JP2003332240A - Gas cleaning method for deposited-silicon film forming device - Google Patents

Gas cleaning method for deposited-silicon film forming device

Info

Publication number
JP2003332240A
JP2003332240A JP2002134989A JP2002134989A JP2003332240A JP 2003332240 A JP2003332240 A JP 2003332240A JP 2002134989 A JP2002134989 A JP 2002134989A JP 2002134989 A JP2002134989 A JP 2002134989A JP 2003332240 A JP2003332240 A JP 2003332240A
Authority
JP
Japan
Prior art keywords
gas
silicon
film
substrate
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134989A
Other languages
Japanese (ja)
Inventor
Hitoshi Habuka
等 羽深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMATO HANDOTAI KK
Original Assignee
YAMATO HANDOTAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMATO HANDOTAI KK filed Critical YAMATO HANDOTAI KK
Priority to JP2002134989A priority Critical patent/JP2003332240A/en
Publication of JP2003332240A publication Critical patent/JP2003332240A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, though a gas cleaning step can improve the productivity of semiconductor crystals by shortening the time required for performing the step as much as possible, the possibility of finding out a new gas composition is small and, when a chemical reaction is caused at a high temperature so as to increase the rate of the reaction, devices and members are corroded and contaminants are produced. <P>SOLUTION: In a gas cleaning method for deposited-silicon film forming device, a silicon film caused to deposit on the surface of the supporting base of a silicon semiconductor substrate is removed at the time of causing a silicon film to deposit on the substrate. At the time of removing the silicon film deposited on the surface of the supporting base, the film is etched off by using a hydrogen chloride gas at a concentration of 85-100% after the temperature of the supporting base is raised to 1,000-1,200°C. It is preferable to raise the temperature of the supporting base while the internal pressure of the reaction chamber of the film forming deice is maintained at 1 atm after the silicon semiconductor substrate having the deposited film silicon film is taken out of the reaction chamber in a state where the internal pressure of the reaction chamber is 1 atm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CVD法などの化
学反応を用いて半導体薄膜を基板上に形成する方法、特
に、珪素薄膜を珪素基板上に形成させる方法において、
薄膜形成時に成膜装置内の基板以外の領域に堆積した珪
素薄膜をエッチングして除去するガスクリーニング方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semiconductor thin film on a substrate by using a chemical reaction such as a CVD method, and more particularly to a method for forming a silicon thin film on a silicon substrate.
The present invention relates to a gas cleaning method for etching and removing a silicon thin film deposited on a region other than a substrate in a film forming apparatus when forming a thin film.

【0002】[0002]

【従来の技術】半導体珪素結晶薄膜を珪素基板上に形成
する工程においては、図1に示すように、主として、反
応容器1、支持台2、珪素基板3から構成される反応装
置を使用し、反応容器の入口4から希釈ガスおよび原料
ガスを導入して、高温に加熱されている珪素基板3の表
面に化学反応を生じさせることが行なわれる。
2. Description of the Related Art In a process of forming a semiconductor silicon crystal thin film on a silicon substrate, as shown in FIG. 1, a reaction apparatus mainly composed of a reaction vessel 1, a support base 2 and a silicon substrate 3 is used. A diluent gas and a source gas are introduced from the inlet 4 of the reaction container to cause a chemical reaction on the surface of the silicon substrate 3 which is heated to a high temperature.

【0003】化学反応の希釈ガスとして水素ガスが、原
料ガスとしてシランガス(モノシラン、ジシラン、ジク
ロロシラン、トリクロロシラン、四塩化珪素)が使用さ
れている。この時に、珪素基板3は800℃〜1200
℃の高温に均一性よく加熱される必要があるために、例
えば、炭化珪素などの熱伝導性の良い材質であって、珪
素基板3より大きな直径を有する支持台2の上に支持さ
れる。そのため、シランガスを用いて化学反応が生じる
と、高温に加熱されている珪素基板3だけでなく、同じ
く高温に加熱されている支持台2の表面にも珪素が堆積
して薄膜が形成される。
Hydrogen gas is used as a diluent gas for the chemical reaction, and silane gas (monosilane, disilane, dichlorosilane, trichlorosilane, silicon tetrachloride) is used as a source gas. At this time, the temperature of the silicon substrate 3 is 800 ° C. to 1200 ° C.
Since it needs to be uniformly heated to a high temperature of ° C, it is supported on a support base 2 made of a material having good thermal conductivity such as silicon carbide and having a diameter larger than that of the silicon substrate 3. Therefore, when a chemical reaction occurs using silane gas, silicon is deposited not only on the silicon substrate 3 heated to a high temperature but also on the surface of the support base 2 also heated to a high temperature to form a thin film.

【0004】この珪素堆積膜は粒子の集合からなる薄膜
であるために、剥離し易く、剥離すると微粒子となって
反応容器1内に浮遊して珪素基板3の表面に付着し、半
導体珪素結晶薄膜の正常な形成を妨げ、表面に突起状の
欠陥が多発した半導体珪素結晶薄膜が形成される結果と
なる。これを防ぐために、通常は、半導体珪素結晶薄膜
を形成後に、半導体結晶を取り出した後、支持台2のみ
を所望の温度に加熱して、反応容器の入口から水素ガス
と窒素ガスの混合ガス、水素ガスと塩化水素ガスの混合
ガスなどのクリーニングガスを供給して珪素基板や反応
容器の内壁に堆積した珪素膜を除去している。
Since this deposited silicon film is a thin film composed of a collection of particles, it is easily peeled off, and when peeled off, it becomes fine particles which float in the reaction vessel 1 and adhere to the surface of the silicon substrate 3 to form a semiconductor silicon crystal thin film. Of the semiconductor silicon crystal thin film having a large number of protrusion defects on the surface. In order to prevent this, usually, after forming the semiconductor silicon crystal thin film, after taking out the semiconductor crystal, only the support base 2 is heated to a desired temperature, and a mixed gas of hydrogen gas and nitrogen gas is introduced from the inlet of the reaction vessel. A cleaning gas such as a mixed gas of hydrogen gas and hydrogen chloride gas is supplied to remove the silicon film deposited on the silicon substrate and the inner wall of the reaction container.

【0005】例えば、特開平1−61986号(特許第
2761913号)公報には、反応容器をガスクリーニ
ングする際に反応容器内をまず水素ガスでパージし、次
いで20slmの水素担持流にHClのようなエッチン
グガスの高流を約20slm加えて1200℃でサセプ
タの堆積膜のエッチングを行い、サセプタのエッチング
の後水素の流れを20秒に亘って100slmに増大し
てHClガスを希釈し、反応容器の壁の堆積膜をエッチ
ング除去し、最後に反応容器を100slmの水素流で
パージする方法が記載されている。
For example, in Japanese Unexamined Patent Publication (Kokai) No. 1-61986 (Patent No. 2761913), when the reaction vessel is gas-cleaned, the inside of the reaction vessel is first purged with hydrogen gas, and then a hydrogen-supporting stream of 20 slm is treated with HCl. A high flow of a high etching gas is added for about 20 slm to etch the deposited film of the susceptor at 1200 ° C. After the susceptor is etched, the hydrogen flow is increased to 100 slm for 20 seconds to dilute the HCl gas, A method of etching away the deposited film on the walls of the reactor and finally purging the reaction vessel with a hydrogen stream of 100 slm.

【0006】[0006]

【発明が解決しようとする課題】CVD法などの反応装
置を用いた半導体珪素結晶膜の製造において、支持台表
面や反応容器の内壁面に堆積した珪素膜の除去に水素ガ
スと窒素ガスの混合ガスや水素ガスと塩化水素ガスの混
合ガスが通常使用されている。
In the production of a semiconductor silicon crystal film using a reaction apparatus such as a CVD method, a hydrogen gas and a nitrogen gas are mixed to remove the silicon film deposited on the surface of the supporting table or the inner wall surface of the reaction vessel. Gas or a mixed gas of hydrogen gas and hydrogen chloride gas is usually used.

【0007】しかしながら、上記特開平1−61986
号公報に開示されているように、水素ガスと塩化水素ガ
スの混合ガスを用いた方法でも、2分間で10μmの単
結晶シリコンを成長した場合にサセプタエッチングに4
0秒、反応容器の管壁のエッチングに65秒を要してい
る。
However, the above-mentioned Japanese Patent Laid-Open No. 1-61986.
As disclosed in the publication, even in the method using a mixed gas of hydrogen gas and hydrogen chloride gas, when a single crystal silicon of 10 μm is grown in 2 minutes, the susceptor etching can be performed by 4 times.
It took 0 seconds and 65 seconds to etch the tube wall of the reaction vessel.

【0008】また、通常、サセプタを1200℃程度に
加熱しても反応容器の温度上昇は十分ではなく、サセプ
タ表面の堆積物を除去できても反応容器の内壁面の堆積
物は除去し切れないという問題がある。この解決策の1
つとして、例えば、水素に塩化水素ガス(20〜40
%)を混合したガスと三フッ化塩素ガスを個別に時間差
をつけて供給する方法が知られている(特開平7−12
2493号公報)が、操作が煩雑になり、またクリーニ
ング時間の短縮にはならない。
[0008] Usually, even if the susceptor is heated to about 1200 ° C, the temperature of the reaction vessel does not rise sufficiently, and even if the deposit on the surface of the susceptor can be removed, the deposit on the inner wall surface of the reaction vessel cannot be completely removed. There is a problem. 1 of this solution
As an example, hydrogen chloride gas (20 to 40
%) And a chlorine trifluoride gas are separately supplied with a time lag (Japanese Patent Laid-Open No. 7-12).
No. 2493), the operation becomes complicated and the cleaning time cannot be shortened.

【0009】このような、塩化水素ガスを用いる従来の
クリーニング方法においては、堆積膜の成膜時間とほぼ
同程度か短くても2/3程度のクリーニング時間を必要
とし、堆積膜の完全除去に要する時間は早くても1分以
上を必要としていた。
In such a conventional cleaning method using hydrogen chloride gas, a cleaning time of about 2/3 is required, which is about the same as the film forming time of the deposited film or at the shortest, which is required for complete removal of the deposited film. The time required was at least 1 minute at the earliest.

【0010】ガスクリーニングの工程は、できる限り時
間を短縮することによって半導体結晶の生産性が向上す
る工程であるものの、新規なガス組成が見出される可能
性は少なく、できる限り速い化学反応速度とするために
は高温で反応させるしかないが、そうすると、装置部材
の腐食や汚染物の問題が生じる。
Although the gas cleaning step is a step in which the productivity of semiconductor crystals is improved by shortening the time as much as possible, it is unlikely that a new gas composition will be found, and the chemical reaction rate should be as fast as possible. In order to do so, the reaction must be carried out at a high temperature, but this causes the problem of corrosion and contaminants of equipment members.

【0011】[0011]

【課題を解決するための手段】従来、クリーニングガス
として水素ガスと塩化水素ガスの混合ガスを用いる場合
は、反応装置の金属部およびカーボンや炭化珪素製の部
品が塩化水素ガスで腐食・損傷される問題や、腐食によ
り発生する汚染物がエピタキシャル膜に混入する問題が
あり、塩化水素ガスを10%から60%程度の濃度に含
有するガスが経験に基づいて好ましい条件として選ばれ
ていた。
Conventionally, when a mixed gas of hydrogen gas and hydrogen chloride gas is used as a cleaning gas, the metal part of the reactor and parts made of carbon or silicon carbide are corroded and damaged by the hydrogen chloride gas. However, there is a problem that contaminants generated by corrosion are mixed in the epitaxial film, and a gas containing hydrogen chloride gas in a concentration of about 10% to 60% has been selected as a preferable condition based on experience.

【0012】ところが、本発明者は、半導体結晶製造装
置内の支持台表面や反応容器の内壁面等に堆積した珪素
膜を気化し易い化合物に変える速度が被処理表面温度と
塩化水素ガスの濃度に関連し、該速度は被処理表面温度
が1000℃以上で塩化水素ガスの濃度を高濃度にする
ほど大きくなり、支持台表面や反応容器の内壁面のクリ
ーニング時間を大幅に短縮でき、かつ、このように高濃
度にしても、意外にも反応装置の金属部およびカーボン
や炭化珪素製の部品の腐食・損傷が長期間に亘り抑えら
れ、成膜したウエハの品質の総合評価も向上することを
見出した。
However, the inventor of the present invention has found that the rate at which the silicon film deposited on the surface of the support in the semiconductor crystal manufacturing apparatus or the inner wall surface of the reaction vessel is changed to a compound that easily vaporizes is the surface temperature to be treated and the concentration of hydrogen chloride gas. Related to the above, the speed increases as the concentration of the hydrogen chloride gas increases with the surface temperature to be treated of 1000 ° C. or higher, and the cleaning time of the surface of the support table and the inner wall surface of the reaction vessel can be significantly shortened, and Even with such a high concentration, surprisingly, corrosion and damage to the metal part of the reactor and parts made of carbon or silicon carbide can be suppressed for a long period of time, and the comprehensive evaluation of the quality of the deposited wafer can be improved. Found.

【0013】すなわち、本発明は、半導体珪素基板上に
珪素膜を堆積する際に該基板の支持台の表面に堆積する
珪素膜を除去するガスクリーニング方法において、基板
の支持台の温度を1000℃〜1200℃に昇温してか
ら、濃度85%〜100%の塩化水素ガスにより珪素膜
をエッチングして除去することを特徴とする珪素堆積膜
の成膜装置のガスクリーニング方法である。
That is, the present invention is a gas cleaning method for removing a silicon film deposited on a surface of a support base of a semiconductor silicon substrate when the silicon film is deposited on the semiconductor silicon substrate, and the temperature of the support base of the substrate is 1000 ° C. A gas cleaning method for a deposition apparatus for depositing a silicon film, which comprises heating the temperature to ˜1200 ° C. and then etching and removing the silicon film with a hydrogen chloride gas having a concentration of 85% to 100%.

【0014】また、本発明は、半導体珪素基板上に珪素
膜を堆積した基板を成膜装置の反応容器内の圧力が1気
圧の状態で反応容器から取り出した後、1気圧の状態の
ままで、基板の支持台の温度を昇温することを特徴とす
る上記のガスクリーニング方法である。
Further, according to the present invention, a substrate having a silicon film deposited on a semiconductor silicon substrate is taken out from the reaction container in the reaction container of the film forming apparatus under a pressure of 1 atm, and then kept at 1 atm. In the above gas cleaning method, the temperature of the substrate support is raised.

【0015】また、本発明は、石英ガラス製反応容器の
内壁面に堆積した珪素膜を同時にエッチングして除去す
ることを特徴とする上記のガスクリーニング方法であ
る。
Further, the present invention is the above-mentioned gas cleaning method, characterized in that the silicon film deposited on the inner wall surface of the quartz glass reaction vessel is simultaneously etched and removed.

【0016】また、本発明は、基板の支持台の材料がカ
ーボンまたは炭化珪素であり、該基板の支持台を反応容
器の外から赤外線を照射して加熱することを特徴とする
上記のガスクリーニング方法である。
Further, according to the present invention, the material of the substrate support is carbon or silicon carbide, and the substrate support is heated by irradiating infrared rays from outside the reaction vessel. Is the way.

【0017】本発明の方法によれば、クリーニングガス
の組成を途中で変更することなく一定のまま反応容器に
供給して支持台表面や反応容器の内壁面に堆積した珪素
膜をエッチングにより迅速に除去でき、除去速度は1分
当り40μm以上とすることができる。
According to the method of the present invention, the silicon gas deposited on the surface of the support and the inner wall surface of the reaction vessel can be rapidly etched by etching by supplying the cleaning gas to the reaction vessel without changing the composition of the cleaning gas. It can be removed, and the removal rate can be 40 μm or more per minute.

【0018】[0018]

【発明の実施の形態】図1は、シリコンCVD成膜装置
における成膜時の状態を概念的に示す斜視図である。成
膜装置は横型CVDの他に縦型や各種のCVD装置でも
適用可能である。図1に示すように、石英ガラス製反応
容器1内の支持台2にそれより径の小さい半導体珪素基
板3を載置し、水素ガスとトリクロロシランガスをガス
供給管(図示せず)より流し、半導体珪素基板3上に珪
素膜を成膜する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view conceptually showing a state during film formation in a silicon CVD film forming apparatus. The film forming apparatus can be applied not only to horizontal CVD, but also to vertical and various CVD apparatuses. As shown in FIG. 1, a semiconductor silicon substrate 3 having a smaller diameter is placed on a support 2 in a quartz glass reaction vessel 1, and hydrogen gas and trichlorosilane gas are flown from a gas supply pipe (not shown), A silicon film is formed on the semiconductor silicon substrate 3.

【0019】ガスクリーニング時の圧力は、高い方が同
じガス濃度であっても低圧時よりも体積当たりのモル濃
度が大きいので珪素膜の除去速度が速やかに進むが、半
導体珪素基板を反応容器から取り出すとき、および半導
体珪素基板を反応容器に装入するときの圧力と同じにす
ると、スループットを上げられるので有利である。半導
体珪素基板の装入、取り出しは、通常は1気圧で行うの
で、クリーニング時の圧力も1気圧の状態のままとする
ことがスループットの点では望ましい。
The pressure at the time of gas cleaning has a higher molar concentration per volume than that at low pressure even if the gas concentration is the same at a higher pressure, so that the removal rate of the silicon film proceeds more quickly, but the semiconductor silicon substrate is removed from the reaction vessel. It is advantageous to set the pressure at the time of taking out and charging the semiconductor silicon substrate into the reaction vessel to be the same because throughput can be increased. Since loading and unloading of the semiconductor silicon substrate are usually performed at 1 atm, it is desirable from the viewpoint of throughput that the pressure during cleaning is also kept at 1 atm.

【0020】図2は、シリコンCVD成膜装置における
ガスクリーニング時の状態を概念的に示す斜視図であ
る。成膜後に、石英ガラス製反応容器1内を一方側に排
気するとともにクリーニングガスとして濃度85〜10
0%の塩化水素ガスを他方側から反応容器1内に導入す
る。この際、反応容器1内の圧力は1気圧の状態のまま
でよい。反応容器内に設置された支持台表面と反応容器
内壁などに堆積した珪素膜は塩化水素ガスと化学反応
し、珪素膜は気化し易い化合物に変化して気化し除去さ
れる。
FIG. 2 is a perspective view conceptually showing a state during gas cleaning in the silicon CVD film forming apparatus. After the film formation, the inside of the reaction vessel 1 made of quartz glass is evacuated to one side and the concentration of the cleaning gas is 85 to 10
0% hydrogen chloride gas is introduced into the reaction vessel 1 from the other side. At this time, the pressure in the reaction vessel 1 may remain at 1 atm. The silicon film deposited on the surface of the support installed in the reaction vessel and the inner wall of the reaction vessel chemically reacts with hydrogen chloride gas, and the silicon film is changed to a compound that easily vaporizes and is vaporized and removed.

【0021】図3は、珪素膜除去速度に及ぼす塩化水素
ガス濃度と支持台の加熱温度の関係を示している。図3
に示すように、珪素膜除去速度を一定とした場合、塩化
水素ガスの濃度が大きいほど加熱温度は低くてよいこと
が分かる。塩化水素ガスが100%の時に加熱温度は最
も低くてよい。塩化水素ガスの濃度が約85%付近まで
は塩化水素ガスの濃度が100%の場合と実用的には大
差はない。塩化水素ガスの濃度を約85%まで希釈する
ガスとしては水素ガス、アルゴンガス、ヘリウムガスな
どの不活性ガスを使用できる。
FIG. 3 shows the relationship between the hydrogen chloride gas concentration and the heating temperature of the support, which affects the removal rate of the silicon film. Figure 3
As shown in FIG. 5, it is understood that the heating temperature may be lower as the concentration of the hydrogen chloride gas is higher when the removal rate of the silicon film is constant. The heating temperature may be lowest when the hydrogen chloride gas is 100%. When the hydrogen chloride gas concentration is about 85%, there is practically no great difference from when the hydrogen chloride gas concentration is 100%. As a gas for diluting the concentration of hydrogen chloride gas to about 85%, an inert gas such as hydrogen gas, argon gas or helium gas can be used.

【0022】塩化水素ガス濃度が同一であっても反応温
度が高ければ高い程、塩化水素ガスと珪素堆積膜の反応
速度が増大するので、支持台の加熱温度を高くすること
が望ましいが、加熱温度が1200℃を越えると、支持
台の材質であるカーボンや炭化珪素、その他の反応装置
内の金属部品が塩化水素ガスにより腐食され易くなるた
めに、望ましくない。上限温度はより好ましくは115
0℃とする。
Even if the hydrogen chloride gas concentration is the same, the higher the reaction temperature is, the higher the reaction rate of the hydrogen chloride gas and the silicon deposited film is. Therefore, it is desirable to raise the heating temperature of the support base. When the temperature exceeds 1200 ° C., carbon or silicon carbide, which is the material of the support, and other metal parts in the reaction apparatus are easily corroded by hydrogen chloride gas, which is not desirable. The upper limit temperature is more preferably 115
Set to 0 ° C.

【0023】反応容器の内壁面など支持台以外の部材
は、支持台よりも昇温速度が遅く、これらの上に堆積し
た珪素膜は支持台の温度より低い温度で塩化水素ガスと
反応することになるが、これらの珪素膜の膜厚は通常、
支持台表面上に堆積した珪素膜の膜厚より薄く、支持台
表面上に堆積した珪素膜が完全に除去される条件では、
反応容器の内壁面に堆積した珪素膜もほぼ同時に除去さ
れることになる。
Members other than the support, such as the inner wall surface of the reaction vessel, have a slower rate of temperature rise than the support, and the silicon film deposited on these members reacts with hydrogen chloride gas at a temperature lower than the temperature of the support. However, the film thickness of these silicon films is usually
Under the condition that the thickness of the silicon film deposited on the surface of the support is thinner and the silicon film deposited on the surface of the support is completely removed,
The silicon film deposited on the inner wall surface of the reaction container is also removed almost at the same time.

【0024】支持台および反応容器の内壁の加熱手段
は、高周波加熱、抵抗加熱、赤外線ランプ加熱などの適
宜の加熱手段を用いることができるが、加熱源を反応容
器の外に設置して反応容器の外側からハロゲンランプに
より赤外線を照射して基板を加熱する方法は、加熱源か
ら汚染物が発生しても反応容器内に入らず、昇温・降温
の速度が速い(スループットが大きい)、加熱温度分布
を微調整可能であるなどの利点がある。他の方法では支
持台の材料のカーボンや炭化珪素が直接に加熱されるた
めに、それらから相当の脱ガスがあり、汚染源になるこ
とがある。
As the heating means for the support and the inner wall of the reaction vessel, any suitable heating means such as high frequency heating, resistance heating, infrared lamp heating or the like can be used, but the heating source is installed outside the reaction vessel. The method of heating the substrate by irradiating infrared rays from the outside of the lamp with a halogen lamp does not enter the reaction container even if contaminants are generated from the heating source, and the heating / cooling speed is fast (throughput is high). There is an advantage that the temperature distribution can be finely adjusted. In other methods, carbon and silicon carbide, which are the materials of the supporting base, are directly heated, so that they are considerably outgassed and may become a source of pollution.

【0025】成膜装置内を直接加熱するとともにクリー
ニングガスを加熱すれば、赤外線加熱による温度上昇が
遅い反応容器内壁のクリーニング速度を高めるなどの点
で有効である。
Directly heating the interior of the film forming apparatus and heating the cleaning gas are effective in increasing the cleaning rate of the inner wall of the reaction vessel, which is slow in temperature rise due to infrared heating.

【0026】成膜装置の支持台表面上のみの堆積膜の除
去を行う場合は、半導体薄膜形成と支持台表面上の堆積
膜の除去を同一の反応容器内で行う代わりに、支持台を
外部に取り出して、別途設けられた反応容器内において
上記と同様に塩化水素ガスを用いて珪素堆積膜を除去す
ることもできる。
When removing the deposited film only on the surface of the support of the film forming apparatus, instead of performing the semiconductor thin film formation and the removal of the deposited film on the surface of the support in the same reaction vessel, the support is externally provided. It is also possible to remove the deposited silicon film by using hydrogen chloride gas in a separately provided reaction container in the same manner as above.

【0027】珪素膜の除去速度は支持台の加熱温度と塩
化水素ガス濃度により定まるので、この珪素膜の除去速
度から珪素膜の完全除去時点は予測できる。塩化水素ガ
スエッチングにより珪素膜の除去が済んだらオーバーエ
ッチングを避けるために速やかに供給を停止する必要が
ある。したがって、珪素膜の完全除去時点の経過直後に
塩化水素ガスの供給を停止する。これにより、不要な塩
化水素ガスの供給による反応容器の金属部材の腐食・損
傷を防止できる。
Since the removal rate of the silicon film is determined by the heating temperature of the support and the hydrogen chloride gas concentration, the point of complete removal of the silicon film can be predicted from this removal rate of the silicon film. After the removal of the silicon film by hydrogen chloride gas etching, it is necessary to stop the supply promptly to avoid overetching. Therefore, the supply of hydrogen chloride gas is stopped immediately after the complete removal of the silicon film. As a result, it is possible to prevent corrosion and damage to the metal member of the reaction vessel due to unnecessary supply of hydrogen chloride gas.

【0028】本発明の方法により、1分当り40μm以
上の珪素堆積膜を除去することができるので、珪素堆積
膜が20μmであれば、30秒で塩化水素ガスの供給を
停止すればよい。珪素膜の完全除去時点は加熱温度と塩
化水素ガス濃度により定まる予め求めたデータによる珪
素膜の除去速度から求めることができる。このように、
本発明の方法によれば、珪素膜の除去時間は、従来の方
法の70%〜30%に短縮される。
Since the silicon deposited film of 40 μm or more per minute can be removed by the method of the present invention, if the silicon deposited film is 20 μm, the supply of hydrogen chloride gas may be stopped in 30 seconds. The time of complete removal of the silicon film can be determined from the removal rate of the silicon film based on previously obtained data determined by the heating temperature and the hydrogen chloride gas concentration. in this way,
According to the method of the present invention, the removal time of the silicon film is shortened to 70% to 30% of the conventional method.

【0029】[0029]

【実施例】実施例1 図1に示す成膜装置の石英ガラス製反応容器1内の直径
280mmの支持台2に直径200mmの半導体珪素基
板3を載置し、ガス供給管(図示せず)により反応容器
の入口4から希釈ガスとして水素ガスのみを流したまま
支持台2と半導体珪素基板3を昇温した。水素ガスの流
量は40リットル毎分であった。反応容器1内の圧力は
1気圧であった。昇温方法には、反応容器1の外側から
ハロゲンランプ(図示せず)により赤外線を半導体珪素
基板3および支持台2に照射する方法を採用した。
Example 1 A semiconductor silicon substrate 3 having a diameter of 200 mm is placed on a support base 2 having a diameter of 280 mm in a quartz glass reaction vessel 1 of the film forming apparatus shown in FIG. 1, and a gas supply pipe (not shown). Thus, the temperature of the support base 2 and the semiconductor silicon substrate 3 was raised while only hydrogen gas was allowed to flow as the diluent gas from the inlet 4 of the reaction vessel. The flow rate of hydrogen gas was 40 liters per minute. The pressure in the reaction vessel 1 was 1 atm. As the temperature raising method, a method of irradiating the semiconductor silicon substrate 3 and the support base 2 with infrared rays from the outside of the reaction vessel 1 by using a halogen lamp (not shown) was adopted.

【0030】半導体珪素基板3を1150℃に60秒間
保持することにより半導体珪素基板3の表面を覆ってい
る酸化珪素薄膜を除去し、珪素表面を露出させた。次
に、半導体珪素基板3および支持台2の温度を1125
℃に調整した。水素ガスにトリクロロシランガスを4%
の濃度で混合してガス供給管(図示せず)により反応容
器の入口4から導入し、そのまま5分間保持することに
より厚さ20μmの珪素薄膜を半導体珪素基板3の表面
に形成した。
By holding the semiconductor silicon substrate 3 at 1150 ° C. for 60 seconds, the silicon oxide thin film covering the surface of the semiconductor silicon substrate 3 was removed to expose the silicon surface. Next, the temperatures of the semiconductor silicon substrate 3 and the support base 2 are set to 1125.
The temperature was adjusted to ° C. 4% trichlorosilane gas in hydrogen gas
The mixture was mixed at a concentration of 1 to be introduced from the inlet 4 of the reaction vessel through a gas supply pipe (not shown), and the mixture was kept for 5 minutes to form a silicon thin film having a thickness of 20 μm on the surface of the semiconductor silicon substrate 3.

【0031】この時、支持台2の表面のうち、半導体珪
素基板3の外側の領域に珪素薄膜が厚さ約20μmで堆
積した。次に、トリクロロシランガスの供給を停止し、
水素ガスだけの雰囲気とした後に、半導体珪素基板3お
よび支持台2に照射する赤外線を弱くして降温し、半導
体珪素基板3を取り出した。
At this time, a silicon thin film having a thickness of about 20 μm was deposited on the surface of the support base 2 on the region outside the semiconductor silicon substrate 3. Next, stop the supply of trichlorosilane gas,
After setting the atmosphere of only hydrogen gas, the infrared rays irradiating the semiconductor silicon substrate 3 and the support base 2 were weakened to lower the temperature, and the semiconductor silicon substrate 3 was taken out.

【0032】ここで、支持台2の表面には、半導体珪素
基板3が載置されていた中心部には珪素堆積膜が無く、
外周部のみに珪素堆積膜が付着していた。反応容器1内
の圧力を1気圧のままで、反応容器1内に希釈ガスとし
て水素ガスを供給しながら半導体珪素基板3および支持
台2に照射する赤外線を強くして昇温し、支持台2の温
度を1100℃まで昇温した。この温度で塩化水素濃度
100%を使用した場合の珪素膜の除去速度は80μm
/分以上なので、20μmの堆積膜の除去は15秒あれ
ば十分である。
Here, on the surface of the support base 2, there is no silicon deposition film in the central portion where the semiconductor silicon substrate 3 was placed,
The silicon deposition film was attached only to the outer peripheral portion. While the pressure inside the reaction vessel 1 remains at 1 atm, while supplying hydrogen gas as a dilution gas into the reaction vessel 1, the infrared rays irradiating the semiconductor silicon substrate 3 and the support base 2 are strengthened to raise the temperature. The temperature of 1 was raised to 1100 ° C. The removal rate of the silicon film is 80 μm when hydrogen chloride concentration of 100% is used at this temperature.
Since it is more than 1 minute / minute, it is sufficient to remove the deposited film of 20 μm in 15 seconds.

【0033】支持台2の温度が1100℃に達した時点
で、反応容器1内の圧力は1気圧のままで、希釈ガスで
ある水素ガスの供給を停止し、同時に塩化水素ガスの流
量を20リットル毎分に調整してガス供給管(図示せ
ず)により反応容器1内に供給し、そのまま15秒間流
した時点で塩化水素ガスの供給を停止し、同時に水素ガ
ス流量を40リットル毎分とし、半導体珪素基板3およ
び支持台2に照射する赤外線を弱くして降温した。降温
終了後に支持台2の表面および反応容器の内壁面を観察
したところ、珪素堆積膜は全く観察されなかった。
When the temperature of the support table 2 reaches 1100 ° C., the pressure in the reaction vessel 1 remains at 1 atm, the supply of the hydrogen gas as the diluent gas is stopped, and the flow rate of the hydrogen chloride gas is changed to 20 at the same time. It was adjusted to 1 liter / min and was supplied into the reaction vessel 1 through a gas supply pipe (not shown), and when it was allowed to flow for 15 seconds, the supply of hydrogen chloride gas was stopped, and at the same time, the hydrogen gas flow rate was set to 40 liters / min. The infrared rays irradiating the semiconductor silicon substrate 3 and the support base 2 were weakened to lower the temperature. When the surface of the support 2 and the inner wall surface of the reaction vessel were observed after the temperature was finished, no silicon deposition film was observed.

【0034】本実施例の保持時間である15秒は、従来
の条件、例えば1200℃において塩化水素濃度50%
でガスクリーニングする場合の除去速度と同等であり、
同じ除去速度を約100℃低い温度で達成できた。ま
た、成膜装置は1ケ月〜半年間の使用においても腐食・
損傷が抑えられたことが目視により認められた。
The holding time of 15 seconds in this embodiment is 50% of hydrogen chloride concentration under conventional conditions, for example, 1200 ° C.
It is equivalent to the removal rate when gas cleaning with
The same removal rate could be achieved at about 100 ° C lower temperature. In addition, the film-forming equipment will not corrode even if it is used for 1 month to 6 months.
It was visually confirmed that the damage was suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、シリコンCVD成膜装置における成膜
時の状態を概念的に示す斜視図である。
FIG. 1 is a perspective view conceptually showing a state during film formation in a silicon CVD film forming apparatus.

【図2】図2は、シリコンCVD成膜装置におけるガス
クリーニング時の状態を概念的に示す斜視図である。
FIG. 2 is a perspective view conceptually showing a state during gas cleaning in the silicon CVD film forming apparatus.

【図3】図3は、珪素膜除去速度に及ぼす塩化水素ガス
濃度と支持台の加熱温度の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the hydrogen chloride gas concentration and the heating temperature of the support, which affects the removal rate of the silicon film.

【符号の説明】[Explanation of symbols]

1 反応容器 2 支持台 3 半導体珪素基板 4 反応容器の入口 5 珪素堆積膜 1 reaction vessel 2 support 3 Semiconductor silicon substrate 4 Reaction vessel inlet 5 Silicon deposited film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA06 AA17 BA29 CA04 CA17 DA06 FA10 GA02 JA09 JA10 KA46 5F045 AB02 AC01 AC03 AD12 AD13 AD14 AD15 AD16 AE29 AF03 BB14 DP04 DP19 DP20 EB06 EK14 EM09    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K030 AA06 AA17 BA29 CA04 CA17                       DA06 FA10 GA02 JA09 JA10                       KA46                 5F045 AB02 AC01 AC03 AD12 AD13                       AD14 AD15 AD16 AE29 AF03                       BB14 DP04 DP19 DP20 EB06                       EK14 EM09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体珪素基板上に珪素膜を堆積する際
に該基板の支持台の表面に堆積する珪素膜を除去するガ
スクリーニング方法において、基板の支持台の温度を1
000℃〜1200℃に昇温してから、濃度85%〜1
00%の塩化水素ガスにより珪素膜をエッチングして除
去することを特徴とする珪素堆積膜の成膜装置のガスク
リーニング方法。
1. A gas cleaning method for removing a silicon film deposited on a surface of a support base of a substrate when depositing a silicon film on a semiconductor silicon substrate, wherein a temperature of the support base of the substrate is set to 1
After the temperature is raised from 000 ° C to 1200 ° C, the concentration is 85% to 1
A gas cleaning method for a film deposition apparatus for depositing a silicon film, which comprises etching and removing the silicon film with a hydrogen chloride gas of 00%.
【請求項2】 半導体珪素基板上に珪素膜を堆積した基
板を成膜装置の反応容器内の圧力が1気圧の状態で反応
容器から取り出した後、1気圧の状態のままで、基板の
支持台の温度を昇温することを特徴とする請求項1記載
のガスクリーニング方法。
2. A substrate in which a silicon film is deposited on a semiconductor silicon substrate is taken out from the reaction container in the reaction container of the film forming apparatus under a pressure of 1 atm, and then the substrate is supported under the condition of 1 atm. The gas cleaning method according to claim 1, wherein the temperature of the table is raised.
【請求項3】 石英ガラス製反応容器の内壁面に堆積し
た珪素膜を同時にエッチングして除去することを特徴と
する請求項1または2記載のガスクリーニング方法。
3. The gas cleaning method according to claim 1, wherein the silicon film deposited on the inner wall surface of the quartz glass reaction vessel is simultaneously etched and removed.
【請求項4】 基板の支持台の材料がカーボンまたは炭
化珪素であり、該基板の支持台を反応容器の外から赤外
線を照射して加熱することを特徴とする請求項1ないし
3のいずれかに記載のガスクリーニング方法。
4. The substrate of the substrate is made of carbon or silicon carbide, and the substrate of the substrate is heated by irradiating infrared rays from outside the reaction vessel. The gas cleaning method described in.
JP2002134989A 2002-05-10 2002-05-10 Gas cleaning method for deposited-silicon film forming device Pending JP2003332240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134989A JP2003332240A (en) 2002-05-10 2002-05-10 Gas cleaning method for deposited-silicon film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134989A JP2003332240A (en) 2002-05-10 2002-05-10 Gas cleaning method for deposited-silicon film forming device

Publications (1)

Publication Number Publication Date
JP2003332240A true JP2003332240A (en) 2003-11-21

Family

ID=29697430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134989A Pending JP2003332240A (en) 2002-05-10 2002-05-10 Gas cleaning method for deposited-silicon film forming device

Country Status (1)

Country Link
JP (1) JP2003332240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110098661A (en) * 2010-02-26 2011-09-01 도쿄엘렉트론가부시키가이샤 Method for heating part in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
US8569175B2 (en) 2005-12-08 2013-10-29 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for dry chemical treatment of substrates and also use thereof
CN109473330A (en) * 2017-09-07 2019-03-15 长鑫存储技术有限公司 Semiconductor equipment cleaning method and its semiconductor technology method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569175B2 (en) 2005-12-08 2013-10-29 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for dry chemical treatment of substrates and also use thereof
KR20110098661A (en) * 2010-02-26 2011-09-01 도쿄엘렉트론가부시키가이샤 Method for heating part in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP2011181578A (en) * 2010-02-26 2011-09-15 Tokyo Electron Ltd Method for heating part in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
US8824875B2 (en) 2010-02-26 2014-09-02 Tokyo Electron Limited Method for heating part in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
TWI514477B (en) * 2010-02-26 2015-12-21 Tokyo Electron Ltd And a semiconductor manufacturing apparatus for processing the indoor parts of the semiconductor manufacturing apparatus
KR101715249B1 (en) 2010-02-26 2017-03-10 도쿄엘렉트론가부시키가이샤 Method for heating part in processing chamber of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
CN109473330A (en) * 2017-09-07 2019-03-15 长鑫存储技术有限公司 Semiconductor equipment cleaning method and its semiconductor technology method
CN109473330B (en) * 2017-09-07 2020-07-03 长鑫存储技术有限公司 Semiconductor equipment cleaning method and semiconductor process method thereof

Similar Documents

Publication Publication Date Title
KR100363343B1 (en) Cleaning gas and method for cleaning vacuum treatment apparatus by flowing the cleaning gas
US6503563B1 (en) Method of producing polycrystalline silicon for semiconductors from saline gas
JP2013214726A (en) Substrate processing apparatus, maintenance method of the same, substrate transfer method, and program
WO2012029661A1 (en) Method for manufacturing semiconductor device and substrate treatment device
JP2012092008A (en) Method for producing polycrystalline silicon rod
US7479187B2 (en) Method for manufacturing silicon epitaxial wafer
WO2018193664A1 (en) Film-forming device and method for cleaning same
JP2011233583A (en) Vapor-phase growth device and method of manufacturing silicon epitaxial wafer
JP2004356416A (en) Manufacturing method of silicon epitaxial wafer
JP5609755B2 (en) Epitaxial wafer manufacturing method
JP2003332240A (en) Gas cleaning method for deposited-silicon film forming device
US20030034053A1 (en) Processing and cleaning method
TW201725697A (en) Method of manufacturing epitaxial wafer
JP2013182910A (en) Method for removing oxide film formed on surface of silicon wafer
JP2011014771A (en) Epitaxial growth method
EP0240314B1 (en) Method for forming deposited film
JPH0586476A (en) Chemical vapor growth device
JP5370209B2 (en) Manufacturing method of silicon epitaxial wafer
JPH0345957Y2 (en)
EP4116459A1 (en) Chemical vapor deposition furnace with a cleaning gas system to provide a cleaning gas
TWI792478B (en) Semiconductor device manufacturing method, program, substrate processing apparatus, and substrate processing method
JPH0494117A (en) Vapor growth device
JPH10223620A (en) Semiconductor manufacturing device
RU2290717C1 (en) Method and device for producing nonplanar epitaxial silicon structures by way of gas-phase epitaxy
KR102006523B1 (en) Method for crystallizing group iv semiconductor, and film forming apparatus