JPH05217721A - Manufacture of rare earth-transition metal magnet - Google Patents

Manufacture of rare earth-transition metal magnet

Info

Publication number
JPH05217721A
JPH05217721A JP4017934A JP1793492A JPH05217721A JP H05217721 A JPH05217721 A JP H05217721A JP 4017934 A JP4017934 A JP 4017934A JP 1793492 A JP1793492 A JP 1793492A JP H05217721 A JPH05217721 A JP H05217721A
Authority
JP
Japan
Prior art keywords
alloy
powder
magnet
re2tm14b1
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4017934A
Other languages
Japanese (ja)
Inventor
Fumio Kogiku
史男 小菊
Yukiko Ozaki
由紀子 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4017934A priority Critical patent/JPH05217721A/en
Publication of JPH05217721A publication Critical patent/JPH05217721A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To perform pulverization more simply and also low in degree of oxidation by finely pulverizing low fusing point FE-TM alloy and RE-TM-B alloy under the mixture of the RE2TM14B1-phase powder. CONSTITUTION:If the fine pulverization of RE-TM alloy, which is abundant in ductility and is hard to pulverize and besides which is lower in fusing point than RE2TM14B1 phase and is large in RE/TM ratio, or RE-TM-B alloy is performed under the existence of RE2TM14B1, the harder RE2TM14B1 phase works as an assistant for fine pulverization, so the pulverization becomes easy. Moreover, average concentration of RE element falls, and the activity of powder at large drops, so oxidizing property is weakened, consequently the handling of fine pulverization becomes easy, and also the concentration of oxygen at the time of being made a magnet is reduced, so the property of a product, especially, the coercive force can be improved. In a word, not only the pulverization efficiency of the RE-TM alloy or RE-TM-B alloy higher in RE concentration than RE2TM14B1 can be elevated, but also the danger of ignition falls, so the handling becomes easy, and the concentration of oxygen of a magnet can be maintained low, therefore the magnetic property can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気特性に優れるだ
けでなく、耐食性及び温度特性にも優れた希土類−遷移
金属系磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-transition metal magnet, which is excellent not only in magnetic characteristics but also in corrosion resistance and temperature characteristics.

【0002】[0002]

【従来の技術】高性能磁石材として開発されたRE−Fe−
B系磁石(例えば特開昭61-34242号公報)は、OA・FA機
器の小型化に伴い、そのモーター材を中心として近年急
速に需要が伸びている。
RE-Fe- was developed as a high-performance magnet material.
Demand for B type magnets (for example, Japanese Patent Laid-Open No. 61-34242) has been rapidly increasing in recent years, centering on motor materials thereof, as OA / FA equipment has become smaller.

【0003】しかしながらRE−Fe−B系磁石は、成分と
して活性が極めて高いNdなどの軽希土類元素や錆び易い
Feを多量に含んでいることから、耐食性に劣り、その結
果、磁気特性が劣化して工業材料としての信頼性に欠け
るという欠点があった。
However, RE-Fe-B magnets are light rare earth elements such as Nd, which have extremely high activity as components, and easily rust.
Since it contains a large amount of Fe, it has poor corrosion resistance, and as a result, its magnetic properties deteriorate and its reliability as an industrial material is lacking.

【0004】そこで耐食性改善のために、例えば焼結磁
石については表面めっき(特開昭63-77103号公報)やコ
ーティング処理(特開昭60-63901号公報)等を施してい
るが、いずれも長期間にわたって有効な防錆処理とはい
えず、またかかる処理のためにコスト高となり、さらに
は保護膜により磁束がロスする等の問題もあった。
Therefore, in order to improve the corrosion resistance, for example, a sintered magnet is subjected to surface plating (JP-A-63-77103), coating treatment (JP-A-60-63901), etc. It cannot be said that the anticorrosion treatment is effective for a long period of time, and the cost increases due to such treatment, and further, there is a problem that the magnetic flux is lost due to the protective film.

【0005】上記の問題の解決策として、出願人会社は
先に、RE−Fe−B系磁石中のFeを、Co及びNiで高濃度に
置換した希土類−遷移金属−ボロン系磁石合金を開発
し、特開平2−4939号公報において開示した。この磁石
は、耐食性に優れ、しかもキュリー点が上昇することか
ら、材料としての信頼性は大幅に向上した。
As a solution to the above problem, the applicant company previously developed a rare earth-transition metal-boron-based magnet alloy in which Fe in the RE-Fe-B based magnet was replaced with Co and Ni to a high concentration. However, it was disclosed in Japanese Patent Laid-Open No. 2-4939. Since this magnet has excellent corrosion resistance and the Curie point is increased, the reliability as a material is greatly improved.

【0006】また発明者らは、上記磁石の金属組織学的
研究を基にしてさらに研究を進めた結果、上記磁石の主
相であって、飽和磁束密度と磁気異方性の高いRE2(Fe,
Co,Ni)14B1 相粉末と、この主相よりも融点が低いRE−T
M相又はRE−TM−B系金属間化合物粉末とを原料とし
て、これらを混合し、液相焼結させるいわゆる“粉末二
相混合法”により、耐食性及び磁気特性が一層改善され
た永久磁石の製造が可能であることを見出した(特開平
3−250607号公報)。
Further, as a result of further research based on the metallographical study of the magnet, the inventors have found that RE 2 (which is the main phase of the magnet and has a high saturation magnetic flux density and magnetic anisotropy). Fe,
Co, Ni) 14 B 1- phase powder and RE-T with a lower melting point than the main phase
A so-called "powder two-phase mixing method" in which M phase or RE-TM-B intermetallic compound powder is mixed as a raw material and liquid phase sintering is performed to obtain a permanent magnet having further improved corrosion resistance and magnetic properties. It has been found that it can be manufactured (JP-A-3-250607).

【0007】上記した粉末二相混合法において、焼結助
剤として機能する主相よりも融点の低いRE−TM合金及び
/又はRE−TM−B合金は、希土類−遷移金属系磁石に耐
食性を付与することの他、焼結時に主相との界面をクリ
ーニングして保磁力を向上させる働きがある。
In the powder two-phase mixing method described above, the RE-TM alloy and / or RE-TM-B alloy having a melting point lower than that of the main phase functioning as a sintering aid has corrosion resistance for rare earth-transition metal magnets. In addition to providing, it has the function of cleaning the interface with the main phase during sintering and improving the coercive force.

【0008】かかる低融点のRE−TM合金及び/又はRE−
TM−B合金粉末は、所定の組成に秤量した原料を、アー
ク溶解、高周波溶解等により真空中又は不活性雰囲気中
で溶解し、インゴットを作製したのち、粗粉砕、微粉砕
を経て製造されていた。また粗粉砕に先立って、均質処
理や水素脆化処理を施すこともあった。
Such low melting point RE-TM alloy and / or RE-
The TM-B alloy powder is manufactured by melting raw materials weighed to a predetermined composition in a vacuum or an inert atmosphere by arc melting, high frequency melting, etc. to prepare an ingot, and then coarsely pulverizing and finely pulverizing the ingot. It was Further, prior to the coarse pulverization, a homogenous treatment or a hydrogen embrittlement treatment may be performed.

【0009】[0009]

【発明が解決しようとする課題】ところで上記した微粉
砕に際しては、ボールミルやジェットミル等を用いるこ
とにより平均粒径:数μm 以下の微粉としていたが、低
融点のRE−TM合金及び/又はRE−TM−B合金は、 RE2TM
14B1に比べて延性に富むことから、微粉砕が極めて困難
であった。またかかる低融点合金は、 RE2TM14B1に比べ
てRE/TM比が大きく、相対的にRE量が多いので、微粉状
態では酸化性が強く、大気中で発火することから、取扱
い上繊細な注意を必要とし、また発火しないまでも酸素
を取り込み、酸化し易いことから、かような粉末を原料
として作製した磁石は、保磁力が若干低いという問題が
あった。
By the way, in the above fine pulverization, a fine powder having an average particle diameter: several μm or less was used by using a ball mill, a jet mill, etc., but a low melting point RE-TM alloy and / or RE was used. -TM-B alloy is RE 2 TM
Since it is more ductile than 14 B 1 , fine pulverization was extremely difficult. In addition, this low melting point alloy has a larger RE / TM ratio than RE 2 TM 14 B 1 and a relatively large amount of RE, so it is highly oxidative in the fine powder state and ignites in the atmosphere, so it is easy to handle. Since magnets need delicate attention and are easy to take in oxygen and oxidize even if they do not ignite, a magnet produced from such a powder has a problem that the coercive force is slightly low.

【0010】この発明は、上記の問題を有利に解決する
もので、希土類−遷移金属系磁石の製造に際し、低融点
のRE−TM合金及び/又はRE−TM−B合金の微粉砕を、よ
り簡単にしかも酸化度も少ない状態で実施しようとする
ものである。
The present invention advantageously solves the above-mentioned problems, and in the production of rare earth-transition metal magnets, fine grinding of RE-TM alloy and / or RE-TM-B alloy having a low melting point is more preferable. It is intended to be carried out easily and with a small degree of oxidation.

【0011】[0011]

【課題を解決するための手段】すなわちこの発明は、 R
E2TM14B1(ここでREは、Y,Sc及びランタノイドのうち
から選んだ一種又は二種以上。またTMは、Fe, Co及びNi
のうちから選んだ一種又は二種以上。)から成る相の粉
末と、それよりも融点が低いRE−TM(ここでRE,TMは、
上記と同じ)系合金及び/又はRE−TM−B(ここでRE,
TMは、上記と同じ)系合金から成る粉末とを混合し、こ
の混合物を、圧縮成型した後、焼結することからなる希
土類−遷移金属系焼結磁石の製造方法において、上記低
融点RE−TM系合金及び/又はRE−TM−B系合金の微粉砕
を、 RE2TM14B1相粉末の混合下に行うことからなる希土
類−遷移金属系磁石の製造方法である。
Means for Solving the Problems That is, the present invention
E 2 TM 14 B 1 (where RE is one or more selected from Y, Sc and lanthanoids. TM is Fe, Co and Ni
One or more selected from the above. ) Phase powder and RE-TM having a lower melting point (where RE and TM are
Same as above) and / or RE-TM-B (where RE,
(TM is the same as the above) In a method for producing a rare earth-transition metal-based sintered magnet, which comprises mixing powder including an alloy based on the above, compression-molding the mixture, and sintering the mixture. A method for producing a rare earth-transition metal magnet, comprising finely pulverizing a TM-based alloy and / or a RE-TM-B-based alloy while mixing RE 2 TM 14 B 1 phase powder.

【0012】[0012]

【作用】この発明に従い、延性に富み、粉砕し難く、し
かも RE2TM14B1相より低融点でRE/TM比の大きいRE−TM
合金及び/又はRE−TM−B合金の微粉砕を、 RE2TM14B1
の存在下で行えば、より硬い RE2TM14B1相が粉砕助剤と
して働くので粉砕が容易となる。また平均RE元素濃度が
下がり、粉体全体としての活性が下がるので、酸化性が
弱められ、従って微粉の取扱いが容易となると共に、磁
石にした時の酸素濃度が低減されるので、製品特性とく
に保磁力を向上させることができる。なおこの発明に従
う微粉砕は、乾式粉砕は勿論のこと、シクロヘキサン、
アルコールその他の液体を使用すた湿式粉砕であっても
よい。
According to the present invention, RE-TM is rich in ductility, hard to be crushed, has a lower melting point than RE 2 TM 14 B 1 phase and has a large RE / TM ratio.
Milling of the alloy and / or RE-TM-B alloy is performed with RE 2 TM 14 B 1
In the presence of, the harder RE 2 TM 14 B 1 phase acts as a grinding aid, so that grinding becomes easier. In addition, the average RE element concentration decreases and the activity of the powder as a whole decreases, so the oxidizability is weakened, so handling of the fine powder becomes easier and the oxygen concentration when used as a magnet is reduced. The coercive force can be improved. The fine pulverization according to the present invention includes not only dry pulverization but also cyclohexane,
It may be wet grinding using alcohol or other liquid.

【0013】この発明に従う微粉砕は、微粉粒子の平均
粒径が1〜10μm 程度になるまで行うことが好ましい。
というのは、1μm 未満では実際上粉砕が非常に困難に
なるのに加え、この発明によっても酸化性が強すぎて特
性の劣化を招くおそれが大きく、一方10μm を超えると
製品磁石の磁気特性が低下するからである。また RE2TM
14B1に対するRE−TM系合金及び/又はRE−TM−B系合金
の混合割合は、重量比で 3.0〜20程度とするのが好まし
い。というのは、3.0 未満では磁石特性とくに残留磁束
密度の低下を招き、一方20を超えると焼結性が劣化する
からである。なお上記の混合比であれば、所望の磁石組
成も満足するので、得られた混合粉をそのまま焼結原料
として使用することができる。
The fine pulverization according to the present invention is preferably carried out until the average particle diameter of the fine powder particles becomes about 1 to 10 μm.
When it is less than 1 μm, in addition to the fact that it is very difficult to pulverize it, the oxidation property is too strong and the characteristics are likely to be deteriorated according to the present invention. Because it will decrease. Also RE 2 TM
The mixing ratio of the RE-TM based alloy and / or the RE-TM-B based alloy to 14 B 1 is preferably about 3.0 to 20 by weight. The reason is that if it is less than 3.0, the magnet characteristics, especially the residual magnetic flux density is deteriorated, while if it exceeds 20, the sinterability is deteriorated. If the above mixing ratio is satisfied, a desired magnet composition is also satisfied, and thus the obtained mixed powder can be used as it is as a sintering raw material.

【0014】ここに RE2TMI14B1 相とは、例えば Nd2(F
e,Co,Ni)14B1相のような高い飽和磁束密度をもつもの
で、この磁石合金の主相をなすものである。また低融点
合金粉末としては以下に示す組成になるものが好適であ
る。 ・RE−TM系 RE1TM1-X, RE7TM3, RE3TM 。 ・RE−TM−B系 RETM4B, RE2TM5B2, RE2TM7B3, RE2TM5B3, RETM2B2, RE2
TMB3 なお上掲した低融点RE−TM系及びRE−TM−B系合金は、
上記したような単相化合物に限られるものではなく、こ
れら2種以上の混晶となっていてもよい。
Here, the RE 2 TM I14 B 1 phase means, for example, Nd 2 (F
It has a high saturation magnetic flux density such as e, Co, Ni) 14 B 1 phase and is the main phase of this magnet alloy. Further, as the low melting point alloy powder, one having the following composition is suitable. RE-TM series RE 1 TM 1-X , RE 7 TM 3 , RE 3 TM. RE-TM-B system RETM 4 B, RE 2 TM 5 B 2 ,, RE 2 TM 7 B 3 ,, RE 2 TM 5 B 3 ,, RETM 2 B 2 ,, RE 2
TMB 3 The low melting point RE-TM and RE-TM-B alloys listed above are
The compound is not limited to the single-phase compound as described above, and a mixed crystal of two or more of these may be used.

【0015】さらに両者の配合割合は、式量単位で95 :
5ないし40 : 60 程度とするのが好ましい。というのは
両者の比率が上記の範囲を外れると保磁力や飽和磁束密
度の著しい劣化を招く不利が生じるからである。ここに
式量(formula unit)とは、たとえばNd2Fe14Bを一つの分
子(固体ではこれをformula という)とみなした場合に
相当する。混合に供する各粉末の粒径は、上述したとお
り 0.5〜5μm 程度がハンドリングの容易さや均質な混
合のために望ましい。
Furthermore, the mixing ratio of both is 95:
It is preferably about 5 to 40:60. This is because if the ratio of the two is out of the above range, there is a disadvantage that the coercive force and the saturation magnetic flux density are significantly deteriorated. Here, the formula unit corresponds to a case where Nd 2 Fe 14 B is regarded as one molecule (this is called a formula in a solid state), for example. As described above, the particle size of each powder to be mixed is preferably about 0.5 to 5 μm for easy handling and homogeneous mixing.

【0016】[0016]

【実施例】【Example】

実施例1 Nd3Niの組成で示されるRE−TM合金をアーク溶解によっ
てインゴットとした。そのインゴットを、(10%H2+A
r)雰囲気中にて 300℃,1時間脆化処理したのち、ス
タンプミルで粗粉砕し、平均粒径 250μm とした。この
粉末を、予めジェットミルで平均粒径:数μm に粉砕し
ておいた5倍の重量の RE2TM14B1粉末と一緒にジルコニ
アビーズを用いた回転式ボールミルで粉砕した時の Nd3
Niの平均粒径の経時変化について調査した結果を、図1
に示す。また図1には、比較のため Nd3Niの粗粉をそれ
のみで同様にしてボールミルで粉砕した場合の調査結果
も併せて示す。なお目標粒径は、平均粒径:数μm であ
る。同図より明らかなように、この発明に従い RE2TM14
B1の存在下で粉砕した場合は粉砕時間を大幅に短縮する
ことができた。
And an ingot by arc melting a RE-TM alloy represented by the composition of Example 1 Nd 3 Ni. The ingot, (10% H 2 + A
r) After embrittlement treatment at 300 ° C for 1 hour in an atmosphere, coarse crushing was performed with a stamp mill to obtain an average particle size of 250 µm. Nd 3 when this powder was ground with a rotary ball mill using zirconia beads together with 5 times the weight of RE 2 TM 14 B 1 powder, which had been ground in advance with a jet mill to an average particle size of several μm.
Figure 1 shows the results of an investigation of changes over time in the average particle size of Ni.
Shown in. In addition, FIG. 1 also shows, for comparison, the results of an investigation in which a coarse powder of Nd 3 Ni was similarly pulverized by a ball mill in the same manner. The target particle size is an average particle size: several μm. As is clear from the figure, according to the present invention, RE 2 TM 14
When crushed in the presence of B 1, the crushing time could be shortened significantly.

【0017】また、上記の実施例と同様にして得た Nd3
Niの粗粉を、同重量のRE2TM14B1 の粗粉(平均粒径 250
μm )とロッキングミキサーで均一に混合した後、Arを
用いたジェットミルにかけ、微粉砕した後、得られた平
均粒径:数μm の微粉を高さ15cmの位置から大気中で落
下させてみたが発火はしなかった。一方、同様にして用
意した Nd3Niの粗粉を単体で同様なジェットミルで平均
粒径:数μm に微粉砕した粉を、同じ条件で落下させた
ところ、発火し全部酸化してしまった。
Nd 3 obtained in the same manner as in the above embodiment
The same amount of coarse Ni powder as RE 2 TM 14 B 1 coarse powder (average particle size 250
After mixing evenly with a rocking mixer, it was pulverized by a jet mill using Ar and finely pulverized, and then fine powder with an average particle size of several μm was dropped in the atmosphere from a height of 15 cm. Did not ignite. On the other hand, the coarse powder of Nd 3 Ni prepared in the same manner was pulverized with a similar jet mill to an average particle diameter of several μm by itself, and when it was dropped under the same conditions, it ignited and completely oxidized. ..

【0018】実施例2 実施例1と同様にして得た Nd3Niの粗粉を、8倍の重量
の Nd2(Fe0.62 Co0.30Ni0.08)14B1 (RE/TM比=1/
7)と実施例1と同様な方法で混合した後、この混合粉
をジェットミルにより微粉砕し、平均粒径:数μm の微
粉とした。ついでこの混合粉末を、12 kOeの磁場中で圧
縮成形した後、1025℃で2時間焼結した。得られた磁石
の酸素濃度と磁気特性を調べたところ、酸素量は3000 p
pm、また保磁力は15.8 kOeであった。
Example 2 Nd 3 Ni coarse powder obtained in the same manner as in Example 1 was mixed with 8 times the weight of Nd 2 (Fe 0.62 Co 0.30 Ni 0.08 ) 14 B 1 (RE / TM ratio = 1 /
7) was mixed with the same method as in Example 1, and the mixed powder was finely pulverized by a jet mill to obtain fine powder having an average particle diameter of several μm. Then, this mixed powder was compression-molded in a magnetic field of 12 kOe and then sintered at 1025 ° C. for 2 hours. When the oxygen concentration and magnetic characteristics of the obtained magnet were examined, the oxygen content was 3000 p.
pm, and the coercive force was 15.8 kOe.

【0019】一方 Nd3Niと Nd2(Fe0.62 Co0.30 Ni0.08)
14B1とを個別に微粉砕した後、ロッキングミキサーで上
記の割合で混合し、ついで同様にして成形、焼結した。
かくして得られた磁石の酸素濃度と保磁力はそれぞれ、
5000 ppm, 12.2 kOeであった。
On the other hand, Nd 3 Ni and Nd 2 (Fe 0.62 Co 0.30 Ni 0.08 )
14 B 1 and 14 B 1 were individually finely pulverized, then mixed in a rocking mixer in the above proportion, and then molded and sintered in the same manner.
The oxygen concentration and coercive force of the magnet thus obtained are
It was 5000 ppm and 12.2 kOe.

【0020】実施例3 実施例1と同様にして得た Nd3Niの粗粉を、18倍の重量
(混合比:18)の Nd2(Fe0.62 Co0.30Ni0.08)14B1 と実
施例1と同様な方法で混合した後、この混合粉を実施例
2と同様の手順で処理し、磁石を作製した。かくして得
られた磁石の酸素濃度と保磁力はそれぞれ、2500 ppm,
14.2 kOeであった。
Example 3 Nd 3 Ni coarse powder obtained in the same manner as in Example 1 was mixed with 18 times the weight (mixing ratio: 18) of Nd 2 (Fe 0.62 Co 0.30 Ni 0.08 ) 14 B 1 and After mixing in the same manner as in No. 1, the mixed powder was treated in the same procedure as in Example 2 to produce a magnet. The oxygen concentration and coercive force of the magnet thus obtained were 2500 ppm,
It was 14.2 kOe.

【0021】一方 Nd3Niと Nd2(Fe0.62 Co0.30 Ni0.08)
14B1とを上記の割合で個別に微粉砕したものを、実施例
2のように混合し、同様に成形、焼結して得た磁石の酸
素濃度と保磁力はそれぞれ、4500 ppm, 10.1 kOeであっ
た。
On the other hand, Nd 3 Ni and Nd 2 (Fe 0.62 Co 0.30 Ni 0.08 )
14 B 1 and 14 B 1 were individually finely pulverized and mixed as in Example 2, and similarly shaped and sintered to obtain an oxygen concentration and a coercive force of a magnet of 4500 ppm and 10.1, respectively. It was kOe.

【0022】[0022]

【発明の効果】かくしてこの発明によれば、従来の製造
法に比べて RE2TM14B1相よりRE濃度の高いRE−TM合金や
RE−TM−B合金の粉砕効率を高めることができるだけで
なく、発火の危険性が下がるので取扱い易くなり、さら
に磁石の酸素濃度も低く保てるので磁気特性の向上を図
ることもできる。
As described above, according to the present invention, the RE-TM alloy having the RE concentration higher than that of the RE 2 TM 14 B 1 phase as compared with the conventional manufacturing method,
Not only can the efficiency of crushing the RE-TM-B alloy be increased, but the risk of ignition is reduced, making it easier to handle, and the oxygen concentration of the magnet can be kept low, so that the magnetic characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明法及びNd3Ni を微粉砕したときの平均
粒径と粉砕時間との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the average particle size and the pulverization time when the method of the present invention and Nd 3 Ni were finely pulverized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RE2TM14B1(ここでREは、Y,Sc及びラ
ンタノイドのうちから選んだ一種又は二種以上。またTM
は、Fe, Co及びNiのうちから選んだ一種又は二種以
上。)の相からなる粉末と、それよりも融点が低いRE−
TM(ここでRE,TMは、上記と同じ)系合金及び/又はRE
−TM−B(ここでRE,TMは、上記と同じ)系合金から成
る粉末とを混合し、この混合物を、圧縮成型した後、焼
結することからなる希土類−遷移金属系焼結磁石の製造
方法において、 上記低融点RE−TM系合金及び/又はRE−TM−B系合金の
微粉砕を、 RE2TM14B1相粉末の混合下に行うことを特徴
とする希土類−遷移金属系磁石の製造方法。
1. RE 2 TM 14 B 1 (where RE is one or more selected from Y, Sc and lanthanoids.
Is one or more selected from Fe, Co and Ni. ) Phase and RE- whose melting point is lower than that
TM (here, RE and TM are the same as above) alloy and / or RE
-TM-B (where RE and TM are the same as above) are mixed with a powder of an alloy, and the mixture is compression-molded and then sintered to obtain a rare earth-transition metal-based sintered magnet. In the production method, the low melting point RE-TM type alloy and / or RE-TM-B type alloy is finely pulverized while mixing RE 2 TM 14 B 1 phase powder. Magnet manufacturing method.
JP4017934A 1992-02-03 1992-02-03 Manufacture of rare earth-transition metal magnet Pending JPH05217721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017934A JPH05217721A (en) 1992-02-03 1992-02-03 Manufacture of rare earth-transition metal magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017934A JPH05217721A (en) 1992-02-03 1992-02-03 Manufacture of rare earth-transition metal magnet

Publications (1)

Publication Number Publication Date
JPH05217721A true JPH05217721A (en) 1993-08-27

Family

ID=11957607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017934A Pending JPH05217721A (en) 1992-02-03 1992-02-03 Manufacture of rare earth-transition metal magnet

Country Status (1)

Country Link
JP (1) JPH05217721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063143A1 (en) * 2008-12-01 2010-06-10 Zhejiang University Modified nd-fe-b permanent magnet with high corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063143A1 (en) * 2008-12-01 2010-06-10 Zhejiang University Modified nd-fe-b permanent magnet with high corrosion resistance
US9818515B2 (en) 2008-12-01 2017-11-14 Zhejiang University Modified Nd—Fe—B permanent magnet with high corrosion resistance

Similar Documents

Publication Publication Date Title
KR101451430B1 (en) Rare earth permanent magnet and its preparation
JP4482769B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP2008263179A (en) Rare earth permanent magnet and method of manufacturing the same
JPH06346101A (en) Magnetically anisotropic powder and its production
JPS6110209A (en) Permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
US10706997B2 (en) Preparation of MnBi LTP magnet by direct sintering
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JPH05217721A (en) Manufacture of rare earth-transition metal magnet
US4290826A (en) Process for the production of cobalt-rare earth alloy powders
JPS6181607A (en) Preparation of rare earth magnet
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JP2001006911A (en) Manufacture of rare earth permanent magnet
JPH04322405A (en) Rare earth permanent magnet
JPS62240742A (en) Production of permanent magnet material
JPH03264653A (en) Sintered magnet alloy and production thereof
JPS6167752A (en) Permanent magnet alloy
JP2000503810A (en) SE-Fe-B permanent magnet and method of manufacturing the same
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH05217719A (en) Manufacture of rare earth-transition metal magnet excellent in corrosion resistance