JPH05215728A - Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature - Google Patents

Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature

Info

Publication number
JPH05215728A
JPH05215728A JP4064390A JP6439092A JPH05215728A JP H05215728 A JPH05215728 A JP H05215728A JP 4064390 A JP4064390 A JP 4064390A JP 6439092 A JP6439092 A JP 6439092A JP H05215728 A JPH05215728 A JP H05215728A
Authority
JP
Japan
Prior art keywords
sample
ultrasonic
longitudinal
wave
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4064390A
Other languages
Japanese (ja)
Inventor
Ichiro Yamauchi
一郎 山内
Mikio Fukuhara
幹夫 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHOONPA KOGYO KK
Tungaloy Corp
Ultrasonic Engineering Co Ltd
Original Assignee
CHOONPA KOGYO KK
Toshiba Tungaloy Co Ltd
Ultrasonic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHOONPA KOGYO KK, Toshiba Tungaloy Co Ltd, Ultrasonic Engineering Co Ltd filed Critical CHOONPA KOGYO KK
Priority to JP4064390A priority Critical patent/JPH05215728A/en
Publication of JPH05215728A publication Critical patent/JPH05215728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure horizontal length and vertical length, a volume elastic modulus, Poisson's ratio, and internal friction of a sample as a function of temperature simultaneously by applying a longitudinal wave ultrasonic wave pulse to one edge of the sample via an ultrasonic waveguide body and measuring a propagation time and an attenuation rate within the sample by using a measuring equipment with a multi-stage delay circuit and an automatic gate selection function. CONSTITUTION:An ultrasonic pulse which is discharged from a transmitter/receiver 1 is fed back to the transmitter/receiver 1 from a sample 3 the receiver 1 an AGC amplification 8 a zero-cross time detection 9 a multi-stage delay 10 a transmission circuit 11 through an ultrasonic waveguide body 2 and continues to oscillate within a same closed circuit. An average period of N singaround loops is measured, thus obtaining a highly accurate propagation time measurement value. In this case, an error due to deformation of a received waveform is reduced by the AGC amplification 8 and the zero-cross time detection 9 and interference in multiple echo within the sample is prevented by the multi-stage delay 10. Furthermore, sound velocities of a longitudinal wave and longitudinal wave transversal wave conversion wave are detected by a measuring equipment with an automatic gate selection function using only a longitudinal wave vibrator, thus measuring the longitudinal/transversal elastic modulus, Poisson's ratio, and internal friction simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属、セラミックス、
高分子等の各種固体材料の基本的特性のうち、機械的変
形に関する特性値を、液体窒素温度から1700℃迄の
広範囲に亘って、温度の関数として、同時に測定する装
置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to metals, ceramics,
The present invention relates to an apparatus for simultaneously measuring, as a function of temperature, a characteristic value relating to mechanical deformation among various basic properties of various solid materials such as a polymer over a wide range from liquid nitrogen temperature to 1700 ° C.

【0002】[0002]

【従来の技術】金属、セラミックス、高分子等の固体材
料は、人類の文明を支えている基本材料で同材料を、振
動、摺動、回転等の機械的動荷重を受ける部位に使用す
る場合、縦・横弾性率、ポアソン比および内部摩擦は、
材料設計上極めて重要な物性値である。にもかかわら
ず、上述の4物性値の広温度範囲における同時測定装置
は開発されていないのが現状である。材料の特性は個々
に異なるので、同一材料の諸特性は同時に測定すること
が必要となる。上述の4物性値のうち、横弾性率は、引
張および圧縮試験機で測定可能であるが、同方法では縦
弾性率の測定が不可能で、その結果ポアソン比も算出で
きない。一方、内部摩擦については、縦・横、捩れ振動
方式による振動方式が現存するものの、同方式では残り
の3特性値の測定は不可能である。また高温時の測定に
は、振動系の耐熱性に問題がある。
2. Description of the Related Art Solid materials such as metals, ceramics, and polymers are basic materials that support the civilization of mankind, and when the same materials are used in parts subject to mechanical dynamic loads such as vibration, sliding, and rotation. , Longitudinal and transverse elastic moduli, Poisson's ratio and internal friction are
It is an extremely important physical property value in material design. Nevertheless, the present situation is that a simultaneous measurement device for the above-mentioned four physical property values in a wide temperature range has not been developed. Since the properties of materials are different from each other, it is necessary to measure properties of the same material at the same time. Among the above four physical property values, the lateral elastic modulus can be measured by a tensile and compression tester, but the longitudinal elastic modulus cannot be measured by the same method, and as a result, the Poisson's ratio cannot be calculated. On the other hand, regarding internal friction, although there are existing vibration methods based on vertical / horizontal and torsional vibration methods, the remaining three characteristic values cannot be measured by the same method. Further, there is a problem in the heat resistance of the vibration system in the measurement at high temperature.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、試料
中に超音波パルスを印加し、同パルスの伝搬時間と減衰
率から任意の温度における縦・横弾性率、ポアソン比お
よび内部摩擦の同時測定可能な装置を開発することにあ
る。
An object of the present invention is to apply an ultrasonic pulse to a sample, and determine the longitudinal and transverse elastic moduli, Poisson's ratio and internal friction at an arbitrary temperature from the propagation time and attenuation rate of the pulse. It is to develop a device that can measure simultaneously.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために研究を重ねた結果、任意の温度に保
持した試料の一端に接続した試料と音響インピーダンス
が、等しく若しくは近接した超音波導波体を通して縦波
超音波を発信し、縦波→横波変換法を用いて、縦・横弾
性率、ポアソン比および内部摩擦を測定する方法を見出
して、本発明をなすに至った。なお試料保持の形態は、
試料そのものの自重による変形およびそれに起因する超
音波エコーの散乱を防止するため縦形とする。試料と超
音波導波体との固着には、耐熱、耐寒性金属バネ若しく
は、SiあるいはSiC系セラミックスバネを内
蔵した保持具を用いる。試料は加熱炉により、液体窒素
温度から1700℃迄、定速度で加熱され、試料雰囲気
は1気圧から5気圧までの空気、窒素、アルゴンおよび
ヘリウム等のガスで置換でき、10−4Torr迄の真
空に維持可能である。超音波導波体は、同導波体側面で
の超音波パルスの反射波を散乱させるために凹凸のある
焼肌面をそのまま使用するか若しくはネジ切り治具で凹
凸をつけることを特長とする。
As a result of repeated studies to achieve the above object, the present inventors have found that the acoustic impedance of a sample connected to one end of a sample kept at an arbitrary temperature is equal or close to that of the acoustic impedance. The present invention was made by discovering a method of transmitting longitudinal ultrasonic waves through the ultrasonic wave guide and measuring longitudinal-transverse elastic modulus, Poisson's ratio, and internal friction by using the longitudinal-> transverse wave conversion method. It was The form of sample holding is
Vertical shape is used to prevent deformation of the sample itself due to its own weight and the resulting scattering of ultrasonic echoes. For fixing the sample and the ultrasonic wave guide to each other, a heat- and cold-resistant metal spring or a holder containing a Si 3 N 4 or SiC ceramics spring is used. The sample is heated at a constant rate from liquid nitrogen temperature to 1700 ° C. in a heating furnace, and the sample atmosphere can be replaced by gas such as air, nitrogen, argon and helium at 1 to 5 atm up to 10 −4 Torr. It can be maintained in vacuum. The ultrasonic wave guide is characterized by using the uneven skin surface as it is to scatter the reflected waves of the ultrasonic pulse on the side surface of the same, or by making it uneven with a screw cutting jig. ..

【0005】[0005]

【作用】送受信子から発射された超音波パルスは、超音
波導波体を経て試料→受信子→AGC増幅→ゼロクロス
時間検出→多段遅延→同期パルス発振→超音波パルス発
振を経て、再び送受信子へ帰還し、同一閉回路を繰り返
し発振(シングアラウンド)し続ける。このシングアラ
ウンドループのN回の平均値周期を測定すると、周期測
定の原理により、N倍の測定精度が得られ、高精度の伝
搬時間測定が可能となる。本発明はAGC増幅、ゼロク
ロス時間検出により、受信波形の変化による誤差を減少
させ、多段遅延回路により試料中の多重エコーの干渉に
よる誤差を防ぎ、精度のよいシングアラウンド測定を可
能とする。さらに、縦波振動子のみを用い、縦波と縦波
→横波変換波のそれぞれの音速を、自動ゲート選択機能
付測定器で検出して、縦・横弾性率を同時に計測する。
[Operation] The ultrasonic pulse emitted from the transmitter / receiver is passed through the ultrasonic wave guide, sample → receiver → AGC amplification → zero crossing time detection → multistage delay → synchronous pulse oscillation → ultrasonic pulse oscillation, and the transmitter / receiver again. Return to and keep oscillating (singing around) the same closed circuit repeatedly. When the average value period of this sing-around loop is measured N times, the measurement precision of N times can be obtained by the principle of period measurement, and the propagation time can be measured with high precision. The present invention reduces errors due to changes in the received waveform by AGC amplification and zero-cross time detection, prevents errors due to interference of multiple echoes in a sample by a multistage delay circuit, and enables accurate sing-around measurement. Furthermore, using only the longitudinal wave oscillator, the sound velocity of each of longitudinal wave and longitudinal wave → transverse wave conversion wave is detected by the measuring instrument with automatic gate selection function, and the longitudinal and transverse elastic moduli are simultaneously measured.

【0006】図3a,bに試料中の超音波パルスの経路
を示す。超音波導波体2から時間Tで試料3に入射し
た超音波パルスは、同図aのように試料中心軸に平行な
縦波28と、同中心軸と指向角をもつ縦波29とにな
る。試料側面が平坦に仕上げられていると、縦波29は
同試料側面30で反射して、縦波l29と横波S29に
分割される。縦波反射波l29は臨界角で消滅し、同臨
界角では誘発した横波S29のみが存在することにな
る。この状態を図3bに示す。同図でθは臨界角を表わ
し、試料中の縦波および横波の音速をそれぞれVl,V
sとおくと数1の関係がある。
The paths of the ultrasonic pulses in the sample are shown in FIGS. 3a and 3b. An ultrasonic pulse that is incident on the sample 3 from the ultrasonic waveguide 2 at time T 0 includes a longitudinal wave 28 parallel to the sample central axis and a longitudinal wave 29 having a directivity angle with the central axis as shown in FIG. become. When the side surface of the sample is finished to be flat, the longitudinal wave 29 is reflected by the side surface 30 of the sample and is divided into a longitudinal wave l29 and a transverse wave S29. The longitudinal wave reflected wave l29 disappears at the critical angle, and only the induced transverse wave S29 exists at the critical angle. This state is shown in FIG. 3b. In the figure, θ represents the critical angle, and the sound velocities of the longitudinal and transverse waves in the sample are Vl and V, respectively.
If there is s, there is a relation of Equation 1.

【0007】[0007]

【数1】 [Equation 1]

【0008】図3bの超音波パルス28は、試料端面で
反射して、時間Tに超音波導波体2に入射する。同様
に超音波パルス29は、縦波→横波→縦波と変換しなが
ら試料端面で反射して、時間Tに超音波導波体に入射
する。T,TおよびTの時間関係を図3cに示
す。同図から縦波および横波の音速は、試料3の長さお
よび直径をそれぞれLおよびDとして、数2および数3
により求められる。
The ultrasonic pulse 28 of FIG. 3b is reflected by the end face of the sample and is incident on the ultrasonic waveguide 2 at time T 1 . Similarly, the ultrasonic pulse 29 is reflected by the end face of the sample while being converted from longitudinal wave → transverse wave → longitudinal wave, and is incident on the ultrasonic waveguide at time T 2 . The time relationship between T 0 , T 1 and T 2 is shown in FIG. 3c. From the figure, the sound velocities of the longitudinal wave and the transverse wave are expressed by the formulas 2 and 3 with the length and diameter of the sample 3 being L and D, respectively.
Required by.

【0009】[0009]

【数2】 [Equation 2]

【数3】 [Equation 3]

【0010】但し、L》D tanθとする。試料中の
縦波・横波の音速Vl,Vsおよび試料密度ρより、固
体弾性諸定数は
However, L >> D tan θ. From the sound velocities Vl and Vs of longitudinal and transverse waves in the sample and the sample density ρ, the solid elastic constants are

【数4】〜[Equation 4] ~

【数7】で与えられる。It is given by

【0011】[0011]

【数4】 [Equation 4]

【数5】 [Equation 5]

【数6】 [Equation 6]

【数7】 [Equation 7]

【0012】図3bで超音波パルス28は、時間T
超音波導波体に入射すると共に、試料3端面で反射して
再び同一経路を経て超音波パルスエコーとなり、時間T
で超音波導波体に入射する。T,TおよびT
間にはT−T=T−Tの関係がある。図3c
で、時間TおよびTに超音波導波体に入射した超音
波パルスの振幅のピーク値をそれぞれAおよびA
すると試料の内部摩擦Q−1は界面の反射を全反射とす
ると数8で与えられる。
In FIG. 3b, the ultrasonic pulse 28 enters the ultrasonic waveguide at time T 1 , is reflected by the end face of the sample 3 and again becomes an ultrasonic pulse echo through the same path.
At 3 , the light enters the ultrasonic waveguide. T 0, between T 1 and T 3 a relationship of T 3 -T 1 = T 1 -T 0. Figure 3c
Then, assuming that the peak values of the amplitudes of the ultrasonic pulses incident on the ultrasonic waveguide at times T 1 and T 3 are A 1 and A 2 , respectively, the internal friction Q −1 of the sample is that the reflection at the interface is total reflection. It is given by the number 8.

【0013】[0013]

【数8】 [Equation 8]

【0014】[0014]

【実施例】以下、本発明を実施例によって説明する。図
1は、本発明の1実施例の測定系統図、図2は、図1の
説明用の超音波パルスのタイムチャートである。図1で
送信回路11で発生した超音波パルスは、送受信子1→
超音波導波体2→試料3→超音波導波体2→送受信子1
→アンプ8→ゼロクロス検出器9→多段遅延回路10→
送信回路11の経路で循環し、この閉回路はシングアラ
ウンド測定系を構成する。送受信子から放射された縦波
超音波パルスは、超音波導波体2を伝搬して試料3の界
面で反射し、T’時間後に送受信子1に受信される超
音波パルス5と試料に入射する超音波パルスに分割され
る。試料中に入射した超音波パルスは、図3bに示した
ように縦波→縦波モードの超音波パルス6と、縦波→横
波→縦波モードの超音波パルス7に分割して超音波導波
体に再入射し、それぞれT’およびT’時間後に送
受信子1に受信される。ピーク検出器12は、超音波パ
ルスのピーク値を検出し、AGC増幅器によって同超音
波パルスの振幅が常に一定ピーク値となるように受信パ
ルスのピーク電圧を調整し、同受信パルス電圧が零電圧
(零点)を横切るときの時間をゼロクロス検出器9で計
測する。多段遅延回路10は、試料中の超音波パルスの
多重エコーによる誤差を消去するために挿入されたもの
で、超音波遅延線と帰還回路により構成され、同遅延線
の遅延時間のn倍の正確な遅延時間を発生させている。
図2で23,24,25,26および27にそれぞれ送
受信子1の送信パルス、同受信信号、ウインドゲート1
4の出力信号、ゼロクロス検出器9の出力信号および多
段遅延回路10の出力信号を示す。同図では、ウインド
ゲート25が超音波導波体を往復する超音波パルス5の
計測用にセットされている。この場合、シングアラウン
ド周期から時間T’が求まる。次にウインドゲート2
5を超音波パルス6および7計測用に順次自動セットし
て、それぞれ時間T’およびT’が求まる。時間T
’,T’およびT’は図1のカウンタ15で計測
され、I/O17を経て、RS−232C18の出力と
なる。図2および図3より数9の時間関係がある。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 is a measurement system diagram of one embodiment of the present invention, and FIG. 2 is a time chart of ultrasonic pulses for explanation of FIG. The ultrasonic pulse generated in the transmission circuit 11 in FIG.
Ultrasonic Waveguide 2 → Sample 3 → Ultrasonic Waveguide 2 → Transceiver 1
→ Amplifier 8 → Zero cross detector 9 → Multistage delay circuit 10 →
It circulates in the path of the transmission circuit 11, and this closed circuit constitutes a sing-around measurement system. The longitudinal ultrasonic wave pulse radiated from the transmitter / receiver propagates through the ultrasonic wave guide 2 and is reflected at the interface of the sample 3, and is reflected by the ultrasonic wave pulse 5 received by the transmitter / receiver 1 after T 0 'time and the sample. It is divided into incident ultrasonic pulses. The ultrasonic pulse incident on the sample is divided into a longitudinal wave → longitudinal wave mode ultrasonic pulse 6 and a longitudinal wave → transverse wave → longitudinal wave mode ultrasonic pulse 7 as shown in FIG. 3b. It re-enters the wave body and is received by transceiver 1 after T 1 ′ and T 2 ′ times, respectively. The peak detector 12 detects the peak value of the ultrasonic pulse, adjusts the peak voltage of the received pulse by the AGC amplifier so that the amplitude of the ultrasonic pulse is always a constant peak value, and the received pulse voltage is zero voltage. The time taken to cross the (zero point) is measured by the zero cross detector 9. The multi-stage delay circuit 10 is inserted in order to eliminate an error due to multiple echoes of ultrasonic pulses in a sample, is composed of an ultrasonic delay line and a feedback circuit, and is accurate to n times the delay time of the same delay line. Delay time.
In FIG. 2, reference numerals 23, 24, 25, 26, and 27 denote transmission pulses of the transmitter / receiver 1, reception signals thereof, and window gate 1 respectively.
4 shows the output signal, the output signal of the zero-cross detector 9 and the output signal of the multi-stage delay circuit 10. In the figure, a window gate 25 is set for measuring the ultrasonic pulse 5 that reciprocates in the ultrasonic waveguide. In this case, the time T 0 'is obtained from the sing-around cycle. Next is Windgate 2
5 is automatically set in sequence for measuring ultrasonic pulses 6 and 7, and times T 1 ′ and T 2 ′ are obtained, respectively. Time T
0 ′, T 1 ′ and T 2 ′ are measured by the counter 15 in FIG. 1, pass through the I / O 17, and become the output of RS-232C18. From FIG. 2 and FIG. 3, there is a time relationship of the expression 9.

【0015】[0015]

【数9】 [Equation 9]

【0016】数2,数3および数9より、縦・横波音速
VlおよびVsが求まる。受信パルス5および6の振幅
のピーク値をそれぞれAおよびAとおくと、内部摩
擦Q−1は数8より数10で与えられる。
The longitudinal / transverse wave sound velocities Vl and Vs are obtained from the equations 2, 3 and 9. If the peak values of the amplitudes of the received pulses 5 and 6 are set to A 5 and A 6 , respectively, the internal friction Q −1 is given by Eq.

【0017】[0017]

【数10】 [Equation 10]

【0018】但し、Cは、超音波導波体2と試料3の相
関で、両者の有効断面積変化率Sと、両者の接触媒質4
を含めた超音波パルスの往復実効透過率より、C=S/
Tと表わせられるため、CPU16にあらかじめCの値
をセットしておく。往復実効音圧透過率Tは、超音波導
波体と試料のそれぞれの音響インピーダンスをZおよ
びZとおいて接触媒質を無視すれば数11となり、A
/Aは数12で与えられる。
However, C is the correlation between the ultrasonic wave guide 2 and the sample 3, the effective area change rate S of both, and the contact medium 4 of both.
From the effective round-trip transmissivity of the ultrasonic pulse including C, C = S /
Since it is expressed as T, the value of C is set in the CPU 16 in advance. The round-trip effective sound pressure transmittance T is given by Equation 11 when the acoustic impedances of the ultrasonic wave guide and the sample are set to Z 1 and Z 2, and the contact medium is ignored.
6 / A 6 is given by the equation 12.

【0019】[0019]

【数11】 [Equation 11]

【数12】 [Equation 12]

【0020】数12より、内部摩擦を感度良く測定する
ためには、測定温度範囲に亘って超音波導波体と試料の
音響インピーダンスが等しい(Z=Z)か近接(Z
≒Z)するように、超音波導波体の材料を構成する
ことが望ましい。さらに安定した受信パルス5,6を得
るためには超音波導波体中の伝搬損失が僅少なことが必
要不可欠である。受信パルスのピーク値AおよびA
は、ピーク検出器12で検出されI/O17を経てRS
−232C18の出力となる。CPU16は、本自動測
定システムのソフトウェアのコンピュータ制御部であ
る。試料3は、音響インピーダンスが等しいか若しくは
近接した超音波導波体に対して、毎回取り換え可能に設
計されているが、両者の間に物理的界面が存在するの
で、超音波パルスの反射・吸収が生じ、試料からの正確
な情報が失われる問題がある。特に高温になる程超音波
減衰が生じるので、界面には超音波減衰防止のために接
触媒質4を介在させる。接触媒質としては、低温では展
延性を有する金属箔、テフロン等の有機材料、常温付近
では、アルミニウム箔等の低融点金属に加えて、蜂蜜や
白金ペースト等の乳液溶媒を用い、高温域では溶融や酸
化を惹起し難い白金やロジウム等の高融点金属箔等を使
用する。試料の超音波導波体への固着には、800℃付
近までの用途において、鉄鋼製および燐青銅製のバネ2
1を用い、1700℃迄の高温にはSiやSiC
等の皿バネを内蔵したインコネル製のキャップ20を超
音波導波体に装着して使用することを原則とする。試料
3は、低温・高温用雰囲気炉19で温度制御され、送受
信側の超音波導波体は水冷ジャケット22により冷却
(または保温)され、それによって送受信子1は常温に
保たれる。
From Equation 12, in order to measure the internal friction with high sensitivity, the acoustic impedances of the ultrasonic waveguide and the sample are equal (Z 1 = Z 2 ) or close (Z 1 ) over the measurement temperature range.
It is desirable to configure the material of the ultrasonic waveguide so that 1 ≈Z 2 ). In order to obtain more stable received pulses 5 and 6, it is essential that the propagation loss in the ultrasonic wave guide is small. Received pulse peak values A 5 and A 6
Is detected by the peak detector 12 and passed through I / O 17 to RS
It becomes the output of 232C18. The CPU 16 is a computer control unit of software of the automatic measurement system. The sample 3 is designed so that it can be replaced every time with an ultrasonic wave guide whose acoustic impedance is equal or close to each other. However, since there is a physical interface between the two, the reflection / absorption of the ultrasonic pulse is obtained. And the accurate information from the sample is lost. In particular, ultrasonic attenuation occurs as the temperature rises, so the contact medium 4 is interposed at the interface to prevent ultrasonic attenuation. As the contact medium, a metal foil that has ductility at low temperature, an organic material such as Teflon, a low melting point metal such as aluminum foil at around room temperature, and an emulsion solvent such as honey or platinum paste are used. A metal foil having a high melting point such as platinum or rhodium, which hardly causes oxidation, is used. For fixing the sample to the ultrasonic wave guide, the spring made of steel and phosphor bronze should be used in applications up to around 800 ° C.
1 and Si 3 N 4 or SiC at high temperatures up to 1700 ° C.
In principle, the cap 20 made of Inconel that has a built-in disc spring such as the above is attached to the ultrasonic wave guide and used. The temperature of the sample 3 is controlled by the low-temperature / high-temperature atmosphere furnace 19, and the ultrasonic waveguide on the transmitting / receiving side is cooled (or kept warm) by the water cooling jacket 22, whereby the transmitter / receiver 1 is kept at room temperature.

【0021】[0021]

【別態様の検討】試料の装着機構は、バネ内蔵装置方式
に限定されるものではなく、油圧、水圧、エアーおよび
電圧を駆動源とするシリンダーを用いても問題はない。
また加熱炉は、赤外線イメージ炉、抵抗加熱炉に限ら
ず、その他公知の加熱炉を用いてもさしつかえない。冷
却方法は、液体窒素充填からの加熱方式でも、クライオ
スタットを用いた冷却方法でも問題はない。超音波測定
法には、パルスエコー法、シングアラウンド法のいずれ
でも本発明の構成を妨げるものではない。さらに、本発
明は縦・横、体積弾性率、ポアソン比および内部摩擦の
同時測定装置に関するものであるが、このうち任意の特
性だけを測定しても本発明の範疇に属する。このように
本発明の装置の構成および形状は、実施の態様に応じて
適宜変更可能である。
[Examination of Another Embodiment] The mounting mechanism of the sample is not limited to the device with a built-in spring, and there is no problem even if a cylinder driven by hydraulic pressure, water pressure, air and voltage is used.
The heating furnace is not limited to the infrared image furnace and the resistance heating furnace, and other known heating furnaces may be used. As a cooling method, there is no problem whether it is a heating method from filling with liquid nitrogen or a cooling method using a cryostat. As the ultrasonic measurement method, either the pulse echo method or the sing-around method does not hinder the constitution of the present invention. Furthermore, the present invention relates to a device for simultaneously measuring longitudinal / lateral, bulk modulus, Poisson's ratio and internal friction, but even if only arbitrary characteristics are measured, it falls within the scope of the present invention. As described above, the configuration and shape of the device of the present invention can be appropriately changed according to the embodiment.

【0022】[0022]

【発明の効果】以上説明したように、本発明により従来
求めても得ることのできなかった広温度範囲に亘る材料
の縦・横、体積弾性率、ポアソン比および内部摩擦の同
時測定データが求められる。これにより広温度範囲で機
械的荷重を受ける部位で使用される構造材の開発および
設計資料を得ることが可能となる。
As described above, according to the present invention, simultaneous measurement data of longitudinal / lateral, bulk modulus, Poisson's ratio and internal friction over a wide temperature range, which could not be obtained by the conventional method, was obtained. Be done. As a result, it becomes possible to obtain the development and design data of the structural material used in the part subjected to the mechanical load in a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す測定系統図である。FIG. 1 is a measurement system diagram showing an embodiment of the present invention.

【図2】図1の説明用の超音波パルスのタイムチャート
である。
FIG. 2 is a time chart of the ultrasonic pulse for explanation of FIG.

【図3】試料中の超音波パルスの経路と時間の説明図で
ある。
FIG. 3 is an explanatory diagram of a path and time of an ultrasonic pulse in a sample.

【符号の説明】[Explanation of symbols]

1………超音波送受信子 2………超音波導波体 3………試料 4………接触媒質 5………超音波導波体を往復した縦波超音波パルス 6………超音波導波体と試料を往復した縦波超音波パル
ス 7………超音波導波体と試料を、縦→横→縦波モード変
換を経て往復した超音波パルス
1 ...... Ultrasonic transmitter / receiver 2 ......... Ultrasonic wave guide 3 ......... Sample 4 ......... Contact medium 5 ......... Longitudinal ultrasonic pulse reciprocating in the ultrasonic wave guide 6 ... Longitudinal wave ultrasonic pulse that reciprocates between the acoustic wave guide and the sample 7 .... Ultrasonic wave pulse that reciprocates between the ultrasonic wave guide and the sample through longitudinal → lateral → longitudinal wave mode conversion

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】任意の温度に保持した試料の一端に、超音
波導波体を介して、縦波超音波パルスを印加し、同パル
スの試料中の伝搬時間と減衰率を、多段遅延回路と自動
ゲート選択機能付測定器で計測することにより、試料の
縦・横、体積弾性率、ポアソン比および内部摩擦を、温
度の関数として同時測定することを特長とした、低温・
高温広温度域の固体弾性率および内部摩擦の測定装置。
1. A longitudinal ultrasonic pulse is applied to one end of a sample held at an arbitrary temperature via an ultrasonic wave guide, and a propagation time and an attenuation rate of the pulse in the sample are calculated by a multistage delay circuit. By measuring with a measuring instrument with automatic gate selection function, it is possible to simultaneously measure the longitudinal and lateral directions of the sample, bulk modulus, Poisson's ratio and internal friction as a function of temperature.
Measuring device for solid elastic modulus and internal friction in high temperature and wide temperature range.
【請求項2】超音波導波体は、試料と音響インピーダン
スが等しく又は近接し、目的とする温度範囲内で超音波
伝搬損失が少なく耐寒・耐熱性を有する材質で、側面が
凹凸面構造で構成されることを特長とする請求項1記載
の測定装置。
2. The ultrasonic wave guide is made of a material that has an acoustic impedance equal to or close to that of the sample, has little ultrasonic wave propagation loss and has cold and heat resistance within a target temperature range, and has an uneven side surface structure. The measuring device according to claim 1, wherein the measuring device is configured.
【請求項3】試料中を伝達する縦波超音波から、縦波・
横波変換法を用いて、縦・横、体積弾性率、ポアソン
比、内部摩擦を測定することを特長とする請求項1、2
記載の測定装置。
3. A longitudinal wave from a longitudinal ultrasonic wave propagating in a sample.
The longitudinal and transverse directions, bulk modulus, Poisson's ratio, and internal friction are measured using the transverse wave conversion method.
The measuring device described.
【請求項4】超音波導波体と試料との接続を、耐熱・耐
寒性金属バネ若しくはセラミックス質バネで固定するこ
とを特長とする請求項1〜3記載の測定装置。
4. The measuring device according to claim 1, wherein the connection between the ultrasonic waveguide and the sample is fixed by a heat-resistant and cold-resistant metal spring or a ceramic spring.
【請求項5】試料温度が、液体窒素温度から1700℃
まで温度コントロール可能なクライオスタットおよび加
熱装置を具備することを特長とする請求項1〜4記載の
測定装置。
5. The sample temperature ranges from liquid nitrogen temperature to 1700 ° C.
5. The measuring device according to claim 1, further comprising a cryostat and a heating device capable of controlling the temperature.
【請求項6】試料室の雰囲気を1気圧から5気圧までの
空気、窒素、アルゴン、ヘリウム等のガスおよび10
−4Torrまでの真空に維持することを特長とする請
求項1〜5記載の測定装置。
6. The atmosphere in the sample chamber is set to 1 to 5 atmospheres of air, a gas such as nitrogen, argon, or helium, and 10 atmospheres.
The measuring device according to any one of claims 1 to 5, wherein the measuring device is maintained in a vacuum up to -4 Torr.
JP4064390A 1992-02-04 1992-02-04 Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature Pending JPH05215728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064390A JPH05215728A (en) 1992-02-04 1992-02-04 Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064390A JPH05215728A (en) 1992-02-04 1992-02-04 Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature

Publications (1)

Publication Number Publication Date
JPH05215728A true JPH05215728A (en) 1993-08-24

Family

ID=13256949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064390A Pending JPH05215728A (en) 1992-02-04 1992-02-04 Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature

Country Status (1)

Country Link
JP (1) JPH05215728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270221A (en) * 2002-03-18 2003-09-25 It Research:Kk Apparatus and method for measuring properties of substance
CN109459318A (en) * 2018-12-19 2019-03-12 北京科技大学 A kind of active and passive real-time sonic test approved sample device and method of rock failure mechanism of rock process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112537A (en) * 1979-02-22 1980-08-30 Toshiba Corp Ultrasonic buffer rod for high temperature measurement
JPS6029732U (en) * 1983-08-05 1985-02-28 松下電工株式会社 Hanger for insulated trolley wire
JPH0271146A (en) * 1988-04-23 1990-03-09 Sakai Tekkosho:Kk Accurate measuring method of reciprocating time of ultrasonic wave utilizing pulse reflection method
JPH02130463A (en) * 1988-10-31 1990-05-18 Jonko Kantee Guufun Yuusenkonsuu Lateral vibration type internal friction measuring apparatus
JPH02141643A (en) * 1988-11-24 1990-05-31 Sumitomo Light Metal Ind Ltd Mechanical-property measuring apparatus
JPH02198356A (en) * 1989-01-27 1990-08-06 Nippon Steel Corp Apparatus and method for evaluating bonding of composite steel plate by using ultrasonic wave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112537A (en) * 1979-02-22 1980-08-30 Toshiba Corp Ultrasonic buffer rod for high temperature measurement
JPS6029732U (en) * 1983-08-05 1985-02-28 松下電工株式会社 Hanger for insulated trolley wire
JPH0271146A (en) * 1988-04-23 1990-03-09 Sakai Tekkosho:Kk Accurate measuring method of reciprocating time of ultrasonic wave utilizing pulse reflection method
JPH02130463A (en) * 1988-10-31 1990-05-18 Jonko Kantee Guufun Yuusenkonsuu Lateral vibration type internal friction measuring apparatus
JPH02141643A (en) * 1988-11-24 1990-05-31 Sumitomo Light Metal Ind Ltd Mechanical-property measuring apparatus
JPH02198356A (en) * 1989-01-27 1990-08-06 Nippon Steel Corp Apparatus and method for evaluating bonding of composite steel plate by using ultrasonic wave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270221A (en) * 2002-03-18 2003-09-25 It Research:Kk Apparatus and method for measuring properties of substance
CN109459318A (en) * 2018-12-19 2019-03-12 北京科技大学 A kind of active and passive real-time sonic test approved sample device and method of rock failure mechanism of rock process

Similar Documents

Publication Publication Date Title
McSkimin Ultrasonic methods for measuring the mechanical properties of liquids and solids
Caupin et al. Cavitation pressure in liquid helium
EP0029451B1 (en) Passive remote temperature sensor system
Alig et al. Ultrasonic shear wave reflection method for measurements of the viscoelastic properties of polymer films
McSkimin Measurement of ultrasonic wave velocities and elastic moduli for small solid specimens at high temperatures
US5469742A (en) Acoustic temperature and film thickness monitor and method
Periyannan et al. Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method
RU2581421C1 (en) High-temperature ultrasonic sensor and method of its manufacturing
US20030074953A1 (en) Device for determining the change in the density of a medium
JPH05215728A (en) Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature
EP0121690B1 (en) Acoustic microscope
JPH08136516A (en) Apparatus for measuring total modulus of dynamic elasticity, internal abrasion, sound velocity, coefficient of thermal expansion and thermal constant at low and intermediate temperature
JP2003042857A (en) Ultrasonic temperature measuring apparatus
JP3276204B2 (en) Low temperature measurement system for elasticity, internal wear and sound velocity
Kikuchi et al. Ultrasonic Power Measurements by Radiation Force Balance Method–Characteristics of a Conical Absorbing Target–
Ophir et al. A calibration-free method for measurement of sound speed in biological tissue samples
JP3814573B2 (en) Ultrasonic thickness measurement method and apparatus
Marchand et al. Determination of the elastic constants of materials, in the form of plates, by a free vibration method
JP2782025B2 (en) Measuring device for mechanical deformation value
JP3373609B2 (en) Ultrasonic material property value measuring device and its measuring method
Wan et al. Direct measurement of ultrasonic velocity of thin elastic layers
Lematre et al. Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial cij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity
Balasubramaniam et al. Temperature and viscosity in-situ sensor for hostile processes
Dadd Acoustic thermometry in gases using pulse techniques
RU2792324C2 (en) Acoustic impedance ultrasonic liquid level indicator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980303