JPH05216628A - Multiplier circuit - Google Patents

Multiplier circuit

Info

Publication number
JPH05216628A
JPH05216628A JP1971592A JP1971592A JPH05216628A JP H05216628 A JPH05216628 A JP H05216628A JP 1971592 A JP1971592 A JP 1971592A JP 1971592 A JP1971592 A JP 1971592A JP H05216628 A JPH05216628 A JP H05216628A
Authority
JP
Japan
Prior art keywords
flip
adder
output terminal
flop
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1971592A
Other languages
Japanese (ja)
Inventor
Susumu Yamaguchi
晋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP1971592A priority Critical patent/JPH05216628A/en
Publication of JPH05216628A publication Critical patent/JPH05216628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To smoothly increase the circuitry size even though the number of digits is increased without requiring the only circuit elements of the number proportional to the number of digits of multipliers and multiplicands. CONSTITUTION:A selector 10 outputs digits B1 to Bm of multipliers successively from the lower digits. Multipliers 11 to 1n multiply digits A1 to An of multicands and the output of a selector 10. Adders 21 to 2n add the output of the multipliers 11 to 1n and the output of flip-flop 31-3n, and the carry output of the adder for the digits. The output of the adder 21 is successively held in flip flips 4m to 41, and the output of adders 22 to 2n is held in the flip-flop 31 to 3(n-1), and the carry output of the adder 2n is held in the flip-flop 3n.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は乗算回路に関する。FIELD OF THE INVENTION The present invention relates to a multiplication circuit.

【0002】[0002]

【従来の技術】一般に、n桁とm桁のかけ算は次式の様
に表される。
2. Description of the Related Art Generally, the multiplication of n digits and m digits is expressed by the following equation.

【0003】 [0003]

【0004】式1において、第1項〜第m項までのそれ
ぞれについて(An n-1 …A2 1 )×Biの
乗算を行い、それぞれの積を第1項目から順に第m項目
まで各桁毎に加算を行えば、解が得られることとなる。
従来は、このような手順に従って、図3に示す様な乗算
回路を構成していた。
In the equation (1), each of the first to m-th terms is multiplied by (A n A n-1 ... A 2 A 1 ) × Bi, and the product of each is sequentially calculated from the first item to the m-th item. By adding up to each digit up to, a solution can be obtained.
Conventionally, a multiplication circuit as shown in FIG. 3 has been constructed in accordance with such a procedure.

【0005】[0005]

【発明が解決しようとする課題】しかし、この従来の乗
算回路では、第1項〜第m項の各項毎にn個,合計m×
n個の乗算器と、(m−1)(n−1)個の加算器とか
ら構成されているので、桁数m及びnが増えれば積m×
nに比例して回路素子の数が増え、多数桁の演算を行う
ためには回路規模が大きくなるという欠点があった。
However, in this conventional multiplication circuit, n pieces for each term of the first term to the m-th term, a total of m ×.
Since it is composed of n multipliers and (m-1) (n-1) adders, if the number of digits m and n increases, the product m ×
The number of circuit elements increases in proportion to n, and there is a drawback that the circuit scale becomes large in order to perform a multi-digit operation.

【0006】[0006]

【課題を解決するための手段】第1の発明の乗算回路
は、m桁の乗数を入力しそれぞれの桁を低い方から順次
時系列として出力するセレクタと、このセレクタの出力
信号をそれぞれの一方の入力端子に入力しn桁の被乗数
のそれぞれの桁を低い方から順次それぞれの他方の入力
端子に入力する第1から第nまでのn個の乗算器と、第
1,第2および第3の入力端子をそれぞれ有する第1か
ら第nまでのn個の加算器と、第1から第(m+n)ま
での(m+n)個のフリップフロップとを備え、前記第
1の加算器の前記第1および第2の入力端子を前記第1
の乗算器の出力端子および前記第1のフリップフロップ
の出力端子に接続し、前記第i(iは2以上(n−1)
以下の整数)の加算器の前記第1,第2および第3の入
力端子を前記第iの乗算器の出力端子,前記第iのフリ
ップフロップの出力端子および前記第(i−1)の加算
器のキャリー出力端子に接続し、前記第iの加算器の出
力端子を前記第(i−1)のフリップフロップの入力端
子に接続し、前記第nの加算器の前記第1,第2および
第3の入力端子を前記第nの乗算器の出力端子,前記第
nのフリップフロップの出力端子および前記第(n−
1)の加算器のキャリー出力端子に接続し、前記第nの
加算器のキャリー出力端子を前記第nのフリップフロッ
プの入力端子に接続し、前記第1の加算器の出力端子に
前記第(n+1)から第(m+n)までのフリップフロ
ップを順次縦続に接続して構成される。
According to a first aspect of the present invention, there is provided a multiplication circuit in which a selector for inputting an m-digit multiplier and sequentially outputting each digit as a time series from the lower one, and an output signal of the selector are respectively provided. To the input terminals of the n-digit multiplicands and sequentially input the digits of the multiplicand of n digits to the respective other input terminals from the lower one, and the first to second n-th multipliers. First to n-th adders each having input terminals and (m + n) to (m + n) flip-flops, and the first adder of the first adder is provided. And a second input terminal to the first
Connected to the output terminal of the multiplier and the output terminal of the first flip-flop, the i-th (i is 2 or more (n-1)
The following first integer, the second input terminal, and the third input terminal of the adder of the (i-1) th addition of the output terminal of the i-th multiplier, the output terminal of the i-th flip-flop An output terminal of the i-th adder is connected to an input terminal of the (i-1) th flip-flop, and the first, second and A third input terminal is an output terminal of the nth multiplier, an output terminal of the nth flip-flop and the (n-
1) The carry output terminal of the adder is connected, the carry output terminal of the nth adder is connected to the input terminal of the nth flip-flop, and the output terminal of the first adder is connected to the ( (n + 1) to (m + n) flip-flops are sequentially connected in cascade.

【0007】第2の発明の乗算回路は、m桁の乗数を入
力しそれぞれの桁を高い方から順次時系列として出力す
るセレクタと、このセレクタの出力信号をそれぞれの一
方の入力端子に入力しn桁の被乗数のそれぞれの桁を低
い方から順次それぞれの他方の入力端子に入力する第1
から第nまでのn個の乗算器と、第1,第2および第3
の入力端子をそれぞれ有する第1から第nまでのn個の
加算器と、第1から第(m+n)までの(m+n)個の
フリップフロップとを備え、前記第1の加算器の前記第
1および第2の入力端子を前記第2の乗算器の出力端子
および前記第1のフリップフロップの出力端子に接続
し、前記第i(iは2以上(n−1)以下の整数)の加
算器の前記第1,第2および第3の入力端子を前記第
(i+1)の乗算器の出力端子,前記第iのフリップフ
ロップの出力端子および前記第(i−1)の加算器のキ
ャリー出力端子に接続し、前記第iの加算器の出力端子
を前記第(i+1)のフリップフロップの入力端子に接
続し、前記第nの加算器の前記第2および第3の入力端
子を前記第nのフリップフロップの出力端子および前記
第(n−1)の加算器のキャリー出力端子に接続し、前
記第1の加算器の出力端子を前記第2のフリップフロッ
プの入力端子に接続し、前記第nの加算器の出力端子に
前記第(n+1)から第(m+n)までのフリップフロ
ップを順次縦続に接続して構成される。
The multiplier circuit of the second invention inputs a m-digit multiplier and outputs each digit as a time series sequentially from the highest digit, and inputs the output signal of this selector to each one input terminal. First inputting each digit of the n-digit multiplicand to the other input terminal in order from the lower one
To nth multipliers, and the first, second and third multipliers
First to n-th adders each having input terminals and (m + n) to (m + n) flip-flops, and the first adder of the first adder is provided. And a second input terminal connected to the output terminal of the second multiplier and the output terminal of the first flip-flop, and the i-th (i is an integer of 2 or more and (n-1) or less) adder The first, second and third input terminals of the output terminal of the (i + 1) th multiplier, the output terminal of the i-th flip-flop and the carry output terminal of the (i-1) th adder. And an output terminal of the i-th adder is connected to an input terminal of the (i + 1) th flip-flop, and the second and third input terminals of the n-th adder are connected to the n-th adder. Output terminal of flip-flop and said (n-1) th adder A carry output terminal, an output terminal of the first adder connected to an input terminal of the second flip-flop, and an output terminal of the nth adder to the (n + 1) th to (m + n) th output terminals. The flip-flops up to are sequentially connected in cascade.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図1は本発明の第1の実施例のブロック図
である。
FIG. 1 is a block diagram of a first embodiment of the present invention.

【0010】被乗数Aは常に固定であり、乗数Bがセレ
クタ10からシフトクロックに同期して、低い方の桁か
らB1 〜Bm まで順次乗算器11〜1nに送られる。
The multiplicand A is always fixed, and the multiplier B is sent from the selector 10 to the multipliers 11 to 1n sequentially from the lower digit to B 1 to B m in synchronization with the shift clock.

【0011】いま、Bi 桁目の乗算を考える。乗算器1
n,1(n−1),……,12,11では、式1の第i
項のAn i ,An-1 i ,……,A2 i ,A1 i
が得られる。
Now, consider multiplication of the Bi-th digit. Multiplier 1
n, 1 (n-1), ...
A n B i , A n-1 B i , ..., A 2 B i , A 1 B i
Is obtained.

【0012】加算器2n,2(n−1),……,22,
21では、フリップフロップ3n,,3(n−1),…
…,32,31にラッチされている前項までの加算結果
C,Yn ,Yn-1 ,……,Y3 ,Y2 に乗算器1n,1
(n−1),……, 12,11の乗算結果が加算され
る。
Adders 2n, 2 (n-1), ..., 22,
At 21, the flip-flops 3n, 3 (n-1), ...
..., sum C of the previous sections latched in 32,31, Y n, Y n- 1, ......, Y 3, Y 2 to the multiplier 1n, 1
The multiplication results of (n-1), ..., 12, 11 are added.

【0013】これにより得られた解C,Yn ,Yn-1
……,Y3 ,Y2 は加算器2jの出力がフリップフロッ
プ2(j−1)に入力されることにより右に1ビットシ
フトして、C〜Y2 までがフリップフロップ3n,3n
−1,……,32,31にラッチされ、次の加算に使わ
れる。ただし、Cは乗算器2nのキャリー出力である。
このとき、次の加算に必要のないY1 はフリップフロッ
プ4mから41までにラッチされ、全ての演算が終了す
るまで保持される。
The solutions C, Y n , Y n-1 , obtained by this,
.., Y 3 and Y 2 are shifted by 1 bit to the right when the output of the adder 2j is input to the flip-flop 2 (j-1), and C to Y 2 are flip-flops 3n and 3n.
Latched to -1, ..., 32, 31 and used for the next addition. However, C is a carry output of the multiplier 2n.
At this time, Y 1, which is not necessary for the next addition, is latched by the flip-flops 4m to 41 and held until all the operations are completed.

【0014】この一連の動作をセレクタ10の出力がB
m になるまで繰り返すことにより最終の解Ym+n ,Y
m+(n-1) ,Ym+(n+2) ,……,Ym+1 ,Ym ,Ym-1
……,Y2 ,Y1 が得られることとなる。
In this series of operations, the output of the selector 10 is B
The final solution Y m + n , Y is obtained by repeating until m.
m + (n-1) , Y m + (n + 2) , ..., Y m + 1 , Y m , Y m-1 ,
..., Y 2 , Y 1 will be obtained.

【0015】図1の実施例は式1の第1項から第m項ま
でを順次算出して加算しているが、図2に示す本発明の
第2の実施例は、第m項から第1項までを順次算出して
加算する。
In the embodiment of FIG. 1, the first term to the m-th term of the equation 1 are sequentially calculated and added, but the second embodiment of the present invention shown in FIG. 2 is the m-th term. The first term is sequentially calculated and added.

【0016】図2の実施例において、セレクタ50は乗
数Bを高い方の桁から順次出力する。フリップフロップ
7n,7(n−1),……,72,71は途中の加算結
果Yn ,Yn-1 ,……,Y2 ,Y1 を左に1ビットシフ
トする。次の加算に必要のないCはフリップフロップ8
1から8mまでにラッチされ、全ての演算が終了するま
で保持される。乗算器11〜1nおよび加算器61〜6
nの動作は図1における乗算器11〜1nおよび加算器
21〜2nの動作と同じである。
In the embodiment shown in FIG. 2, the selector 50 sequentially outputs the multiplier B from the higher digit. The flip-flops 7n, 7 (n-1), ..., 72, 71 shift the intermediate addition results Y n , Y n-1 , ..., Y 2 , Y 1 to the left by one bit. C which is not necessary for the next addition is a flip-flop 8
It is latched from 1 to 8 m and held until all operations are completed. Multipliers 11 to 1n and adders 61 to 6
The operation of n is the same as the operation of the multipliers 11 to 1n and the adders 21 to 2n in FIG.

【0017】図1,図2の実施例に見られるように、本
発明の乗算回路では、乗算器,加算器および桁のシフト
用のフリップフロップの必要数は被乗数Aの桁数と一致
し、C又はY1 の保持用のフリップフロップの必要数は
乗数Bの桁数に比例する。
As can be seen from the embodiments of FIGS. 1 and 2, in the multiplication circuit of the present invention, the required number of multipliers, adders, and digit shift flip-flops matches the digit number of the multiplicand A, The required number of flip-flops for holding C or Y 1 is proportional to the number of digits of the multiplier B.

【0018】[0018]

【発明の効果】以上説明したように本発明は、被乗数の
桁数nに等しいn個の乗算器を乗数の桁数mに等しいm
回繰返し使用することにより、桁数m及びnが増えて
も、従来のように積m×nに比例して大幅に回路素子を
増やすことなく、増えた桁数だけの加算器・乗算器及び
フリップフロップを増やしてやればよく、回路規模を大
きくしないで済むという効果がある。
As described above, according to the present invention, n multipliers equal to the digit number n of the multiplicand are replaced with m multipliers equal to the digit number m of the multiplier.
Even if the number of digits m and n increases by repeatedly using the number of times, an adder / multiplier having only the increased number of digits can be used without increasing the number of circuit elements in proportion to the product m × n as in the conventional case. It is sufficient to increase the number of flip-flops, which has the effect of not increasing the circuit scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示すブロック図であ
る。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】従来の乗算回路の一例を示すブロック図であ
る。
FIG. 3 is a block diagram showing an example of a conventional multiplication circuit.

【符号の説明】[Explanation of symbols]

10,50 セレクタ 11〜1n 乗算器 21〜2n,61〜6n 加算器 31〜3n,41〜4m,71〜7n,81〜8m
フリップフロップ
10, 50 Selector 11-1n Multiplier 21-2n, 61-6n Adder 31-3n, 41-4m, 71-7n, 81-8m
flip flop

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 m桁の乗数を入力しそれぞれの桁を低い
方から順次時系列として出力するセレクタと、このセレ
クタの出力信号をそれぞれの一方の入力端子に入力しn
桁の被乗数のそれぞれの桁を低い方から順次それぞれの
他方の入力端子に入力する第1から第nまでのn個の乗
算器と、第1,第2および第3の入力端子をそれぞれ有
する第1から第nまでのn個の加算器と、第1から第
(m+n)までの(m+n)個のフリップフロップとを
備え、前記第1の加算器の前記第1および第2の入力端
子を前記第1の乗算器の出力端子および前記第1のフリ
ップフロップの出力端子に接続し、前記第i(iは2以
上(n−1)以下の整数)の加算器の前記第1,第2お
よび第3の入力端子を前記第iの乗算器の出力端子,前
記第iのフリップフロップの出力端子および前記第(i
−1)の加算器のキャリー出力端子に接続し、前記第i
の加算器の出力端子を前記第(i−1)のフリップフロ
ップの入力端子に接続し、前記第nの加算器の前記第
1,第2および第3の入力端子を前記第nの乗算器の出
力端子,前記第nのフリップフロップの出力端子および
前記第(n−1)の加算器のキャリー出力端子に接続
し、前記第nの加算器のキャリー出力端子を前記第nの
フリップフロップの入力端子に接続し、前記第1の加算
器の出力端子に前記第(n+1)から第(m+n)まで
のフリップフロップを順次縦続に接続したことを特徴と
する乗算回路。
1. A selector for inputting an m-digit multiplier and sequentially outputting each digit as a time series from the lowest one, and an output signal of this selector is input to one of the input terminals of each selector.
A first n-th multiplier for inputting each digit of the multiplicand to the other input terminal in order from the lower one, and a first input terminal, a second input terminal, and a third input terminal, respectively. 1 to nth adders and (m + n) th to (m + n) flip-flops are provided, and the first and second input terminals of the first adder are connected to each other. The first and second adders of the i-th (i is an integer of 2 or more and (n-1) or less) connected to the output terminal of the first multiplier and the output terminal of the first flip-flop. And a third input terminal to the output terminal of the i-th multiplier, the output terminal of the i-th flip-flop and the (i
-1) is connected to the carry output terminal of the adder,
Output terminal of the adder is connected to the input terminal of the (i-1) th flip-flop, and the first, second and third input terminals of the nth adder are connected to the nth multiplier. Is connected to the output terminal of the nth flip-flop and the carry output terminal of the (n-1) th adder, and the carry output terminal of the nth adder is connected to the carry output terminal of the nth flipflop. A multiplier circuit connected to an input terminal, wherein the (n + 1) th to (m + n) th flip-flops are sequentially connected in series to an output terminal of the first adder.
【請求項2】 m桁の乗数を入力しそれぞれの桁を高い
方から順次時系列として出力するセレクタと、このセレ
クタの出力信号をそれぞれの一方の入力端子に入力しn
桁の被乗数のそれぞれの桁を低い方から順次それぞれの
他方の入力端子に入力する第1から第nまでのn個の乗
算器と、第1,第2および第3の入力端子をそれぞれ有
する第1から第nまでのn個の加算器と、第1から第
(m+n)までの(m+n)個のフリップフロップとを
備え、前記第1の加算器の前記第1および第2の入力端
子を前記第2の乗算器の出力端子および前記第1のフリ
ップフロップの出力端子に接続し、前記第i(iは2以
上(n−1)以下の整数)の加算器の前記第1,第2お
よび第3の入力端子を前記第(i+1)の乗算器の出力
端子,前記第iのフリップフロップの出力端子および前
記第(i−1)の加算器のキャリー出力端子に接続し、
前記第iの加算器の出力端子を前記第(i+1)のフリ
ップフロップの入力端子に接続し、前記第nの加算器の
前記第2および第3の入力端子を前記第nのフリップフ
ロップの出力端子および前記第(n−1)の加算器のキ
ャリー出力端子に接続し、前記第1の加算器の出力端子
を前記第2のフリップフロップの入力端子に接続し、前
記第nの加算器の出力端子に前記第(n+1)から第
(m+n)までのフリップフロップを順次縦続に接続し
たことを特徴とする乗算回路。
2. A selector that inputs a multiplier of m digits and sequentially outputs each digit as a time series from the highest one, and an output signal of this selector is input to one input terminal of each n.
A first n-th multiplier for inputting each digit of the multiplicand to the other input terminal in order from the lower one, and a first input terminal, a second input terminal, and a third input terminal, respectively. 1 to nth adders and (m + n) th to (m + n) flip-flops are provided, and the first and second input terminals of the first adder are connected to each other. The first and second adders of the i-th (i is an integer of 2 or more and (n-1) or less) adder connected to the output terminal of the second multiplier and the output terminal of the first flip-flop. And a third input terminal connected to the output terminal of the (i + 1) th multiplier, the output terminal of the i-th flip-flop and the carry output terminal of the (i-1) th adder,
The output terminal of the i-th adder is connected to the input terminal of the (i + 1) th flip-flop, and the second and third input terminals of the n-th adder are output from the n-th flip-flop. A terminal and a carry output terminal of the (n-1) th adder, an output terminal of the first adder is connected to an input terminal of the second flip-flop, and an output terminal of the nth adder is connected. A multiplication circuit, wherein the (n + 1) th to (m + n) th flip-flops are sequentially connected in series to an output terminal.
JP1971592A 1992-02-05 1992-02-05 Multiplier circuit Pending JPH05216628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1971592A JPH05216628A (en) 1992-02-05 1992-02-05 Multiplier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1971592A JPH05216628A (en) 1992-02-05 1992-02-05 Multiplier circuit

Publications (1)

Publication Number Publication Date
JPH05216628A true JPH05216628A (en) 1993-08-27

Family

ID=12006992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1971592A Pending JPH05216628A (en) 1992-02-05 1992-02-05 Multiplier circuit

Country Status (1)

Country Link
JP (1) JPH05216628A (en)

Similar Documents

Publication Publication Date Title
US8793300B2 (en) Montgomery multiplication circuit
US6061706A (en) Systolic linear-array modular multiplier with pipeline processing elements
US3805043A (en) Serial-parallel binary multiplication using pairwise addition
US4064400A (en) Device for multiplying numbers represented in a system of residual classes
US3878985A (en) Serial-parallel multiplier using booth{3 s algorithm with combined carry-borrow feature
US3230353A (en) Pulse rate multiplier
US4677583A (en) Apparatus for decimal multiplication
US3582634A (en) Electrical circuit for multiplying serial binary numbers by a parallel number
US5289399A (en) Multiplier for processing multi-valued data
US5258945A (en) Method and apparatus for generating multiples of BCD number
JPH05216628A (en) Multiplier circuit
JPH03661B2 (en)
JPS5841532B2 (en) Sekiwa Keisan Cairo
KR0175974B1 (en) Processor for selectively performing multiplaying dividing operation s based on pipeline structure
RU2797164C1 (en) Pipeline module multiplier
SU1756887A1 (en) Device for integer division in modulo notation
CN112988111B (en) Single-bit multiplier
Surarerks Digit set conversion by on-line finite automata
Saltman Reducing computing time for synchronous binary division
JPS61156434A (en) Digital multiplier for series operation
JP2617591B2 (en) Serial operation circuit
JP2643165B2 (en) Arithmetic circuit
US3813623A (en) Serial bcd adder
SU656059A1 (en) Arithmetic device
Gardiner et al. Cellular-array arithmetic unit with multiplication and division

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991109