will be large as a result. Therefore, in the present invention, in such a heat treatment apparatus, the portion which is in contact with the processing gas and is heated is made of a material containing nickel as a main component. Therefore, in the present invention, for example, when heat-treating a semiconductor wafer, impurities are not generated from the apparatus or can be suppressed as much as possible, so that impurities are suppressed from being mixed into the object to be processed.

【0009】[0009]

【実施例】本発明では、例えば図1に示すバレル形CV
D装置に適応することができる。この装置はガス導入管
1及び排気管2が連結され、外側にヒータ3が配置され
たバレル形の熱処理炉4内に、鉛直な軸部5により回動
するウエハサスセプタ6を設けて構成されており、例え
ば熱処理炉4、サスセプタ6、軸部5について、その全
部あるいは表面のみを、ニッケルまたはニッケルを主成
分とする材質で構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, for example, a barrel type CV shown in FIG.
It can be applied to the D device. This apparatus is configured by providing a wafer susceptor 6 which is rotated by a vertical shaft portion 5 in a barrel-shaped heat treatment furnace 4 in which a gas introduction pipe 1 and an exhaust pipe 2 are connected and a heater 3 is arranged outside. For example, all or only the surfaces of the heat treatment furnace 4, the susceptor 6, and the shaft portion 5 are made of nickel or a material containing nickel as a main component.

【0010】具体的にはこのような構造は、例えばステ
ンレス鋼を用いて作った成形体の表面にニッケルメッキ
を施すことによって達成することができる。
Specifically, such a structure can be achieved by nickel-plating the surface of a molded body made of, for example, stainless steel.

【0011】そして前記熱処理炉4内をヒータ3によ
り、例えば800℃付近に加熱し、SiHCl、H
ガスを熱処理炉4内に導入してウエハWに対してCVD
処理を行うと、熱分解及び再結合によって塩化水素ガス
が生成されるが、装置の内表面に塩化水素ガスが接触し
ても、ここからは不純物が発生しない。
The inside of the heat treatment furnace 4 is heated by the heater 3 to, for example, about 800 ° C., and SiHCl 3 and H 2 are added.
A gas is introduced into the heat treatment furnace 4 to perform CVD on the wafer W.
When the treatment is carried out, hydrogen chloride gas is generated by thermal decomposition and recombination, but when hydrogen chloride gas comes into contact with the inner surface of the apparatus, no impurities are generated from here.

【0012】次にこのことを裏付けるため水素雰囲気あ
るいは水素−塩化水素雰囲気においてステンレス鋼から
の成分金属の脱離挙動を調べるために行った実験につい
て述べる。 1、試料作成 ステンレス鋼SUS316よりなる直径300mmの丸
棒を旋盤で厚さ10mmに切断して円柱状に成形し、こ
れをエメリー紙#800で研磨した。次いでこれを60
℃に加温された5%のHSO水溶液に3分間浸漬し
てエッチング処理を行い、超純水で洗浄した後アルコー
ルで乾燥し、その後シャーレ中に約15時間放置したも
のを試料とした。 2、金属の脱離試験 図2のように電気炉71内にセットされた石英管7中に
試料Sを配置し、所定温度に加熱した後水素ガス及び塩
化水素ガスを夫々毎分750ml及び18mlの流量で
石英管7中に通流する。そしてこの状態を30分間保持
した後、石英管7の下端から排気された水素ガスを排気
管8を介してトラップ容器9内の超高純度IN塩酸水溶
液に通じて、同伴する金属をトラップし、この塩酸水溶
液を濃縮した後ICP発光分析にて、Fe、Ni、Cr
の各全量を定量した。
Next, in order to support this, an experiment conducted to investigate the desorption behavior of the component metals from the stainless steel in a hydrogen atmosphere or a hydrogen-hydrogen chloride atmosphere will be described. 1. Sample preparation A round bar made of stainless steel SUS316 and having a diameter of 300 mm was cut with a lathe to a thickness of 10 mm to form a columnar shape, which was polished with emery paper # 800. Then this 60
A sample was prepared by immersing it in a 5% H 2 SO 4 aqueous solution heated to ℃ for 3 minutes for etching, washing with ultrapure water, drying with alcohol, and then leaving it in a petri dish for about 15 hours. did. 2. Metal desorption test As shown in FIG. 2, the sample S is placed in the quartz tube 7 set in the electric furnace 71, heated to a predetermined temperature, and then hydrogen gas and hydrogen chloride gas are supplied at 750 ml and 18 ml per minute, respectively. And flow through the quartz tube 7. After holding this state for 30 minutes, hydrogen gas exhausted from the lower end of the quartz tube 7 is passed through the exhaust tube 8 to the ultra-high purity IN hydrochloric acid aqueous solution in the trap container 9 to trap the accompanying metal, After concentrating this hydrochloric acid aqueous solution, Fe, Ni, Cr
Was quantified.

【0013】なお水素はモルキュラーシーブ(5A;ジ
ーエルサイエンス社製乾燥管使用)とメンブランフィル
タ(NUCLREPORE社製0.015μ)を通した
ものを用いた。
The hydrogen used was one that passed through a molecular sieve (5A; using a drying tube manufactured by GL Sciences) and a membrane filter (0.015 μ manufactured by NUCLREPORE).

【0014】このような実験を石英管7内の温度が20
0℃、400℃、600℃、800℃の各条件下で行う
と共に、さらに同様の実験を塩酸ガスを流すことなく水
素ガスのみを流した場合について行ったところ、表1の
結果が得られた。
Such an experiment was carried out when the temperature inside the quartz tube 7 was 20.
The results shown in Table 1 were obtained when the same experiment was performed under the conditions of 0 ° C., 400 ° C., 600 ° C., and 800 ° C. and the case where only hydrogen gas was flown without flowing hydrochloric acid gas. ..

【0015】[0015]

【表1】 各温度条件について上段の数値は水素ガスのみを流した
場合の結果であり、下段の数値は水素ガス及び塩化水素
ガスを流した場合の結果である。また表1中の数値の単
位は(μg)であるが、温度800℃で水素ガスと塩酸
ガスとを流した場合におけるFeの数値の単位のみ(m
g)である。なおNDは検出限界から外れた値である。 3、考察 試料に用いたステンレス鋼SUS316の成分について
は、Feが60〜72%、Niが12〜16%、Crが
16〜18%含有されている。一方試料を石英管7内に
配置しないで水素ガス及び塩化水素ガスを通流したとこ
ろ、Feが2.5μg捕集され、Ni、Crについては
含まれていなかった。
[Table 1] For each temperature condition, the upper numerical values are the results when only hydrogen gas was flown, and the lower numerical values are the results when hydrogen gas and hydrogen chloride gas were flown. The unit of the numerical value in Table 1 is (μg), but only the unit of the numerical value of Fe (m in the case of flowing hydrogen gas and hydrochloric acid gas at a temperature of 800 ° C.)
g). ND is a value outside the detection limit. 3. Discussion Regarding the components of the stainless steel SUS316 used for the sample, Fe is contained in 60 to 72%, Ni is contained in 12 to 16%, and Cr is contained in 16 to 18%. On the other hand, when the sample was allowed to flow through the hydrogen gas and the hydrogen chloride gas without being placed in the quartz tube 7, 2.5 μg of Fe was collected, and Ni and Cr were not contained.

【0016】このようなことと表1の結果をつき合わせ
ると、次のことが判る。すなわちFeについては200
℃までもの加熱雰囲気になると、水素ガスと反応して脱
離し、塩化水素ガスに対しては400℃を超えるとかな
り脱離量が多くなり、特に8000℃にもなると、mg
オーダで脱離している。
By comparing the above with the results of Table 1, the following can be understood. That is, 200 for Fe
When it is heated up to ℃, it desorbs by reacting with hydrogen gas, and when it exceeds 400 ℃, the desorption amount becomes considerably large with respect to hydrogen chloride gas, especially when it reaches 8000 ℃,
Detached on the order.

【0017】またCrについては、水素ガスに対しては
反応しないが、塩化水素ガスに対しては800℃にて脱
離している。これに対しNiについては水素ガスに対し
ても塩化水素ガスに対しても脱離していない。すなわち
水分が存在する場合には、通常Niは塩化水素により腐
食するが、水分がない場合には高温下でも反応しないこ
とが判った。
Further, Cr does not react with hydrogen gas, but desorbs with respect to hydrogen chloride gas at 800 ° C. On the other hand, Ni is not desorbed to hydrogen gas or hydrogen chloride gas. That is, it was found that Ni is usually corroded by hydrogen chloride in the presence of water, but does not react even at high temperatures in the absence of water.

【0018】従って塩化水素ガスがプロセス中にて生成
される装置に対して、Niは好適な材質であり、またC
rは800℃に至らない範囲では好適な材質であること
が理解される。
Therefore, Ni is the preferred material for the device in which hydrogen chloride gas is produced during the process, and C
It is understood that r is a suitable material as long as it does not reach 800 ° C.

【0019】以上において本発明は、半導体ウエハに対
して成膜やエッチングなどを行う場合に適応できること
はもちろんであるが、その他塩化水素ガスなどのハロゲ
ン化ガスを導入して、被処理体の表面の不純物をエッチ
ングする他のプロセス、例えば熱拡散法による単結晶シ
リコンの引上げを行う装置などに対しても適応できる。
Of course, the present invention can be applied to the case where film formation or etching is performed on a semiconductor wafer as described above, but a halogenated gas such as hydrogen chloride gas is introduced to the surface of the object to be processed. The present invention can be applied to other processes for etching the impurities, such as an apparatus for pulling up single crystal silicon by a thermal diffusion method.

【0020】なお本発明では、熱処理雰囲気に接する部
分のすべてをNiで作ることに限られるものではなく、
例えば熱処理炉のみに対してNiを使用してもよいし、
また100%Niでなくとも、Niを主成分とする材質
を用いれば良い。
The present invention is not limited to the case where all the portions in contact with the heat treatment atmosphere are made of Ni,
For example, Ni may be used only for the heat treatment furnace,
Further, a material containing Ni as a main component may be used instead of 100% Ni.

【0021】[0021]

【発明の効果】以上のように本発明によれば、ハロゲン
化水素ガスを処理ガスとして用いるか、あるいはプロセ
ス中にハロゲン化水素ガスが生成される熱処理装置に対
して、被処理体の汚染源を材質の面から取り上げ、ニッ
ケルを主成分とした材質を用いるようにしたため、実験
例からも裏付けられるようにニッケルが不純物として処
理雰囲気中に脱離しないから、半導体ウエハなどの被処
理体に対する不純物の汚染を極力抑えることができ、3
2M、64Mと大容量化されたDRAMをはじめ非常に
集積度の高いデバイスを製造するにあたっては、不純物
の混入許容範囲が相当狭いため、特にこのようなプロセ
スに適応する場合に極めて有効である。
As described above, according to the present invention, a hydrogen halide gas is used as a processing gas, or a source of contamination of an object to be processed is provided to a heat treatment apparatus in which the hydrogen halide gas is generated during the process. Since it is taken from the viewpoint of the material and the material containing nickel as the main component is used, nickel is not released as an impurity into the processing atmosphere as evidenced by the experimental example. Pollution can be suppressed as much as possible. 3
When manufacturing a highly integrated device such as a DRAM having a large capacity of 2M or 64M, the allowable range of mixing of impurities is considerably narrow, which is extremely effective particularly when applied to such a process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の効果を裏付けるための実験装置を示す
説明図である。
FIG. 2 is an explanatory diagram showing an experimental device for supporting the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス導入管 2 熱処理炉 3 サスセプタ 4 石英管 S 試料 1 Gas introduction tube 2 Heat treatment furnace 3 Susceptor 4 Quartz tube S Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素及びハロゲンを含む処理ガスを用い
て被処理体に熱処理を行う装置において、 処理ガスに接触しかつ加熱される部分を、ニッケルを主
成分とする材質で構成したことを特徴とする熱処理装
置。
1. An apparatus for heat-treating an object to be processed using a processing gas containing hydrogen and halogen, wherein a portion which is in contact with the processing gas and is heated is made of a material containing nickel as a main component. And heat treatment equipment.
JP11246191A 1991-04-16 1991-04-16 Heat treating apparatus Pending JPH05217902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11246191A JPH05217902A (en) 1991-04-16 1991-04-16 Heat treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11246191A JPH05217902A (en) 1991-04-16 1991-04-16 Heat treating apparatus

Publications (1)

Publication Number Publication Date
JPH05217902A true JPH05217902A (en) 1993-08-27

Family

ID=14587217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11246191A Pending JPH05217902A (en) 1991-04-16 1991-04-16 Heat treating apparatus

Country Status (1)

Country Link
JP (1) JPH05217902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041766A1 (en) * 1998-02-13 1999-08-19 Applied Materials, Inc. Reactor for chemical vapor deposition of titanium
US6301270B1 (en) 1998-03-02 2001-10-09 Compaq Computer Corporation Right to left matching of device address numbers with provided integrated services digital network destination numbers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252434A (en) * 1984-05-25 1985-12-13 Sumitomo Chem Co Ltd Production of allyl chloride
JPS6112228B2 (en) * 1980-12-12 1986-04-07 Casio Computer Co Ltd
JPS62191403A (en) * 1986-02-19 1987-08-21 Mitsui Toatsu Chem Inc Production of chlorine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112228B2 (en) * 1980-12-12 1986-04-07 Casio Computer Co Ltd
JPS60252434A (en) * 1984-05-25 1985-12-13 Sumitomo Chem Co Ltd Production of allyl chloride
JPS62191403A (en) * 1986-02-19 1987-08-21 Mitsui Toatsu Chem Inc Production of chlorine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041766A1 (en) * 1998-02-13 1999-08-19 Applied Materials, Inc. Reactor for chemical vapor deposition of titanium
US6301270B1 (en) 1998-03-02 2001-10-09 Compaq Computer Corporation Right to left matching of device address numbers with provided integrated services digital network destination numbers

Similar Documents

Publication Publication Date Title
JP4974815B2 (en) Thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus
JP5498640B2 (en) Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts
JP2001026410A (en) Method for purifying carbon nanotube
JP2006332201A (en) Cleaning method and apparatus of nitride semiconductor manufacturing apparatus
KR101139078B1 (en) Film formation apparatus and method for using the same, and computer readable medium
JP5554469B2 (en) Thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus
JP2002313787A (en) Method for cleaning quartz product in heat treatment system and heat treatment method
JPH08148552A (en) Semiconductor thermal treatment jig and its surface treatment method
JPH05217902A (en) Heat treating apparatus
JP3058909B2 (en) Cleaning method
JP3422345B2 (en) Method of forming tungsten film
TWI303087B (en)
JP5571233B2 (en) Thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus
JPH04333570A (en) Method for cleaning silicon nitiride with gaseous hf
JPH0927488A (en) Heat treating device
TWI844268B (en) Epitaxial growth equipment restart method
JP4332550B2 (en) Manufacturing method of semiconductor device
JP3066232B2 (en) Semiconductor wafer heat treatment equipment
JP3135141B2 (en) Processing equipment
JP2006191151A (en) Method for manufacturing semiconductor device, and substrate processing apparatus
JPS59227128A (en) Oxidation method for semiconductor substrate
JPH0955385A (en) Heat treatment of semiconductor and apparatus used therein
JPH04254328A (en) Manufacture of semiconductor device
JP2003332240A (en) Gas cleaning method for deposited-silicon film forming device
JPH0472727A (en) Gas cleaning process