JPH0521618Y2 - - Google Patents

Info

Publication number
JPH0521618Y2
JPH0521618Y2 JP1986187147U JP18714786U JPH0521618Y2 JP H0521618 Y2 JPH0521618 Y2 JP H0521618Y2 JP 1986187147 U JP1986187147 U JP 1986187147U JP 18714786 U JP18714786 U JP 18714786U JP H0521618 Y2 JPH0521618 Y2 JP H0521618Y2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
exhaust heat
compressor
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986187147U
Other languages
Japanese (ja)
Other versions
JPS6392021U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986187147U priority Critical patent/JPH0521618Y2/ja
Publication of JPS6392021U publication Critical patent/JPS6392021U/ja
Application granted granted Critical
Publication of JPH0521618Y2 publication Critical patent/JPH0521618Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、エンジンの排熱を回収して有効利用
するようにしたエンジンの排熱回収装置の改良に
関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an improvement of an engine exhaust heat recovery device that recovers and effectively utilizes engine exhaust heat.

(従来の技術) 従来より、この種のエンジンの排熱回収装置と
して、例えば実開昭56−154503号公報に開示され
るように、エンジンの排熱により冷媒を蒸発させ
る蒸発器と、エンジンの出力軸に連結され、上記
蒸発器の冷媒の有する熱量により上記エンジン出
力軸の回転駆動を補助する流体モータと、該流体
モータからの冷媒を凝縮する凝縮器と、該凝縮器
で凝縮された冷媒を膨張させる膨張機構と、該膨
張機構からの冷媒を上記蒸発器に圧送する流体ポ
ンプとを備え、該各機器を冷媒の循環可能に閉回
路に形成して、いわゆるランキンサイクルを構成
することにより、エンジンの排熱を回収して、こ
の排熱にによりエンジンの回転駆動を補助して、
排熱の有効利用を図るようにしたものが知られて
いる。
(Prior Art) Conventionally, as an exhaust heat recovery device for this type of engine, an evaporator that evaporates refrigerant using the exhaust heat of the engine, and an engine a fluid motor that is connected to an output shaft and that assists rotational drive of the engine output shaft using the amount of heat contained in the refrigerant of the evaporator; a condenser that condenses refrigerant from the fluid motor; and a refrigerant condensed by the condenser. and a fluid pump that pumps the refrigerant from the expansion mechanism to the evaporator, and each device is formed into a closed circuit that allows the refrigerant to circulate, thereby configuring a so-called Rankine cycle. , recovers the exhaust heat of the engine and uses this exhaust heat to assist the rotational drive of the engine.
Some devices are known that are designed to make effective use of waste heat.

(考案が解決しようとする問題点) しかるに、上記従来のものでは、ランキンサイ
クルの構成機器として、排熱回収用の蒸発器、流
体モータ、凝縮器、膨張機構及び流体ポンプの多
数の機器を要する関係上、これら機器を車両の狭
いエンジンルーム内に収容するのは困難であると
いう憾みがある。特に、昨今の如く排気還流装置
や空調装置を装備したものでは、上記機器の収容
スペースが大きく制限され、排熱回収システムの
採用が困難である。
(Problems to be Solved by the Invention) However, the conventional system described above requires a large number of components of the Rankine cycle, including an evaporator for exhaust heat recovery, a fluid motor, a condenser, an expansion mechanism, and a fluid pump. Unfortunately, it is difficult to accommodate these devices in the narrow engine compartment of a vehicle. In particular, in the case of equipment equipped with an exhaust gas recirculation device or an air conditioner as in recent years, the space for accommodating the above equipment is greatly limited, making it difficult to employ an exhaust heat recovery system.

本考案は斯かる点に鑑みてなされたものであ
り、特に上記ランキンサイクルの構成機器が車載
クーラの構成機器と共通する機能である点に着目
し、その目的は、排熱回収に際し、車載クーラの
構成機器の一部を利用して、ランキンサイクルを
構成するようにすることにより、可及的に少ない
機器でもつて排熱回収を行い、よつて該各機器を
比較的容易にエンジンルームに収容して、排熱回
収システムの採用を容易にすることにある。
The present invention was developed in view of the above, and focuses particularly on the fact that the components of the Rankine cycle have functions common to the components of an on-board cooler. By configuring a Rankine cycle using some of the components of the engine, exhaust heat can be recovered using as few devices as possible, and each device can be accommodated in the engine room relatively easily. The aim is to facilitate the adoption of waste heat recovery systems.

(問題点を解決するための手段) 上記目的を達成するため、本考案の解決手段
は、車載クーラを備えたエンジン、つまり第1図
に示すように、エンジンの出力軸1aに連結され
る圧縮機4と、該圧縮機4の冷媒を凝縮する凝縮
器5と、該凝縮器5で凝縮された冷媒を膨張させ
る膨張機構6と、車室に配置され、上記膨張機構
6の冷媒を蒸発させて車室内を冷却する蒸発器7
とを閉回路10に形成してなる車載クーラ2を備
えたエンジンに対する排熱回収装置を前提とす
る。そして、上記閉回路10の凝縮器5と膨張機
構6との間で第1切換弁18を配置すると共に、
上記閉回路10の圧縮機4と蒸発器7との間に第
2切換弁19を配置し、さらに該両切換弁18,
19を、排熱回収用の流体ポンプ17と、排熱回
収用の蒸発器16とを直列に接続した冷媒配管2
0により互いに連結し、且つ上記第1及び第2切
換弁18,19を、上記車載クーラ2の作動時に
は上記閉回路10を形成するよう切換える一方、
車載クーラの非作動時には、上記凝縮器5の冷媒
を流体ポンプ17に流し、上記排熱回収用の蒸発
器16の冷媒を蒸気圧縮機4に流すよう切換える
構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention is an engine equipped with an on-vehicle cooler, that is, as shown in FIG. a condenser 5 that condenses the refrigerant of the compressor 4; an expansion mechanism 6 that expands the refrigerant condensed in the condenser 5; Evaporator 7 that cools the interior of the vehicle
The present invention is based on an exhaust heat recovery device for an engine equipped with an on-vehicle cooler 2 formed in a closed circuit 10. A first switching valve 18 is disposed between the condenser 5 and the expansion mechanism 6 of the closed circuit 10, and
A second switching valve 19 is disposed between the compressor 4 and the evaporator 7 of the closed circuit 10, and both switching valves 18,
19 is a refrigerant pipe 2 in which a fluid pump 17 for exhaust heat recovery and an evaporator 16 for exhaust heat recovery are connected in series.
0, and the first and second switching valves 18 and 19 are switched to form the closed circuit 10 when the vehicle-mounted cooler 2 is operated,
When the on-vehicle cooler is not operating, the refrigerant in the condenser 5 is switched to flow to the fluid pump 17, and the refrigerant in the evaporator 16 for exhaust heat recovery is switched to flow to the vapor compressor 4.

(作用) 以上の構成により、本考案では、車載クーラ2
の作動時には、第1及び第2の切換弁18,19
が車室内冷却用の閉回路10を形成するよう切換
つて、圧縮機4からの冷媒が順次凝縮器5、膨張
機構6及び蒸発器7を経て再び圧縮機4に戻るこ
とを繰返すので、上記車室内の蒸発器7で車室内
の空気から吸熱した熱量が上記凝縮器5で外気に
放熱されるのが繰返されて、車室内が良好に冷却
される。
(Function) With the above configuration, in the present invention, the in-vehicle cooler 2
When operating, the first and second switching valves 18, 19
is switched to form a closed circuit 10 for cooling the vehicle interior, and the refrigerant from the compressor 4 is repeatedly returned to the compressor 4 through the condenser 5, the expansion mechanism 6, and the evaporator 7 in order. The amount of heat absorbed from the air in the vehicle interior by the indoor evaporator 7 is repeatedly radiated to the outside air by the condenser 5, thereby effectively cooling the vehicle interior.

一方、車載クーラの非作動時には、上記第1及
び第2切換弁18,19が切換つて、上記膨張機
構6及び蒸発器7には冷媒は流通せず、冷媒は、
流体ポンプ17から圧送された後、順次排熱回収
用の蒸発器16から、上記圧縮機4及び凝縮器5
を経て再び流体ポンプ17に戻ることを繰返すの
で、排熱回収用の蒸発器16でエンジン排熱が吸
熱回収された後、該エンジン排熱が圧縮機4に流
入して、該エンジン排熱により該圧縮機4が逆に
モータとして作用して、エンジン出力軸1aの回
転駆動が補助され、その排熱の有効利用が図られ
る。
On the other hand, when the on-vehicle cooler is not operating, the first and second switching valves 18 and 19 are switched so that no refrigerant flows through the expansion mechanism 6 and evaporator 7, and the refrigerant is
After the fluid is pumped from the pump 17, it is sequentially transferred from the evaporator 16 for exhaust heat recovery to the compressor 4 and condenser 5.
After the engine exhaust heat is absorbed and recovered by the evaporator 16 for exhaust heat recovery, the engine exhaust heat flows into the compressor 4, and the engine exhaust heat The compressor 4 functions conversely as a motor to assist in driving the rotation of the engine output shaft 1a, thereby making effective use of the exhaust heat.

その場合、エンジンの排熱回収時には、車載ク
ーラ2の圧縮機4及び凝縮器5が利用されてい
て、排熱回収専用の機器としては流体ポンプ17
及び排熱回収用の蒸発器16のみであるので、そ
の分、排熱回収用機器が少なくなつて、車両の狭
いエンジンルーム内にも該各機器を比較的容易に
収容することができ、排熱回収システムの採用が
容易になる。
In that case, the compressor 4 and condenser 5 of the on-vehicle cooler 2 are used to recover exhaust heat from the engine, and the fluid pump 17 is used as equipment exclusively for exhaust heat recovery.
Since only the evaporator 16 and the evaporator 16 for exhaust heat recovery are used, the number of exhaust heat recovery devices is reduced, and each device can be relatively easily accommodated in the narrow engine room of the vehicle. Easier to adopt heat recovery system.

(実施例) 以下、本考案の実施例を第2図以下の図面に基
いて説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本考案に係るエンジンの排熱回収装置
の全体構成を示し、1はエンジン、2は該エンジ
ンに装備された車載クーラであつて、該車載クー
ラ2は、エンジン1の出力軸1aにベルト3で駆
動可能に連結された圧縮機4と、エンジンルーム
内に配置された凝縮器5と、膨張機構6と、車室
内に配置される蒸発器7とを備え、上記凝縮器5
は、冷媒の熱量をエンジンルーム内の空気(外
気)に放熱して該冷媒を凝縮する作用を行うもの
であり、上記膨張機構6は、冷媒を膨張させる機
能を有し、上記蒸発器7は、その近傍に送風機8
を有し、該送風機8で吸込まれた車室内の空気の
有する熱量を冷媒に与えて該冷媒を蒸発させると
同時に該車室内の空気を冷して、この冷風を送風
機8から車室内に吹出させるよう機能するもので
ある。そして、上記4台の機器4〜7は、各々冷
媒配管9により冷媒の循環可能に接続されて車室
内冷却用の閉回路10が形成されていて、圧縮機
4から冷媒を順次凝縮器5、膨張機構6及び蒸発
器7を経て再び圧縮機4に戻して循環させるよう
に構成されている。尚、上記車室内冷却用の閉回
路10には、凝縮器5と膨張機構6との間に受液
器11が介設されている。
FIG. 2 shows the overall configuration of the exhaust heat recovery device for an engine according to the present invention, where 1 is an engine, and 2 is an on-vehicle cooler installed in the engine. The condenser 5 is equipped with a compressor 4 drivably connected by a belt 3 to a compressor 4, a condenser 5 disposed in the engine room, an expansion mechanism 6, and an evaporator 7 disposed in the vehicle interior.
radiates the heat of the refrigerant to the air (outside air) in the engine room to condense the refrigerant, the expansion mechanism 6 has the function of expanding the refrigerant, and the evaporator 7 has the function of expanding the refrigerant. , there is a blower 8 near it.
The heat amount of the air in the vehicle interior sucked by the blower 8 is given to the refrigerant to evaporate the refrigerant, simultaneously cooling the air in the vehicle interior, and blowing this cold air from the fan 8 into the vehicle interior. It functions to make The four devices 4 to 7 are connected through refrigerant pipes 9 to allow refrigerant circulation, thereby forming a closed circuit 10 for cooling the vehicle interior. It is configured so that it is returned to the compressor 4 again through the expansion mechanism 6 and the evaporator 7 for circulation. A liquid receiver 11 is interposed between the condenser 5 and the expansion mechanism 6 in the closed circuit 10 for cooling the vehicle interior.

また、上記エンジン1には、その排気管15に
添設されてエンジン排熱を吸熱して冷媒を蒸発さ
せる排熱回収用の蒸発器16が設けられていると
ともに、該排熱回収用の蒸発器16には、該蒸発
器16に対して冷媒を圧送する排熱回収用の流体
ポンプ17が接続されている。
The engine 1 is also provided with an evaporator 16 attached to the exhaust pipe 15 for exhaust heat recovery that absorbs engine exhaust heat and evaporates the refrigerant. A fluid pump 17 for exhaust heat recovery that pumps refrigerant to the evaporator 16 is connected to the vessel 16 .

そして、上記室内冷却用の閉回路10には、凝
縮器5と膨張機構6との間の冷媒配管9に三方弁
よりなる第1切換弁18が配置されているととも
に、蒸発器7と圧縮機4との間の冷媒配管9に
は、同様に三方弁よりなる第2切換弁19が配置
されていて、該切換弁18,19は、互いに上記
排熱回収用の蒸発器16と流体ポンプ17とを直
列に接続した冷媒配管20により冷媒の流通可能
に接続されている。而して、上記第1切換弁18
は、車載クーラ2の作動時には、凝縮器5からの
冷媒を膨張機構6に流し、第2切換弁19は蒸発
器7からの冷媒を圧縮機4に流すように切換わつ
て、車室内冷却用の閉回路10を形成するように
切換わる一方、車載クーラ2の非作動時には、第
1切換弁18は、蒸発器7への冷媒配管9との連
通を断つて凝縮器5からの冷媒を上記流体ポンプ
17に流し、第2切換弁18は、蒸発器7からの
冷媒配管9との連通を断つて排熱回収用の蒸発器
16からの冷媒を圧縮機4に流通させるように切
換わるものである。
In the indoor cooling closed circuit 10, a first switching valve 18 consisting of a three-way valve is disposed in the refrigerant pipe 9 between the condenser 5 and the expansion mechanism 6, and a first switching valve 18 is disposed between the evaporator 7 and the compressor. A second switching valve 19, which is also a three-way valve, is disposed in the refrigerant pipe 9 between the evaporator 16 and the fluid pump 17 for exhaust heat recovery. The refrigerant pipes 20 are connected in series so that the refrigerant can flow therethrough. Therefore, the first switching valve 18
When the on-vehicle cooler 2 is in operation, the refrigerant from the condenser 5 flows to the expansion mechanism 6, and the second switching valve 19 switches so that the refrigerant from the evaporator 7 flows to the compressor 4, thereby cooling the vehicle interior. On the other hand, when the on-vehicle cooler 2 is not operating, the first switching valve 18 cuts off the communication with the refrigerant pipe 9 to the evaporator 7 and diverts the refrigerant from the condenser 5 to the above. The second switching valve 18 switches to cut off communication with the refrigerant pipe 9 from the evaporator 7 and allow the refrigerant from the evaporator 16 for exhaust heat recovery to flow to the compressor 4. It is.

尚、上記圧縮機4は、第3図に示すように、エ
ンジン出力軸1aに連結されたロータ4aと、該
ロータ4aの外周に出没自在に設けた複数個(第
3図では4個)のベーン4b,4b…により容積
可変に形成される冷媒室4c,4c…とを備え、
車載クーラ2の作動時には、エンジン出力軸1a
によりロータ4aを回転駆動して、各冷媒室4c
内の冷媒を圧縮吐出する一方、車載クーラ2の非
作動時には、排熱回収用の蒸発器16からの冷媒
が各冷媒室4c内に流入して、上記ロータ4aを
逆に回転駆動することにより、エンジン出力軸1
aの回転駆動を補助するよう、圧縮機としての機
能と流体モータとしての機能とを併用するもので
構成されている。
As shown in FIG. 3, the compressor 4 includes a rotor 4a connected to the engine output shaft 1a, and a plurality of rotors (four in FIG. 3) provided on the outer periphery of the rotor 4a so as to be retractable. It includes refrigerant chambers 4c, 4c... whose volume is variable by vanes 4b, 4b...
When the on-vehicle cooler 2 is in operation, the engine output shaft 1a
The rotor 4a is rotationally driven to rotate each refrigerant chamber 4c.
While the on-vehicle cooler 2 is inactive, the refrigerant from the evaporator 16 for exhaust heat recovery flows into each refrigerant chamber 4c and rotates the rotor 4a in the opposite direction. , engine output shaft 1
In order to assist in the rotational drive of the motor (a), it is configured to function as both a compressor and a fluid motor.

したがつて、上記実施例においては、車載クー
ラ2の作動時には、第1及び第2の切換弁18,
19が切換つて、車室内冷却用の閉回路10が形
成されて、圧縮機4からの冷媒が順次凝縮器5、
膨張機構6及び蒸発器7を経て再び圧縮機4に戻
るのが繰返されるので、例えば第4図イに示す如
く、凝縮器5で凝縮されて液化した冷媒(図中
で示す)は、膨張機構6を経て断熱膨張して圧力
と温度とが下がり、霧状(図中で示す)になつ
て車室内の蒸発器7に流入する。その後、該蒸発
器7で室内空気から熱量q1を吸熱して室内空気を
冷却して(空気冷房して)気化し、等温膨張して
過熱蒸気(図中で示す)となり、圧縮機4に流
入する。そして、圧縮機4は、エンジン出力軸1
aからの動力により熱量AL1の仕事を行つて冷媒
を断熱圧縮して、高温高圧のガス状態(図中で
示す)にし、この冷媒ガスが凝縮器5に流入して
冷却されて、外気に熱量q2を放熱して、初期状態
に戻る冷凍サイクルを繰返す。
Therefore, in the above embodiment, when the vehicle-mounted cooler 2 is operated, the first and second switching valves 18,
19 is switched to form a closed circuit 10 for cooling the vehicle interior, and the refrigerant from the compressor 4 is sequentially transferred to the condenser 5,
Since the refrigerant is repeatedly returned to the compressor 4 via the expansion mechanism 6 and the evaporator 7, as shown in FIG. 6, it expands adiabatically, lowers its pressure and temperature, becomes a mist (as shown in the figure), and flows into the evaporator 7 in the vehicle interior. After that, the evaporator 7 absorbs heat amount q 1 from the indoor air, cools the indoor air, vaporizes it, expands isothermally, becomes superheated steam (shown in the figure), and supplies it to the compressor 4. Inflow. The compressor 4 is connected to the engine output shaft 1
The power from a performs work with a calorific value of AL 1 and adiabatically compresses the refrigerant into a high-temperature, high-pressure gas state (as shown in the figure), and this refrigerant gas flows into the condenser 5 where it is cooled and released into the outside air. The refrigeration cycle is repeated by dissipating the amount of heat q 2 and returning to the initial state.

一方、上記車載クーラ2の非作動時には、第1
及び第2切換弁18,19が切換つて、膨張機構
6及び蒸発器7への冷媒の流通が阻止され、冷媒
は今度は、流体ポンプ17から排熱回収用の蒸発
器16を経て圧縮機4に流入した後、室内冷却用
の凝縮器5から再び流体ポンプ17に循環するの
が繰返される。このことにより、冷媒の熱量の吸
熱及び放熱作用は、第4図ロに示す如く、室内冷
却用の凝縮器5からの液冷媒(図中Aで示す)は
流体ポンプ17に流入し、該流体ポンプ17で熱
量AL3の仕事分だけ断熱圧縮され、加圧された状
態(図中Bで示す)で排熱回収用の蒸発器16に
流入し、その後、該蒸発器16でエンジン1から
熱量Q1の熱量を奪つて排熱回収し、等圧加熱さ
れて(図中Cで示す)高圧高温の過熱蒸気にな
る。そして、この過熱蒸気が圧縮機4に流入し
て、該圧縮機4で熱量AL2の仕事量をエンジン出
力軸1aに与えて、該エンジン出力軸1aの回転
駆動を補助して燃費性の向上が図られ、エンジン
排熱の有効利用が図られる。その後、該圧縮機4
の冷媒は上記仕事に伴い断熱膨張して(図中Dで
示す)湿り蒸気の状態になつた後、凝縮器5で外
気に熱量Q2の熱量を放熱し、冷却されて図中A
の飽和液の状態に戻るランキンサイクルを繰返
す。その場合、エンジン排熱の回収時には、室内
冷却用の圧縮機4及び凝縮器5が利用されてい
て、排熱回収用の機器としては、別途に蒸発器1
6及び流体ポンプ17のみが使用されているの
で、可及的に少ない機器でもつて排熱回収を行つ
て、該各機器16,17を狭いエンジンルーム内
にも比較的容易に収容することができ、排熱回収
システムを容易に採用することができる。
On the other hand, when the vehicle-mounted cooler 2 is not operating, the first
Then, the second switching valves 18 and 19 are switched to prevent the refrigerant from flowing to the expansion mechanism 6 and the evaporator 7, and the refrigerant is then passed from the fluid pump 17 to the evaporator 16 for exhaust heat recovery to the compressor 4. After flowing into the fluid pump 17, the fluid is repeatedly circulated from the indoor cooling condenser 5 to the fluid pump 17. As a result, as shown in FIG. 4B, the liquid refrigerant (indicated by A in the figure) from the condenser 5 for indoor cooling flows into the fluid pump 17, and the It is adiabatically compressed by the pump 17 by the work of the heat AL 3 and flows into the evaporator 16 for exhaust heat recovery in a pressurized state (indicated by B in the figure). The amount of heat from Q 1 is removed and the waste heat is recovered, and it is heated isobarically (indicated by C in the diagram) to become high-pressure, high-temperature superheated steam. Then, this superheated steam flows into the compressor 4, and the compressor 4 applies a work amount of heat AL 2 to the engine output shaft 1a to assist the rotational drive of the engine output shaft 1a, thereby improving fuel efficiency. This allows for effective use of engine exhaust heat. After that, the compressor 4
The refrigerant expands adiabatically due to the above work and becomes a wet vapor state (indicated by D in the figure), then radiates a heat amount of Q 2 to the outside air in the condenser 5, and is cooled to A in the figure.
Repeat the Rankine cycle to return to the saturated liquid state. In that case, when recovering engine exhaust heat, a compressor 4 and a condenser 5 for indoor cooling are used, and a separate evaporator 1 is used as equipment for exhaust heat recovery.
6 and the fluid pump 17, exhaust heat can be recovered using as few devices as possible, and each of the devices 16 and 17 can be accommodated relatively easily even in a narrow engine room. , an exhaust heat recovery system can be easily adopted.

(考案の効果) 以上説明したように、本考案のエンジンの排熱
回収装置によれば、既存の車載クーラの一部の機
器を利用して、エンジン排熱を回収するようにし
たので、可及的に少ない機器でもつて排熱回収作
用を行つて、該各構成機器を比較的容易にエンジ
ンルーム内に収容でき、排熱回収システムの採用
を容易にすることができる。
(Effects of the invention) As explained above, according to the engine exhaust heat recovery device of the present invention, part of the equipment of the existing on-vehicle cooler is used to recover engine exhaust heat. The exhaust heat recovery function can be performed with as few devices as possible, and each of the component devices can be accommodated in the engine room relatively easily, making it easy to adopt the exhaust heat recovery system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の構成を示すブロツク図であ
る。第2図ないし第4図は本考案の実施例を示
し、第2図は全体概略構成図、第3図は圧縮機の
具体的構成を示す図、第4図イ及びロは各々室内
冷却時の冷凍サイクル及び排熱回収時のランキン
サイクルを示す図である。 1……エンジン、1a……エンジン出力軸、2
……車載クーラ、4……圧縮機、5……凝縮器、
6……膨張機構、7……蒸発器、10……閉回
路、15……排気管、16……排熱回収用蒸発
器、17……流体ポンプ、18……第1切換弁、
19……第2切換弁、20……冷媒配管。
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 4 show an embodiment of the present invention, Figure 2 is a general schematic diagram, Figure 3 is a diagram showing the specific configuration of the compressor, Figure 4 A and B are for indoor cooling, respectively. FIG. 2 is a diagram showing a refrigeration cycle and a Rankine cycle during exhaust heat recovery. 1... Engine, 1a... Engine output shaft, 2
... Vehicle cooler, 4 ... Compressor, 5 ... Condenser,
6... Expansion mechanism, 7... Evaporator, 10... Closed circuit, 15... Exhaust pipe, 16... Evaporator for exhaust heat recovery, 17... Fluid pump, 18... First switching valve,
19...Second switching valve, 20...Refrigerant piping.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エンジンの出力軸に連結される圧縮機と、該圧
縮機の冷媒ガスを凝縮する凝縮器と、該凝縮器で
凝縮された冷媒を膨張させる膨張機構と、車室に
配置され、上記膨張機構の冷媒を蒸発させて車室
内を冷却する蒸発器とを閉回路に形成してなる車
載クーラを備えるとともに、上記閉回路の凝縮器
と膨張機構との間には第1切換弁が配置され、上
記閉回路の圧縮機と蒸発器との間には第2切換弁
が配置され、該両切換弁は、排熱回収用の流体ポ
ンプと、排熱回収用の蒸発器とを直列に接続した
冷媒配管により互いに連結されていて、上記第1
及び第2切換弁は、上記車載クーラの作動時には
上記閉回路を形成するよう切換わる一方、車載ク
ーラの非作動時には、上記凝縮器の冷媒を流体ポ
ンプに流し、上記排熱回収用の蒸発器の冷媒を圧
縮機に流すよう切換わるものであることを特徴と
するエンジンの排熱回収装置。
a compressor connected to the output shaft of the engine; a condenser that condenses refrigerant gas in the compressor; an expansion mechanism that expands the refrigerant condensed in the condenser; An on-vehicle cooler is provided in which an evaporator that evaporates refrigerant to cool the interior of the vehicle is formed in a closed circuit, and a first switching valve is disposed between the condenser and the expansion mechanism in the closed circuit, A second switching valve is disposed between the compressor and the evaporator of the closed circuit, and both switching valves are configured to connect a refrigerant fluid pump for exhaust heat recovery and an evaporator for exhaust heat recovery in series. They are connected to each other by piping, and the first
The second switching valve switches to form the closed circuit when the on-vehicle cooler is in operation, while flowing the refrigerant in the condenser to the fluid pump when the on-vehicle cooler is not in operation. An exhaust heat recovery device for an engine, characterized in that the device switches so that refrigerant flows through a compressor.
JP1986187147U 1986-12-04 1986-12-04 Expired - Lifetime JPH0521618Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986187147U JPH0521618Y2 (en) 1986-12-04 1986-12-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986187147U JPH0521618Y2 (en) 1986-12-04 1986-12-04

Publications (2)

Publication Number Publication Date
JPS6392021U JPS6392021U (en) 1988-06-14
JPH0521618Y2 true JPH0521618Y2 (en) 1993-06-03

Family

ID=31137355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986187147U Expired - Lifetime JPH0521618Y2 (en) 1986-12-04 1986-12-04

Country Status (1)

Country Link
JP (1) JPH0521618Y2 (en)

Also Published As

Publication number Publication date
JPS6392021U (en) 1988-06-14

Similar Documents

Publication Publication Date Title
KR100528392B1 (en) Vapor-compression refrigerant cycle system with refrigeration cycle and rankine cycle
JP2540738B2 (en) Exhaust heat utilization device for vehicle mounting
US7536869B2 (en) Vapor compression refrigerating apparatus
US7392655B2 (en) Vapor compression refrigerating device
KR900008584B1 (en) Power generator apparatus using deserted heat of automobile
JPH11337193A (en) Cooler for heating object
JP2010260449A (en) Air conditioner for vehicle
JP2005329843A (en) Exhaust heat recovery system for vehicle
JP4103712B2 (en) Refrigeration cycle equipment using waste heat
JPS5812819A (en) Vehicle refrigerator
JPH0521618Y2 (en)
JPH06135221A (en) Air conditioner
JP2003336927A (en) Combined refrigerating system
JP2001108317A (en) Heat pump cooling and heating type air conditioner carbon dioxide refrigerant
JP4016882B2 (en) Rankine cycle
JP2006349211A (en) Combined cycle device, and its control method
JP4631426B2 (en) Vapor compression refrigerator
JPH074777A (en) Engine waste heat recovery device
JP4196817B2 (en) Vapor compression refrigerator
JP2600482Y2 (en) Automotive air conditioners
JP2000274875A (en) Composite cooling system and method for compositely cooling
JPH075825U (en) Automotive air conditioner
JPS6399464A (en) Waste-heat utilizing device for internal combustion engine
JP2010038108A (en) Device for using waste heat of internal combustion engine
JPH11108492A (en) Air conditioner