JP2001108317A - Heat pump cooling and heating type air conditioner carbon dioxide refrigerant - Google Patents

Heat pump cooling and heating type air conditioner carbon dioxide refrigerant

Info

Publication number
JP2001108317A
JP2001108317A JP28459799A JP28459799A JP2001108317A JP 2001108317 A JP2001108317 A JP 2001108317A JP 28459799 A JP28459799 A JP 28459799A JP 28459799 A JP28459799 A JP 28459799A JP 2001108317 A JP2001108317 A JP 2001108317A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
exchanger
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28459799A
Other languages
Japanese (ja)
Inventor
Satoshi Ishida
智 石田
Original Assignee
Daikin Ind Ltd
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Ind Ltd, ダイキン工業株式会社 filed Critical Daikin Ind Ltd
Priority to JP28459799A priority Critical patent/JP2001108317A/en
Publication of JP2001108317A publication Critical patent/JP2001108317A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B9/00Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plant or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plant or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

PROBLEM TO BE SOLVED: To eliminate a conventional check valve and a filter, to reduce the number of expansion valves and to simplify a constitution in a heat pump cooling and heating type air conditioner using a carbon dioxide refrigerant having an internal heat exchanger for improving thermal efficiency. SOLUTION: The heat pump cooling and heating air conditioner comprises a compressor 1, an outdoor heat exchanger 2, an internal heat exchanger 4 for heat exchanging condensed refrigerant with a refrigerant returned to the compressor 1, expansion means 5, 15, an indoor heat exchanger 3, first, second four-way switching valves 1, 8. In this case, the refrigerant from the compressor 1 can be selectively supplied to the exchanger 2 and the exchanger 3 through the valve 7, and the refrigerant from the exchanger 2 and the exchanger 3 can be selectively supplied to the compressor 1 through the valve 8. Then, a direction of a flow of the refrigerant from the exchanger 2 to the compressor 1 through the exchanger 4 and the means 5, 15 and a direction of a flow of the refrigerant from the exchanger 3 to the compressor 1 through the exchanger 4 and the means 5, 15 are set to become the same direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本願発明は、二酸化炭素冷媒
を使用したヒートポンプ式の冷暖房型空気調和機に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner using a carbon dioxide refrigerant.
【0002】[0002]
【従来の技術】この種の空気調和機の従来例の構成を図
3に示す。すなわち、該従来の二酸化炭素冷媒を使用し
たヒートポンプ式の冷暖房型空気調和機は、図示のよう
に、モータ(図示省略)により回転駆動される圧縮機1
と、室外熱交換器2と、上記圧縮機1の吸込側冷媒配管
途中に介設されたアキュムレータ6および内部熱交換器
4と、上記圧縮機1の吐出側冷媒配管および吸込側冷媒
配管途中に介設された4路切換弁14とからなる室外機
側要素と室内熱交換器3を中心とする室内機側要素とを
備えて構成されている。
2. Description of the Related Art FIG. 3 shows a configuration of a conventional example of this type of air conditioner. That is, the heat pump type air conditioner using the conventional carbon dioxide refrigerant is a compressor 1 driven by a motor (not shown) as shown in FIG.
An outdoor heat exchanger 2, an accumulator 6 and an internal heat exchanger 4 provided in the middle of the suction-side refrigerant pipe of the compressor 1, and a middle of the discharge-side refrigerant pipe and the suction-side refrigerant pipe of the compressor 1. An outdoor unit-side element including an interposed four-way switching valve 14 and an indoor unit-side element centered on the indoor heat exchanger 3 are provided.
【0003】上記室外機側圧縮機1の吐出側冷媒配管
は、上記4路切換弁14を介して上記室外機側室外熱交
換器2と上記室内機側室内熱交換器3とに各々選択的に
接続されるようになっている。他方上記圧縮器1の吸込
側冷媒配管は、内部熱交換器4、アキュムレータ6およ
び4路切換弁14を介して上記室内機側室内熱交換器3
と上記室外機側室外熱交換器2とに各々選択的に接続さ
れるようになっている。
The discharge side refrigerant pipe of the outdoor unit-side compressor 1 is selectively connected to the outdoor unit-side outdoor heat exchanger 2 and the indoor unit-side indoor heat exchanger 3 via the four-way switching valve 14. Is to be connected to. On the other hand, the suction side refrigerant pipe of the compressor 1 is connected to the indoor unit side indoor heat exchanger 3 through the internal heat exchanger 4, the accumulator 6, and the four-way switching valve 14.
And the outdoor unit-side outdoor heat exchanger 2 are selectively connected to each other.
【0004】一方、上記室外熱交換器2と室内熱交換器
3との間の冷媒配管には、第1の膨張弁9および第1の
逆止弁10の並列回路と、上記内部熱交換器4と、コン
タミフィルタ11と、第2の膨張弁12および第2の逆
止弁13の並列回路とが相互に直列な状態で介設されて
いる。
On the other hand, in a refrigerant pipe between the outdoor heat exchanger 2 and the indoor heat exchanger 3, a parallel circuit of a first expansion valve 9 and a first check valve 10 and the internal heat exchanger 4, a contaminant filter 11, and a parallel circuit of a second expansion valve 12 and a second check valve 13 are interposed in a mutually serial state.
【0005】なお、図中において、上記4路切換弁14
の切換位置およびそれに対応した冷媒の流れを、冷房運
転時には実線で、暖房運転時には破線で、それぞれ示し
ている。
In the drawing, the four-way switching valve 14
Are shown by a solid line during the cooling operation and by a broken line during the heating operation.
【0006】今例えば冷房運転時には、上記圧縮機1か
ら吐出された冷媒は、上記4路切換弁14を経て上記室
外熱交換器2において冷却されて凝縮される。この凝縮
冷媒(高温冷媒)は、上記第1の逆止弁10を介して内
部熱交換器4に導入されて、上記アキュムレータ6を介
した室内熱交換器3からの蒸発冷媒(低温冷媒)に熱回
収された後、コンタミフィルタ11を介して第2の膨張
弁12に供給される。そして、該第2の膨張弁12にお
いて等エンタルピー膨張により減圧された後、上記室内
熱交換器3に導入される。該室内熱交換器3に導入され
た冷媒は、ここで蒸発してその蒸発熱によって室内の冷
房を行うとともに、蒸発後の冷媒(低温冷媒)は上記4
路切換弁14及びアキュムレータ6を経て内部熱交換器
4に供給され、該内部熱交換器4を介して上述のように
熱を回収して昇温された後に上記圧縮機1に吸入され
る。
For example, during a cooling operation, the refrigerant discharged from the compressor 1 is cooled and condensed in the outdoor heat exchanger 2 via the four-way switching valve 14. This condensed refrigerant (high-temperature refrigerant) is introduced into the internal heat exchanger 4 via the first check valve 10 and is converted into evaporative refrigerant (low-temperature refrigerant) from the indoor heat exchanger 3 via the accumulator 6. After the heat is recovered, it is supplied to the second expansion valve 12 via the contamination filter 11. Then, the pressure is reduced by isenthalpy expansion in the second expansion valve 12 and then introduced into the indoor heat exchanger 3. The refrigerant introduced into the indoor heat exchanger 3 evaporates here and cools down the room by the heat of evaporation, and the refrigerant (low-temperature refrigerant) after the evaporation is the same as that of the above-described 4.
The heat is supplied to the internal heat exchanger 4 via the passage switching valve 14 and the accumulator 6, and the heat is recovered through the internal heat exchanger 4 as described above, and is then sucked into the compressor 1.
【0007】一方、暖房運転時には、上記圧縮機1から
吐出された冷媒は、上記4路切換弁14を経て上記室内
熱交換器3に導入されて凝縮され、該凝縮時の凝縮熱に
よって室内の暖房が行われる。上記室内熱交換器3にお
いて凝縮した冷媒(高温冷媒)は、上記第2の逆止弁1
3を介して内部熱交換器4に導入され、上記アキュムレ
ータ6を介して供給される室外熱交換器2からの蒸発冷
媒(低温冷媒)に熱回収された後に上記第1の膨張弁9
に導入される。そして、該第1の膨張弁9において等エ
ンタルピー膨張により減圧された後、上記室外熱交換器
2に導入されて蒸発し、上記4路切換弁14及びアキュ
ムレータ6を経て上記内部熱交換器4に供給され、該内
部熱交換器4を介して上述のように熱を回収して昇温さ
れた後に上記圧縮機1に吸入される。
On the other hand, during the heating operation, the refrigerant discharged from the compressor 1 is introduced into the indoor heat exchanger 3 through the four-way switching valve 14 and is condensed. Heating is performed. The refrigerant (high-temperature refrigerant) condensed in the indoor heat exchanger 3 is supplied to the second check valve 1
After being introduced into the internal heat exchanger 4 through the internal heat exchanger 3 and recovered by the evaporated refrigerant (low-temperature refrigerant) from the outdoor heat exchanger 2 supplied through the accumulator 6, the first expansion valve 9
Will be introduced. Then, after the pressure is reduced by isenthalpy expansion in the first expansion valve 9, the pressure is introduced into the outdoor heat exchanger 2, evaporates, and passes through the four-way switching valve 14 and the accumulator 6 to the internal heat exchanger 4. The heat is recovered through the internal heat exchanger 4 as described above, and is then drawn into the compressor 1 after being heated.
【0008】このように、従来の二酸化炭素冷媒を使用
したヒートポンプ式の冷暖房型空気調和機では、熱効率
の改善のために、冷房運転時および暖房運転時の各場合
において、各々凝縮後の冷媒と圧縮機1に吸入される前
の蒸発冷媒とを相互に熱交換させて熱効率の向上を図る
ように上述のように内部熱交換器4を設けて構成されて
いる。
As described above, in a conventional heat pump type air conditioner using a carbon dioxide refrigerant, in order to improve thermal efficiency, the condensed refrigerant and the condensed refrigerant are used in each of a cooling operation and a heating operation. The internal heat exchanger 4 is provided as described above so as to improve heat efficiency by mutually exchanging heat with the evaporated refrigerant before being sucked into the compressor 1.
【0009】そして、そのために、当該内部熱交換器4
の前後に、第1,第2の2個の膨張弁9,12と第1,
第2の2個の逆止弁10,13を並列に組み合わせた冷
媒回路が介設されている。また、この冷媒回路では、上
述のように、第1,第2の2個の逆止弁10,13が設
けられていることから、それらが詰まることを防ぐため
に、当該冷媒回路内にコンタミフィルタ11を設けてお
り、それによって冷媒とともに循環するコンタミ等を取
り除くようになっている。
And, for that purpose, the internal heat exchanger 4
Before and after the first and second two expansion valves 9 and 12 and the first and second
A refrigerant circuit in which the second two check valves 10 and 13 are combined in parallel is provided. Further, in this refrigerant circuit, as described above, since the first and second two check valves 10 and 13 are provided, in order to prevent them from being clogged, a contamination filter is provided in the refrigerant circuit. 11 is provided to remove contaminants and the like circulating with the refrigerant.
【0010】[0010]
【発明が解決しようとする課題】したがって、従来の構
成の場合、内部熱交換器4の前後に、2個の膨張弁9,
12、2個の逆止弁10,13、1個のコンタミフィル
タ11の合計5個の構成部品が必要となり、部品点数が
多く、構成も複雑で、コストが高い問題がある。
Therefore, in the case of the conventional configuration, two expansion valves 9 and 9 are provided before and after the internal heat exchanger 4.
A total of five components, that is, 12, two check valves 10 and 13, and one contamination filter 11, are required, and the number of components is large, the configuration is complicated, and the cost is high.
【0011】これは、結局のところ上記内部熱交換器4
部分を流れる冷媒の流れの方向が、冷房運転時と暖房運
転時とで逆になることに原因がある。
This is, after all, the internal heat exchanger 4
This is because the flow direction of the refrigerant flowing through the portion is reversed between the cooling operation and the heating operation.
【0012】本願発明は、この点に着目してなされたも
ので、上記室外熱交換器と室内熱交換器との間に新たな
4路切換弁を加えることにより、冷房運転時又は暖房運
転時に冷媒の流れを同一方向として、上述のような問題
を解決した二酸化炭素冷媒を使用したヒートポンプ式の
冷暖房型空気調和機を提供することを目的とするもので
ある。
The present invention has been made in view of this point. By adding a new four-way switching valve between the outdoor heat exchanger and the indoor heat exchanger, the present invention can be used during cooling operation or heating operation. It is an object of the present invention to provide a heat pump type air conditioner using a carbon dioxide refrigerant that solves the above-described problems by setting the flow of the refrigerant in the same direction.
【0013】[0013]
【課題を解決するための手段】本願発明は、上記の目的
を達成するために、次のような課題解決手段を備えて構
成されている。
Means for Solving the Problems In order to achieve the above object, the present invention is provided with the following means for solving the problems.
【0014】(1) 請求項1の発明 この発明の二酸化炭素冷媒を使用したヒートポンプ式の
冷暖房型空気調和機は、圧縮機1と、室外熱交換器2
と、凝縮後の冷媒と圧縮機1に戻される冷媒との熱交換
を行う内部熱交換器4と、膨張手段5,15と、室内熱
交換器3と、第1,第2の4路切換弁7,8とを備え、
上記圧縮機1からの冷媒を上記第1の4路切換弁7を介
して上記室外熱交換器2と室内熱交換器3とに選択的に
供給できるようにするとともに、該室外熱交換器2と室
内熱交換器3からの冷媒を上記第2の4路切換弁8を介
して上記圧縮機1に選択的に供給できるようにし、上記
室外熱交換器2からの冷媒の上記内部熱交換器4および
膨張手段5,15を介した上記圧縮機1に対する流れの
方向と上記室内熱交換器3からの冷媒の上記内部熱交換
器4および膨張手段5,15を介した上記圧縮機1に対
する流れの方向とが同一の方向となるようにしたことを
特徴としている。
(1) The heat pump type air conditioner using a carbon dioxide refrigerant according to the present invention comprises a compressor 1 and an outdoor heat exchanger 2.
An internal heat exchanger 4 for exchanging heat between the condensed refrigerant and the refrigerant returned to the compressor 1, expansion means 5, 15, an indoor heat exchanger 3, and first and second four-way switching With valves 7 and 8,
The refrigerant from the compressor 1 can be selectively supplied to the outdoor heat exchanger 2 and the indoor heat exchanger 3 via the first four-way switching valve 7, and the outdoor heat exchanger 2 And the refrigerant from the indoor heat exchanger 3 can be selectively supplied to the compressor 1 through the second four-way switching valve 8, and the internal heat exchanger of the refrigerant from the outdoor heat exchanger 2 4 and the flow of the refrigerant from the indoor heat exchanger 3 to the compressor 1 via the internal heat exchanger 4 and the expansion means 5 and 15 via the expansion means 5 and 15. And the same direction.
【0015】このように、第1,第2の4路切換弁7,
8を組合せて、冷暖房時各々における内部熱交換器4お
よび膨張手段5,15部分での冷媒の流れの方向が同じ
になるようにすると、従来のような逆止弁10,13の
各々および膨張弁9,12の一方が不要となり、構成が
簡単になって製品コストが低下する。
As described above, the first and second four-way switching valves 7,
8 are combined so that the directions of the refrigerant flows in the internal heat exchanger 4 and the expansion means 5 and 15 at the time of cooling and heating, respectively, are the same as those of the conventional check valves 10 and 13 and expansion. Since one of the valves 9 and 12 is not required, the configuration is simplified and the product cost is reduced.
【0016】また、逆止弁10,13がなくなることに
より、コンタミ付着による詰まり等の心配がなくなり、
コンタミフィルタ11も不要となり、装置性能自体の信
頼性も向上する。
Further, since the check valves 10 and 13 are eliminated, there is no need to worry about clogging due to adhesion of contaminants.
The contamination filter 11 becomes unnecessary, and the reliability of the device performance itself is improved.
【0017】(2) 請求項2の発明 この発明の二酸化炭素冷媒を使用したヒートポンプ式の
冷暖房型空気調和機は、上記請求項1記載の発明の構成
において、上記膨張手段として膨張弁5が採用されてい
る。
(2) A heat pump type air conditioner using a carbon dioxide refrigerant according to the present invention, wherein the expansion valve 5 is used as the expansion means. Have been.
【0018】上記請求項1の発明の構成によれば、内部
熱交換器4および膨張手段部分における冷媒の流れの方
向が、冷房時又は暖房時で共に同一となるので、単一の
膨張弁5で共通に等エンタルピー膨張させることができ
るようになる。
According to the configuration of the first aspect of the present invention, since the flow direction of the refrigerant in the internal heat exchanger 4 and the expansion means is the same during cooling or heating, a single expansion valve 5 is provided. With this, the common enthalpy expansion can be performed.
【0019】(3) 請求項3の発明 この発明の二酸化炭素冷媒を使用したヒートポンプ式の
冷暖房型空気調和機は、上記請求項1記載の発明の構成
において、上記膨張手段として膨張機15が採用されて
いる。
(3) The invention of claim 3 The heat pump type cooling and heating air conditioner using carbon dioxide refrigerant according to the present invention, in the structure of the above-mentioned claim 1, employs an expander 15 as the expansion means. Have been.
【0020】上記請求項1の発明の構成によれば、内部
熱交換器4および膨張手段部分における冷媒の流れの方
向が、冷房時又は暖房時で共に同一となるので、膨張機
15のような冷媒の流れ方向の依存性が高いものを容易
に組込むことができ、それによって共通に等エンタルピ
ー膨張させることができるとともに、有効にエネルギー
(動力等)回収することができるようになる。
According to the configuration of the first aspect of the present invention, the flow direction of the refrigerant in the internal heat exchanger 4 and the expansion means is the same during cooling or heating. A refrigerant having a high dependence on the flow direction of the refrigerant can be easily incorporated, whereby common enthalpy expansion can be performed, and energy (power, etc.) can be effectively recovered.
【0021】[0021]
【発明の効果】以上の結果、本願発明の二酸化炭素冷媒
を使用したヒートポンプ式の冷暖房型空気調和機による
と、簡単かつ低コストで性能上の信頼性の高い二酸化炭
素冷媒を使用したヒートポンプ式の冷暖房型空気調和機
を提供することができる。
As described above, according to the heat pump type air conditioner using the carbon dioxide refrigerant of the present invention, the heat pump type air conditioner using the carbon dioxide refrigerant which is simple, low-cost and has high reliability in performance is obtained. A cooling and heating type air conditioner can be provided.
【0022】[0022]
【発明の実施の形態】図1は、本願発明の実施の形態1
に係る二酸化炭素冷媒を使用したヒートポンプ式の冷暖
房型空気調和機の構成を示している。
FIG. 1 shows a first embodiment of the present invention.
1 shows a configuration of a heat pump type air conditioner using a carbon dioxide refrigerant according to the present invention.
【0023】先ず、この実施の形態の空気調和機は、例
えば図1に示すように、モータ(図示省略)により回転
駆動される圧縮機1と、室外熱交換器2と、上記圧縮機
1の吸込側冷媒配管中に介設されたアキュムレータ6
と、第1,第2の4路切換弁7,8と、第1の4路切換
弁7と第2の4路切換弁8との間に設けられた膨張弁5
と、該膨張弁5と上記第2の4路切換弁8との間および
圧縮機1の吸込側と上記アキュムレータ6との間に設け
られた内部熱交換器4とからなる室外機側要素と室内熱
交換器3を中心とする室内機側要素とを備えて構成され
ている。
First, as shown in FIG. 1, for example, an air conditioner of this embodiment includes a compressor 1 which is driven to rotate by a motor (not shown), an outdoor heat exchanger 2, Accumulator 6 interposed in the suction side refrigerant pipe
And first and second four-way switching valves 7 and 8, and an expansion valve 5 provided between the first four-way switching valve 7 and the second four-way switching valve 8.
An outdoor unit-side element comprising an internal heat exchanger 4 provided between the expansion valve 5 and the second four-way switching valve 8 and between the suction side of the compressor 1 and the accumulator 6; And an indoor unit-side element centered on the indoor heat exchanger 3.
【0024】上記室外機側圧縮機1の吐出側冷媒配管
は、第1の4路切換弁7を介して上記室外機側室外熱交
換器2と上記室内機側室内熱交換器3とに選択的に接続
されるようになっている。他方上記圧縮器1の吸込側冷
媒配管は、上記内部熱交換器4およびアキュムレータ
6、第2の4路切換弁8を介して上記室内機側室内熱交
換器3と上記室外機側室外熱交換器2とに選択的に接続
されるようになっている。
The refrigerant pipe on the discharge side of the outdoor unit-side compressor 1 is selected through the first four-way switching valve 7 between the outdoor unit-side outdoor heat exchanger 2 and the indoor unit-side indoor heat exchanger 3. The connection is made. On the other hand, the suction side refrigerant pipe of the compressor 1 is connected to the indoor unit side indoor heat exchanger 3 and the outdoor unit side outdoor heat exchange via the internal heat exchanger 4, the accumulator 6, and the second four-way switching valve 8. To the device 2.
【0025】なお、図中において、上記第1,第2の4
路切換弁7,8の切換位置およびそれに対応した冷媒の
流れを、冷房運転時には実線で、暖房運転時には破線
で、それぞれ示している。
In the figure, the first and second 4
The switching positions of the path switching valves 7 and 8 and the flow of the refrigerant corresponding thereto are indicated by solid lines during the cooling operation and by broken lines during the heating operation.
【0026】また、この場合、冷媒として二酸化炭素
(CO2)が使用されており、該二酸化炭素冷媒は所定
の圧力、温度状態にコントロールすることにより超臨界
状態にして使用されるようになっている。
Further, in this case, carbon dioxide (CO 2 ) is used as a refrigerant, and the carbon dioxide refrigerant is used in a supercritical state by controlling it to a predetermined pressure and temperature state. I have.
【0027】今例えば冷房運転時には、上記圧縮機1か
ら吐出された冷媒は、上記第1の4路切換弁7を経て上
記室外熱交換器2において外気により冷却される。この
冷媒(高温冷媒)は、上記第2の4路切換弁8を介し、
上記内部熱交換器4に供給されて上記アキュムレータ6
を介して供給される室内熱交換器3からの蒸発冷媒(低
温冷媒)に熱回収された後、上記膨張弁5において等エ
ンタルピー膨張により減圧される。その後、さらに第1
の4路切換弁7を経て上記室内熱交換器3に導入され
る。該室内熱交換器3に導入された冷媒は、ここで蒸発
してその蒸発熱によって室内の冷房を行うとともに、蒸
発後の冷媒(低温冷媒)は上記第2の4路切換弁8及び
アキュムレータ6を介して上述のように内部熱交換器4
に供給されて上記室外熱交換器2からの冷媒(高温冷
媒)の熱を回収して昇温された後、該内部熱交換器4を
経て上記圧縮機1に吸入される。
For example, during a cooling operation, the refrigerant discharged from the compressor 1 is cooled by the outside air in the outdoor heat exchanger 2 via the first four-way switching valve 7. This refrigerant (high-temperature refrigerant) passes through the second four-way switching valve 8,
The accumulator 6 supplied to the internal heat exchanger 4
After the heat is recovered by the evaporating refrigerant (low-temperature refrigerant) from the indoor heat exchanger 3 supplied through the expansion valve 5, the pressure in the expansion valve 5 is reduced by isenthalpy expansion. After that, the first
Is introduced into the indoor heat exchanger 3 through the four-way switching valve 7. The refrigerant introduced into the indoor heat exchanger 3 evaporates here to cool the room by the heat of evaporation, and the refrigerant (low-temperature refrigerant) after evaporation is supplied to the second four-way switching valve 8 and the accumulator 6. Through the internal heat exchanger 4 as described above
After being supplied to the compressor and recovering the heat of the refrigerant (high-temperature refrigerant) from the outdoor heat exchanger 2 and raising the temperature, the refrigerant is sucked into the compressor 1 via the internal heat exchanger 4.
【0028】一方、暖房運転時には、上記圧縮機1から
吐出された冷媒は、上記第1の4路切換弁7を経て上記
室内熱交換器3に導入されて冷却され、該冷却時の放熱
によって室内の暖房が行われる。上記室内熱交換器3に
おいて冷却された冷媒(高温冷媒)は、上記第2の4路
切換弁8を介して上記内部熱交換器4に供給され、該内
部熱交換器4で上記アキュムレータ6を介して供給され
る上記室外熱交換器2からの蒸発冷媒(低温冷媒)に熱
回収された後に同内部熱交換器4を経て上記膨張弁5に
導入される。そして、該膨張弁5において等エンタルピ
ー膨張により減圧された後、上記第1の4路切換弁7を
介して上記室外熱交換器2に導入されて蒸発し、さらに
該蒸発冷媒(低温冷媒)が上記第2の4路切換弁8及び
アキュムレータ6を経て上述の内部熱交換器4に供給さ
れ、該内部熱交換器4を介して上記室外熱交換器2から
の冷媒(高温冷媒)の熱を回収して、昇温された後に上
記圧縮機1に吸入される。
On the other hand, during the heating operation, the refrigerant discharged from the compressor 1 is introduced into the indoor heat exchanger 3 via the first four-way switching valve 7 and cooled, and the heat is released by the cooling. Room heating is performed. The refrigerant (high-temperature refrigerant) cooled in the indoor heat exchanger 3 is supplied to the internal heat exchanger 4 via the second four-way switching valve 8, and the internal heat exchanger 4 controls the accumulator 6. After the heat is recovered by the evaporated refrigerant (low-temperature refrigerant) from the outdoor heat exchanger 2 supplied through the internal heat exchanger 4, the refrigerant is introduced into the expansion valve 5 through the internal heat exchanger 4. Then, after the pressure is reduced by isenthalpy expansion in the expansion valve 5, it is introduced into the outdoor heat exchanger 2 through the first four-way switching valve 7 and evaporated, and the evaporated refrigerant (low-temperature refrigerant) is further discharged. The heat is supplied to the internal heat exchanger 4 via the second four-way switching valve 8 and the accumulator 6, and the heat of the refrigerant (high-temperature refrigerant) from the outdoor heat exchanger 2 via the internal heat exchanger 4. After being collected and heated, it is sucked into the compressor 1.
【0029】このように、この実施の形態の二酸化炭素
冷媒を使用したヒートポンプ式の冷暖房型空気調和機で
も、従来のものと同様に熱効率の改善のために室外/室
内熱交換器2,3の後の冷媒と室内/室外熱交換器3,
2から戻された圧縮機1吸入前の冷媒とを相互に熱交換
させて熱交換効率の向上を図る内部熱交換器4を設けて
はいるが、この実施形態の場合には、上述のように、そ
れらの冷媒回路中に上記第1の4路切換弁7と第2の4
路切換弁8とを設け、第1の4路切換弁7によって圧縮
機1の吐出側冷媒配管を上記室外熱交換器2と室内熱交
換器3とに選択的に切換え接続できるようにしている一
方、上記第2の4路切換弁8によって上記圧縮機1の吸
込側冷媒配管を上記室内熱交換器3と室外熱交換器2と
に選択的に切換え接続できるようにしている。
As described above, in the heat pump type air conditioner using the carbon dioxide refrigerant according to the present embodiment, the outdoor / indoor heat exchangers 2 and 3 are used in order to improve the thermal efficiency similarly to the conventional one. After refrigerant and indoor / outdoor heat exchanger 3,
Although the internal heat exchanger 4 for exchanging heat with the refrigerant before suction of the compressor 1 returned from the compressor 2 to improve the heat exchange efficiency is provided, in the case of this embodiment, as described above. In addition, the first four-way switching valve 7 and the second four
A path switching valve 8 is provided so that the refrigerant pipe on the discharge side of the compressor 1 can be selectively switched and connected to the outdoor heat exchanger 2 and the indoor heat exchanger 3 by the first four-way switching valve 7. On the other hand, the second four-way switching valve 8 allows the suction side refrigerant pipe of the compressor 1 to be selectively switched and connected to the indoor heat exchanger 3 and the outdoor heat exchanger 2.
【0030】したがって、該構成では、冷房運転時にお
ける上記内部熱交換器4および膨張弁5を介した上記圧
縮機1に対する冷媒の流れの方向と暖房運転時における
上記内部熱交換器4および膨張弁5を介した上記圧縮機
1に対する冷媒の流れの方向とが同一の方向となり、従
来の逆止弁10,13およびコンタミフィルタ11が不
要になるとともに膨張弁5も1個で足りるようになる。
したがって、構成が簡単になり、コストが低減される。
また、逆止弁10,13がなくなることから、当然にコ
ンタミフィルタ11も不要となり、装置性能の信頼性が
向上する。
Therefore, in this configuration, the direction of the flow of the refrigerant to the compressor 1 via the internal heat exchanger 4 and the expansion valve 5 during the cooling operation and the internal heat exchanger 4 and the expansion valve during the heating operation The direction of the flow of the refrigerant to the compressor 1 via 5 becomes the same direction, so that the conventional check valves 10 and 13 and the contamination filter 11 become unnecessary, and one expansion valve 5 is sufficient.
Therefore, the configuration is simplified and the cost is reduced.
In addition, since the check valves 10 and 13 are eliminated, the contamination filter 11 is naturally unnecessary, and the reliability of the device performance is improved.
【0031】さらに、以上の結果、例えば図2の変形例
に示すように、上述の膨張弁5に代えて冷媒の流れ方向
に対する依存性の高い膨張機15を例えば圧縮機1と同
軸駆動方式にして組み込むことも容易となり、それによ
る動力回収効率の向上と相俟って冷凍サイクルの高効率
化が促進される。
As a result of the above, as shown in a modified example of FIG. 2, for example, instead of the above-described expansion valve 5, an expander 15 having a high dependency on the flow direction of the refrigerant is coaxially driven with the compressor 1, for example. And the efficiency of the refrigeration cycle is promoted in combination with the improvement of the power recovery efficiency.
【0032】また上記室外熱交換器2及び上記室内熱交
換器3においても、それら各熱交換器2,3部分におけ
る冷房運転時の冷媒の流れの方向と暖房運転時の冷媒の
流れの方向とが同一の方向となることから、それら各熱
交換器2,3における冷媒循環形態をそれぞれ対向流構
成とすることができ、冷媒と冷却風との間における有効
な熱交換によって冷凍サイクルの熱効率をさらに高める
ことができることになる。
In the outdoor heat exchanger 2 and the indoor heat exchanger 3 as well, the directions of the refrigerant flow during the cooling operation and the directions of the refrigerant flow during the heating operation in the respective heat exchangers 2 and 3 are described. Are in the same direction, so that the refrigerant circulation in each of the heat exchangers 2 and 3 can be in a counterflow configuration, and the heat efficiency of the refrigeration cycle is improved by effective heat exchange between the refrigerant and the cooling air. It can be further increased.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本願発明の実施の形態に係る二酸化炭素冷媒を
使用したヒートポンプ式の冷暖房型空気調和機の構成を
示す図である。
FIG. 1 is a diagram illustrating a configuration of a heat pump type air conditioner using a carbon dioxide refrigerant according to an embodiment of the present invention.
【図2】本願発明の実施の形態の変形例に係る二酸化炭
素冷媒を使用したヒートポンプ式の冷暖房型空気調和機
の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a heat pump type air conditioner using a carbon dioxide refrigerant according to a modification of the embodiment of the present invention.
【図3】従来の二酸化炭素冷媒を使用したヒートポンプ
式の冷暖房型空気調和機の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a conventional heat pump type air conditioner using a carbon dioxide refrigerant.
【符号の説明】[Explanation of symbols]
1は圧縮機、2は室外熱交換器、3は室内熱交換器、4
は内部熱交換器、5は膨張弁、6はアキュムレータ、7
は第1の4路切換弁、8は第2の4路切換弁、15は膨
張機である。
1 is a compressor, 2 is an outdoor heat exchanger, 3 is an indoor heat exchanger, 4
Is an internal heat exchanger, 5 is an expansion valve, 6 is an accumulator, 7
Denotes a first four-way switching valve, 8 denotes a second four-way switching valve, and 15 denotes an expander.

Claims (3)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 圧縮機(1)と、室外熱交換器(2)
    と、凝縮後の冷媒と圧縮機(1)に戻される冷媒との熱
    交換を行う内部熱交換器(4)と、膨張手段(5),
    (15)と、室内熱交換器(3)と、第1,第2の4路
    切換弁(7),(8)とを備え、上記圧縮機(1)から
    の冷媒を上記第1の4路切換弁(7)を介して上記室外
    熱交換器(2)と室内熱交換器(3)とに選択的に供給
    できるようにするとともに、該室外熱交換器(2)と室
    内熱交換器(3)からの冷媒を上記第2の4路切換弁
    (8)を介して上記圧縮機(1)に選択的に供給できる
    ようにし、上記室外熱交換器(2)からの冷媒の上記内
    部熱交換器(4)および膨張手段(5),(15)を介
    した上記圧縮機(1)に対する流れの方向と上記室内熱
    交換器(3)からの冷媒の上記内部熱交換器(4)およ
    び膨張手段(5),(15)を介した上記圧縮機(1)
    に対する流れの方向とが同一の方向となるようにしたこ
    とを特徴とする二酸化炭素冷媒を使用したヒートポンプ
    式の冷暖房型空気調和機。
    1. A compressor (1) and an outdoor heat exchanger (2)
    An internal heat exchanger (4) for exchanging heat between the condensed refrigerant and the refrigerant returned to the compressor (1);
    (15), an indoor heat exchanger (3), and first and second four-way switching valves (7) and (8), and the refrigerant from the compressor (1) is supplied to the first four-way switching valve. The outdoor heat exchanger (2) and the indoor heat exchanger (3) can be selectively supplied to the outdoor heat exchanger (2) and the indoor heat exchanger (3) via a path switching valve (7). The refrigerant from (3) can be selectively supplied to the compressor (1) through the second four-way switching valve (8), and the refrigerant from the outdoor heat exchanger (2) can be supplied to the inside of the compressor. The direction of flow to the compressor (1) via the heat exchanger (4) and the expansion means (5), (15) and the internal heat exchanger (4) for the refrigerant from the indoor heat exchanger (3) And the compressor (1) via expansion means (5) and (15)
    A heat pump type air conditioner using a carbon dioxide refrigerant, wherein the flow direction of the air conditioner is the same as that of the air conditioner.
  2. 【請求項2】 上記請求項1記載の発明の構成におい
    て、膨張手段として膨張弁(5)が採用されていること
    を特徴とする二酸化炭素冷媒を使用したヒートポンプ式
    の冷暖房型空気調和機。
    2. An air conditioner of the heat pump type using a carbon dioxide refrigerant, wherein an expansion valve (5) is employed as expansion means.
  3. 【請求項3】 上記請求項1記載の発明の構成におい
    て、膨張手段として膨張機(15)が採用されているこ
    とを特徴とする二酸化炭素冷媒を使用したヒートポンプ
    式の冷暖房型空気調和機。
    3. An air conditioner of the heat pump type using a carbon dioxide refrigerant, wherein an expander (15) is employed as expansion means.
JP28459799A 1999-10-05 1999-10-05 Heat pump cooling and heating type air conditioner carbon dioxide refrigerant Pending JP2001108317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28459799A JP2001108317A (en) 1999-10-05 1999-10-05 Heat pump cooling and heating type air conditioner carbon dioxide refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28459799A JP2001108317A (en) 1999-10-05 1999-10-05 Heat pump cooling and heating type air conditioner carbon dioxide refrigerant

Publications (1)

Publication Number Publication Date
JP2001108317A true JP2001108317A (en) 2001-04-20

Family

ID=17680528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28459799A Pending JP2001108317A (en) 1999-10-05 1999-10-05 Heat pump cooling and heating type air conditioner carbon dioxide refrigerant

Country Status (1)

Country Link
JP (1) JP2001108317A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
WO2003004947A1 (en) * 2001-07-02 2003-01-16 Sanyo Electric Co., Ltd. Heat pump
JP2009204304A (en) * 2009-06-18 2009-09-10 Mitsubishi Electric Corp Refrigeration air conditioner
WO2010035419A1 (en) * 2008-09-26 2010-04-01 ダイキン工業株式会社 Refrigerating apparatus
WO2018094844A1 (en) * 2016-11-25 2018-05-31 广州华凌制冷设备有限公司 Air conditioning system and control method
WO2018094841A1 (en) * 2016-11-28 2018-05-31 广州华凌制冷设备有限公司 Air conditioner and refrigeration control method therefor
WO2019037722A1 (en) * 2017-08-22 2019-02-28 格力电器(武汉)有限公司 Air conditioning system and control method therefor
WO2020174685A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
WO2003004947A1 (en) * 2001-07-02 2003-01-16 Sanyo Electric Co., Ltd. Heat pump
US7104079B2 (en) 2001-07-02 2006-09-12 Sanyo Electric Co., Ltd. Heat pump
WO2010035419A1 (en) * 2008-09-26 2010-04-01 ダイキン工業株式会社 Refrigerating apparatus
JP2010101613A (en) * 2008-09-26 2010-05-06 Daikin Ind Ltd Refrigerating apparatus
JP2009204304A (en) * 2009-06-18 2009-09-10 Mitsubishi Electric Corp Refrigeration air conditioner
WO2018094844A1 (en) * 2016-11-25 2018-05-31 广州华凌制冷设备有限公司 Air conditioning system and control method
WO2018094841A1 (en) * 2016-11-28 2018-05-31 广州华凌制冷设备有限公司 Air conditioner and refrigeration control method therefor
WO2019037722A1 (en) * 2017-08-22 2019-02-28 格力电器(武汉)有限公司 Air conditioning system and control method therefor
WO2020174685A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP2005299935A (en) Air conditioner
US20110259027A1 (en) Heat pump type hot water supply apparatus
JPH0814710A (en) Cooling and heating air conditioner
JP2010107156A (en) Engine-driven heat pump
JPH06331225A (en) Steam jetting type refrigerating device
KR100528292B1 (en) Heat-pump type air conditioner
JP2006194565A (en) Air conditioner
JP2001108317A (en) Heat pump cooling and heating type air conditioner carbon dioxide refrigerant
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
KR100816450B1 (en) Air conditioning method and system using brine heat exchanger
JPH1026369A (en) Air conditioning system and control method
KR100613502B1 (en) Heat pump type air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
JP2000320914A (en) Refrigerating machine
JP4398687B2 (en) Heat pump air conditioning system
JPH06272992A (en) Air conditioner
JPH11108492A (en) Air conditioner
JP4262901B2 (en) Refrigeration equipment
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JP2000257982A (en) Low-temperature gas generator and cold-blast machining device using the same
JPH10170095A (en) Engine driven heat pump
JP2002349996A (en) Exhaust heat recovery air conditioner
KR20030044452A (en) Frost elimination apparatus of heat pump air conditioner
JP4282818B2 (en) Combined cooling system and combined cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707