JP3373609B2 - Ultrasonic material property value measuring device and its measuring method - Google Patents

Ultrasonic material property value measuring device and its measuring method

Info

Publication number
JP3373609B2
JP3373609B2 JP22640093A JP22640093A JP3373609B2 JP 3373609 B2 JP3373609 B2 JP 3373609B2 JP 22640093 A JP22640093 A JP 22640093A JP 22640093 A JP22640093 A JP 22640093A JP 3373609 B2 JP3373609 B2 JP 3373609B2
Authority
JP
Japan
Prior art keywords
sample
ultrasonic
temperature
pulse
material characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22640093A
Other languages
Japanese (ja)
Other versions
JPH0755776A (en
Inventor
麻雄 三瓶
幹夫 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP22640093A priority Critical patent/JP3373609B2/en
Publication of JPH0755776A publication Critical patent/JPH0755776A/en
Application granted granted Critical
Publication of JP3373609B2 publication Critical patent/JP3373609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広範囲の温度条件下に
おいて、金属、セラミックス、アモルファス(ガラスを
含む)、高分子材料などからなる試料の弾性率、ポアソ
ン比、ラーメパラメータ、音速異方性、内部摩擦などの
材料特性値を算出する測定装置に関し、特に高精度の測
定ができるようにしたものである。
BACKGROUND OF THE INVENTION The present invention relates to elastic modulus, Poisson's ratio, Lame parameter, sound velocity anisotropy of a sample made of metal, ceramics, amorphous (including glass), polymer material, etc. under a wide range of temperature conditions. The present invention relates to a measuring device for calculating a material characteristic value such as internal friction, which enables particularly highly accurate measurement.

【0002】[0002]

【従来の技術】従来、金属、セラミックス、高分子材料
などの各種固体材料の材料特性値を測定する装置として
は、たとえば、縦弾性率は引張・圧縮試験機、内部摩擦
については共振法を用いた測定機があげられる。
2. Description of the Related Art Conventionally, as an apparatus for measuring material characteristic values of various solid materials such as metals, ceramics and polymer materials, for example, a tensile / compression tester is used for longitudinal elastic modulus and a resonance method is used for internal friction. The measuring machine used was.

【0003】[0003]

【発明が解決しようとする課題】発明者等は、従来の技
術とはまったく異なる発想のもとに研究を行ない、低温
から高温までの広範囲の温度条件において、各種固体材
料の諸特性値を一台の測定装置により、極めて短時間に
測定できる装置をすでに開発している。この装置は、雰
囲気炉内に挿入した試料の一端に超音波導波体を介して
超音波パルスを印加し、試料からのパルスエコーの波
形、波形位置および波高値を計測することにより材料特
性値を算出するもので、算出できる材料特性値は、縦波
音速、横波音速、ヤング率、剛性率、体積弾性率、圧縮
率、ポアソン比、ラーメパラメータ、音速異方性係数、
縦波内部摩擦、横波内部摩擦の11種類である。
SUMMARY OF THE INVENTION The inventors have conducted research based on an idea completely different from the conventional technique, and have been able to obtain various characteristic values of various solid materials under a wide range of temperature conditions from low temperature to high temperature. We have already developed a device that can measure in an extremely short time using a single measuring device. This device applies an ultrasonic pulse to one end of a sample inserted in an atmosphere furnace via an ultrasonic wave guide, and measures the waveform, waveform position, and peak value of the pulse echo from the sample to determine the material characteristic value. The material characteristic values that can be calculated are longitudinal sound velocity, transverse sound velocity, Young's modulus, rigidity, bulk modulus, compressibility, Poisson's ratio, Lame parameter, sound velocity anisotropy coefficient,
There are 11 types of longitudinal wave internal friction and transverse wave internal friction.

【0004】ところで、この測定装置にはアナログ式波
形記録装置を使用しているが、ある特定の温度で液相の
出現する材料については、その温度域において超音波が
著しく減衰して測定が困難となる。また、析出合金や鋳
造合金のように、超音波パルスエコーの散乱が著しい材
料についても、測定がほとんど困難であることが分って
きた。
By the way, although an analog type waveform recording device is used for this measuring device, for a material in which a liquid phase appears at a specific temperature, ultrasonic waves are remarkably attenuated in that temperature range, which makes measurement difficult. Becomes Further, it has been found that it is almost difficult to measure even a material such as a precipitated alloy or a cast alloy in which ultrasonic pulse echoes are significantly scattered.

【0005】そこで、しきい値を設定し、アナログの超
音波パルスエコーの信号より計測する方法を試みたが、
前記の如き材料は、パルスエコーの重複などに起因する
しきい値の変動が激しいため、超音波パルスの印加電圧
を高圧にしたとしても、捕束不良を起こすか、検出不能
に陥り、計測は不可能であった。
Therefore, an attempt was made to set a threshold value and measure from an analog ultrasonic pulse echo signal.
The above-mentioned materials have large fluctuations in the threshold value due to overlapping pulse echoes, etc. Therefore, even if the applied voltage of the ultrasonic pulse is set to a high voltage, a defective focusing occurs or the detection becomes undetectable. It was impossible.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
問題を解決するためになされたもので、解決の手段とし
て、アナログ式波形記録装置に代えて、デジタル式波形
記憶装置にてパルスエコー全体の捕束を行なうととも
に、試料の温度測定データもデジタル化して同時記憶す
るようにしたものである。そして、本装置により記憶さ
れたデジタル波形を抽出し、温度および時間を関数とし
た三次元解析を行なうことにより、検出すべきパルスエ
コーに試料の材料的諸現象に起因する変化がおこって
も、その試料温度の前後の温度での波形との比較から異
常値として補正できるようになり、パルスエコーの波
形、波形位置および波高値が確定できるようになる。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and as a means for solving the problem, a pulse is applied to a digital waveform storage device instead of an analog waveform recording device. The whole echo is focused, and the temperature measurement data of the sample is digitized and stored simultaneously. Then, by extracting the digital waveform stored by this device and performing a three-dimensional analysis with temperature and time as a function, even if the pulse echo to be detected changes due to various material phenomena of the sample, It becomes possible to correct as an abnormal value by comparison with the waveforms at temperatures before and after the sample temperature, and it becomes possible to determine the waveform of the pulse echo, the waveform position, and the peak value.

【0007】[0007]

【実施例】以下、本発明の超音波式材料特性値測定装置
およびその測定方法に関わる一実施例を図を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an ultrasonic material characteristic value measuring apparatus and its measuring method of the present invention will be described below with reference to the drawings.

【0008】図1は、本発明による測定装置および測定
系統図である。本図において、外周面にねじ状の凹凸を
形成した棒状体からなる超音波導波体1は、その一部が
温度調節可能な雰囲気炉2内に挿入され、その挿入端に
はフランジ部を備えた棒状の試料3が取付けられてい
る。本事例では、試料3は、金属、テフロン、ビニール
などの接触媒質4を介して袋ナット5のねじ力により固
定されるているが、表面精度を高めれば接触媒質4は必
ずしも必要としない。
FIG. 1 is a diagram of a measuring device and a measuring system according to the present invention. In this figure, an ultrasonic waveguide 1 made of a rod-shaped body having screw-shaped irregularities formed on its outer peripheral surface is partially inserted into an atmosphere furnace 2 whose temperature can be adjusted, and a flange portion is provided at its insertion end. The provided rod-shaped sample 3 is attached. In this example, the sample 3 is fixed by the screw force of the cap nut 5 via the contact medium 4 made of metal, Teflon, vinyl or the like, but the contact medium 4 is not always necessary if the surface precision is improved.

【0009】前記雰囲気炉2は、液体窒素、クライオス
タット、赤外線イメ−ジ炉、抵抗加熱炉などを使用する
ことにより、最低到達温度4K程度から、加熱装置によ
り最高到達温度2373K程度まで温度コントロールで
きる雰囲気炉であることが好ましい。同時に、雰囲気炉
2内は、0.001気圧から5気圧までの空気、酸素、
窒素、アルゴンおよびヘリウムなどのガスあるいは10
-4Torrまでの真空を保持できる雰囲気炉であること
が好ましい。
The atmosphere furnace 2 uses liquid nitrogen, a cryostat, an infrared image furnace, a resistance heating furnace, etc., so that the temperature can be controlled from a minimum attainable temperature of about 4K to a maximum attainable temperature of about 2373K by a heating device. It is preferably a furnace. At the same time, in the atmosphere furnace 2, from 0.001 atm to 5 atm of air, oxygen,
Gas such as nitrogen, argon and helium or 10
An atmosphere furnace capable of maintaining a vacuum up to -4 Torr is preferable.

【0010】前記超音波導波体1は、挿入端の反対端が
前記雰囲気炉2の外に出ている。この反対端には超音波
パルスの送受信子6と、送受信子6を冷却または加熱し
て常温に保つための温度調節器7が備わっている。超音
波導波体1は、超音波伝播損失が少なく、耐寒、耐熱性
を有する材料が好ましく、例えば、測定温度1073K
以下ではステンレス鋼もしくはTi−6Al−4V合
金、1373K以上では高密度黒鉛、SiC、Si34
系焼結体があげられる。
The ultrasonic waveguide 1 has an end opposite to the insertion end which is outside the atmosphere furnace 2. At the opposite end, there are provided an ultrasonic pulse transmitter / receiver 6 and a temperature controller 7 for cooling or heating the transmitter / receiver 6 to keep it at room temperature. The ultrasonic waveguide 1 is preferably made of a material that has low ultrasonic propagation loss, cold resistance, and heat resistance. For example, the measurement temperature is 1073K.
Hereinafter stainless steel or Ti-6Al-4V alloy, high density graphite above 1373K, SiC, Si 3 N 4
Examples include sintered bodies.

【0011】本装置は、以上の如き測定装置本体部分の
ほか、超音波パルス発振器8、デジタル式波形記憶装置
9、デジタル温度計10およびデータ処理機器により構
成される。デジタル式波形記憶装置9には、パルサーレ
シーバーやデジタルオシロスコープが使われる。データ
処理機器は、たとえばパソコン11などのコンピュータ
とディスク12などの記憶装置、プリンタ13およびデ
ィスプレイ14等により構成される。
In addition to the main body of the measuring apparatus as described above, this apparatus is composed of an ultrasonic pulse oscillator 8, a digital type waveform storage device 9, a digital thermometer 10 and a data processing device. A pulser receiver or a digital oscilloscope is used for the digital waveform storage device 9. The data processing device includes, for example, a computer such as a personal computer 11 and a storage device such as a disk 12, a printer 13 and a display 14.

【0012】デジタル温度計10は、試料3と直接に熱
電対15で結ばれていて、試料3の温度が逐次観測でき
る。熱電対15は、通常は白金と白金−ロジウム合金対
を使用するが、300K以下では銅と銅−タンタル合金
対を使用し、1873Kを超える温度まで測定するとき
にはタングステンとタングステン−レニウム合金対を使
うとよい。温度計測のデータは、RS−232C準拠の
シリアルインターフェース16を介してパソコン11に
送られる。
The digital thermometer 10 is directly connected to the sample 3 by the thermocouple 15, and the temperature of the sample 3 can be successively observed. The thermocouple 15 normally uses platinum and a platinum-rhodium alloy pair, but uses copper and a copper-tantalum alloy pair at 300 K or less, and uses tungsten and a tungsten-rhenium alloy pair when measuring up to a temperature exceeding 1873 K. Good. The temperature measurement data is sent to the personal computer 11 via the RS-232C compliant serial interface 16.

【0013】いま、デジタル式波形記憶装置9の内蔵機
能である遅延回路17/同期パルス発振18/超音波パ
ルス発振19を経て送受信子6より送信された超音波パ
ルスは、超音波導波体1および試料3の中を往復伝播し
た後、再び送受信子6へ帰還する。この受信アナログ信
号は、増幅器20で適切な電圧レベルに増幅された後、
トリガ21に同期し、A/D変換器22に送られる。ゲ
ート/アドレスカウンタ23はメモリ24のアドレスを
指定するもので、指定されたアドレスに順次デジタルデ
−タが蓄積される。
Now, the ultrasonic pulse transmitted from the transmitter / receiver 6 through the delay circuit 17 / synchronous pulse oscillation 18 / ultrasonic pulse oscillation 19 which is a built-in function of the digital waveform storage device 9 is the ultrasonic waveguide 1. After traveling back and forth in the sample 3, it returns to the transmitter / receiver 6 again. This received analog signal is amplified to a proper voltage level by the amplifier 20,
It is sent to the A / D converter 22 in synchronization with the trigger 21. The gate / address counter 23 designates an address of the memory 24, and digital data is sequentially accumulated at the designated address.

【0014】このデジタルデータは、バス25およびG
P−IBケ−ブルを通じてパソコン11に転送される。
パソコン11は、波形デ−タと試料3の温度をディスプ
レイ14に表示するとともに、その両デ−タをディスク
12などの記憶装置に書込む。なお、遅延回路17は一
定温度での測定において効果的であるが、昇温または降
温中の測定においては必ずしも必要でない。
This digital data is sent to the buses 25 and G.
It is transferred to the personal computer 11 through the P-IB cable.
The personal computer 11 displays the waveform data and the temperature of the sample 3 on the display 14, and writes both the data in a storage device such as the disk 12. The delay circuit 17 is effective in the measurement at a constant temperature, but is not always necessary in the measurement during the temperature increase or the temperature decrease.

【0015】さて、この装置を使用して材料特性値を算
出する方法は以下のとおりである。図2に試料3中の超
音波パルスの経路を示す。
The method of calculating the material characteristic value using this apparatus is as follows. FIG. 2 shows the path of the ultrasonic pulse in the sample 3.

【0016】超音波導波体1から試料3の中心軸に平行
に入射した超音波パルスは縦波26になる。一方、試料
3の中心軸にある角度をもって入射した超音波パルス
は、試料3の側面にぶつかったあと、同一角度の反射波
と臨界角θの反射波とに分割されるが、前者は臨界角θ
で消滅するため、臨界角θに誘発した横波27のみが存
在することになる。ここで、縦波26および横波27の
音速をそれぞれVL、VSとおくと数1が成立する。
The ultrasonic pulse incident from the ultrasonic waveguide 1 parallel to the central axis of the sample 3 becomes a longitudinal wave 26. On the other hand, an ultrasonic pulse incident at an angle on the central axis of the sample 3 hits the side surface of the sample 3 and is then divided into a reflected wave of the same angle and a reflected wave of the critical angle θ. θ
Since it disappears at, only the transverse wave 27 induced at the critical angle θ exists. Here, when the sound velocities of the longitudinal wave 26 and the transverse wave 27 are respectively set to V L and V S, Formula 1 is established.

【0017】[0017]

【数1】 さて、試料3に時間T1で入射した超音波パルス26
は、試料3の端面で反射し、時間T2で超音波導波体1
に入射する。一方、超音波パルス27は、縦波→横波→
縦波と変換しながら、試料3の端面で反射して時間T3
で超音波導波体1に入射する。図3に時間T1、T2およ
びT3の関係を示す。試料3の長さをL、直径をDとす
れば、縦波および横波の音速は数2および数3から求ま
る。ただし、L≧Dtanθとする。
[Equation 1] Now, the ultrasonic pulse 26 incident on the sample 3 at time T 1
Is reflected by the end face of the sample 3 and at the time T 2 , the ultrasonic waveguide 1
Incident on. On the other hand, the ultrasonic pulse 27 is longitudinal wave → transverse wave →
While being converted into a longitudinal wave, the light is reflected by the end surface of the sample 3 and the time T 3
Is incident on the ultrasonic waveguide 1. FIG. 3 shows the relationship between times T 1 , T 2 and T 3 . If the length of the sample 3 is L and the diameter is D, the sound velocities of the longitudinal wave and the transverse wave can be obtained from the equations 2 and 3. However, L ≧ Dtan θ.

【0018】[0018]

【数2】 [Equation 2]

【0019】[0019]

【数3】 これに対し、試料3の密度をρとすれば、固体弾性諸定
数は数4〜数10で与えられる。
[Equation 3] On the other hand, if the density of the sample 3 is ρ, the solid elastic constants are given by the equations 4 to 10.

【0020】[0020]

【数4】 [Equation 4]

【0021】[0021]

【数5】 [Equation 5]

【0022】[0022]

【数6】 [Equation 6]

【0023】[0023]

【数7】 [Equation 7]

【0024】[0024]

【数8】 [Equation 8]

【0025】[0025]

【数9】 [Equation 9]

【0026】[0026]

【数10】 次に、図3に示すように、時間T1、T2およびT3にお
いて超音波導波体1に入射した超音波パルスの振幅のピ
ーク値をそれぞれA1、A2およびA3とする。界面の反
射を全反射とすれば、試料3の内部摩擦は数11で与え
られる。ただし、fは超音波の周波数である。
[Equation 10] Next, as shown in FIG. 3, the peak values of the amplitude of the ultrasonic pulse incident on the ultrasonic waveguide 1 at times T 1 , T 2 and T 3 are A 1 , A 2 and A 3 , respectively. If the reflection at the interface is the total reflection, the internal friction of the sample 3 is given by Eq. However, f is the frequency of ultrasonic waves.

【0027】[0027]

【数11】 以上の如き計算を進めるにあたり、時間T1、T2、T3
および超音波パルスの振幅のピーク値A1、A2、A3
求める必要がある。本発明は、図4に示すように、デジ
タル温度計から送信される温度データと遅延回路/同期
パルス発振/超音波パルス発振を経て試料3から送信さ
れる超音波パルスエコーの波形から、試料温度と時間を
関数とする三次元解析をパソコン内で行ない、おのおの
のピーク値における前後データの比較することにより異
常値や測定困難値を補正して求めるようにしたものであ
る。
[Equation 11] To proceed with the above calculation, the time T 1 , T 2 , T 3
And it is necessary to find the peak values A 1 , A 2 , A 3 of the amplitude of the ultrasonic pulse. As shown in FIG. 4, the present invention uses the temperature data transmitted from the digital thermometer and the waveform of the ultrasonic pulse echo transmitted from the sample 3 through the delay circuit / synchronous pulse oscillation / ultrasonic pulse oscillation to determine the sample temperature. The three-dimensional analysis with the function of time and time is performed in a personal computer, and the abnormal values and difficult-to-measure values are corrected and obtained by comparing the before and after data of each peak value.

【0028】[0028]

【発明の効果】以上のように、本発明になる超音波式材
料特性値測定装置およびその測定方法を用いることによ
り、従来より測定困難であった特定温度域での測定が可
能となるほか、温度変動に対しても中断することなしに
連続的な計測が可能となる。また、従来、測定できなか
った一部材料についても本発明によって測定できるよう
になる。
INDUSTRIAL APPLICABILITY As described above, by using the ultrasonic type material characteristic value measuring apparatus and its measuring method according to the present invention, it becomes possible to measure in a specific temperature range which is difficult to measure in the past. Continuous measurement is possible without interruption even with temperature fluctuations. Further, the present invention enables measurement of some materials that could not be measured conventionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる測定装置に関わる一実施例を示す
概念的な測定系統図である。
FIG. 1 is a conceptual measurement system diagram showing an embodiment of a measuring apparatus according to the present invention.

【図2】試料中に送信された超音波パルスの進行状態を
示す説明図である。
FIG. 2 is an explanatory diagram showing a progress state of an ultrasonic pulse transmitted in a sample.

【図3】超音波パルスの伝播時間および振幅ピーク値の
関係図である。
FIG. 3 is a relationship diagram of a propagation time of an ultrasonic pulse and an amplitude peak value.

【図4】パルスエコーの波形を、試料温度と時間を関数
として表わしたときの解析図である。
FIG. 4 is an analysis diagram when the waveform of a pulse echo is expressed as a function of sample temperature and time.

【符号の説明】[Explanation of symbols]

1 超音波導波体 2 雰囲気炉 3 試料 6 送受信子 7 温度調節器 26、27 超音波パルス 1 Ultrasonic wave guide 2 atmosphere furnace 3 samples 6 transmitter and receiver 7 Temperature controller 26, 27 ultrasonic pulse

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 G01N 25/00 - 25/72 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 29/00-29/28 G01N 25/00-25/72

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 任意の温度条件下においた試料の一端を
固定し、固定された一端に超音波導波体を介して超音波
パルスを印加し、試料からのパルスエコーの波形、波形
位置および波高値を計測することにより、試料の音速、
弾性率、ポアソン比、ラーメパラメータ、音速異方性係
数、内部摩擦などの材料特性値を算出できるようにした
超音波式材料特性値測定装置において、 前記試料からのパルスエコーをデジタル式波形記憶装置
に記憶するとともに、試料の温度および時間のデジタル
データとして同時に記憶するようにしたことを特徴とす
る超音波式材料特性値測定装置。
1. One end of a sample placed under arbitrary temperature conditions
The ultrasonic velocity of the sample is fixed by applying an ultrasonic pulse to the fixed end through the ultrasonic waveguide, and measuring the waveform of the pulse echo from the sample, the waveform position, and the peak value.
An ultrasonic material characteristic value measuring device capable of calculating material characteristic values such as elastic modulus, Poisson's ratio, Lame parameter, sonic anisotropy coefficient, and internal friction, in which a pulse echo from the sample is stored in a digital waveform storage device. The ultrasonic material characteristic value measuring device is characterized in that the temperature and time of the sample are simultaneously stored as digital data.
【請求項2】 請求項1に記載したデジタル式波形記憶
装置に記憶されたパルスエコーを連続的に抽出し、同時
測定した試料の温度および時間を関数とする三次元解析
を行なうことにより異常値を補正し、前記材料特性値を
確定できるようにした請求項1記載の測定装置を用いた
測定方法。
2. An abnormal value is obtained by continuously extracting pulse echoes stored in the digital waveform storage device according to claim 1 and performing three-dimensional analysis using the temperature and time of the sample simultaneously measured as a function. The measurement method using the measuring apparatus according to claim 1, wherein the material characteristic value is determined by correcting the value.
JP22640093A 1993-08-19 1993-08-19 Ultrasonic material property value measuring device and its measuring method Expired - Fee Related JP3373609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22640093A JP3373609B2 (en) 1993-08-19 1993-08-19 Ultrasonic material property value measuring device and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22640093A JP3373609B2 (en) 1993-08-19 1993-08-19 Ultrasonic material property value measuring device and its measuring method

Publications (2)

Publication Number Publication Date
JPH0755776A JPH0755776A (en) 1995-03-03
JP3373609B2 true JP3373609B2 (en) 2003-02-04

Family

ID=16844536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22640093A Expired - Fee Related JP3373609B2 (en) 1993-08-19 1993-08-19 Ultrasonic material property value measuring device and its measuring method

Country Status (1)

Country Link
JP (1) JP3373609B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2674132T3 (en) 2009-05-07 2018-06-27 WYSOCZKI DE SÁNCHEZ, Rosemarie Magnetic closure, magnetic key and combination of both
CN114295265B (en) * 2021-09-15 2023-11-14 中国南方电网有限责任公司超高压输电公司检修试验中心 Method and system for detecting normal internal thermal stress of GIS basin-type insulator

Also Published As

Publication number Publication date
JPH0755776A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
US6883376B2 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
Balasubramaniam et al. High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts
JPS5987311A (en) Double element ultrasonic probe and pulse echo ultrasonic measuring meter
JPH0713583B2 (en) Acoustic pyrometer and method
EP1226413B1 (en) Ultrasonic thermometer system
JP3719740B2 (en) Nondestructive testing method and apparatus using ultrasonic waves
JPS6411141B2 (en)
JP3373609B2 (en) Ultrasonic material property value measuring device and its measuring method
Lynnworth Ultrasonic measurement of elastic moduli in slender specimens using extensional and torsional wave pulses
JP2010038696A (en) Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument
JPH08136516A (en) Apparatus for measuring total modulus of dynamic elasticity, internal abrasion, sound velocity, coefficient of thermal expansion and thermal constant at low and intermediate temperature
US5731521A (en) Apparatus for monitoring high temperature ultrasonic characterization
van Deventer et al. Thermostatic and dynamic performance of an ultrasonic density probe
Sgalla et al. A device for measuring the velocity of ultrasonic waves: An application to stress analysis
JP3276204B2 (en) Low temperature measurement system for elasticity, internal wear and sound velocity
JPH05509168A (en) Thickness and defect detection method using time mapping technology in memory
Okade et al. Local stress measurement on polycrystalline aluminum by an acoustic microscope
JP2782025B2 (en) Measuring device for mechanical deformation value
Balasubramaniam et al. Temperature and viscosity in-situ sensor for hostile processes
Date et al. Measurement of the elasticity and ultrasound velocities of steel
Koo et al. A new measurement system of very high temperature in atomic pile using ultrasonic delay time
Gushchina et al. Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy
Shah et al. Sensor development for high temperature viscosity measurement
JP3707473B2 (en) Method and apparatus for ultrasonic inspection of steel pipes
Buck et al. Rayleigh waves for continuous monitoring of a propagating crack front

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees