JP2010038696A - Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument - Google Patents

Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument Download PDF

Info

Publication number
JP2010038696A
JP2010038696A JP2008201050A JP2008201050A JP2010038696A JP 2010038696 A JP2010038696 A JP 2010038696A JP 2008201050 A JP2008201050 A JP 2008201050A JP 2008201050 A JP2008201050 A JP 2008201050A JP 2010038696 A JP2010038696 A JP 2010038696A
Authority
JP
Japan
Prior art keywords
metal material
ultrasonic
metal
fatigue damage
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008201050A
Other languages
Japanese (ja)
Inventor
Hideki Yamagishi
英樹 山岸
Shogo Tomita
正吾 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2008201050A priority Critical patent/JP2010038696A/en
Publication of JP2010038696A publication Critical patent/JP2010038696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive evaluation method of a degree of metal fatigue damage capable of measuring an accurate degree of metal fatigue in a short time, and an ultrasonic metal fatigue damage degree measuring instrument having a simple structure and a small size and also excellent in portability. <P>SOLUTION: The ultrasonic metal fatigue damage degree measuring instrument is equipped with a transmitter 14 brought into contact with the surface of a metal material 12 to transmit an ultrasonic wave, a receiver 16 for receiving the ultrasonic wave propagated along the surface of the metal material 12 and a body part 20 for separating the transmitter 14 and the receiver 16 at a definite interval to integrally hold them. The sound pressure attenuation ratio or propagation time of the ultrasonic wave propagated in the vicinity of the surface of the metal material 12 is measured, and the metal fatigue degree of the metal material 12 is calculated from the relation of the sound pressure attenuation ratio or propagation data of the ultrasonic wave to a known metal fatigue degree. An SH wave used as the ultrasonic wave and a metal member is intended for the metal material having a hexagonal crystal structure such as a magnesium alloy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、超音波を用いて、金属材料である測定対象物を破壊することなく疲労度を測定する金属疲労損傷度の非破壊評価方法と超音波金属疲労損傷度測定装置に関する。   The present invention relates to a non-destructive evaluation method of a metal fatigue damage degree and an ultrasonic metal fatigue damage degree measuring apparatus for measuring a fatigue degree without destroying a measurement object that is a metal material using ultrasonic waves.

従来、金属疲労の非破壊検査法には、X線回折法や陽電子消滅法、電子後方錯乱回折法などがある。しかしながら、これらの方法は、金属疲労に伴う結晶の歪、原子空孔の増加、結晶の回転や転位の導入による回折像の乱れなど、いずれも極微小な変化を追うために、測定装置が高度で複雑な構成となる。そのため、原子炉など一部の高額設備を除いては、コスト的な側面から実用的な測定装置ではなかった。   Conventional non-destructive inspection methods for metal fatigue include an X-ray diffraction method, a positron annihilation method, and an electron back-scattering diffraction method. However, these methods are advanced in order to follow extremely small changes such as distortion of crystals due to metal fatigue, increase in atomic vacancies, and disturbance of diffraction images due to the introduction of crystal rotation and dislocations. It becomes a complicated configuration. For this reason, except for some expensive equipment such as nuclear reactors, it was not a practical measuring device in terms of cost.

さらに、金属疲労評価は、非破壊検査であることが、実用上の大きな要求事項であるが、一般に、これらの機器はそれに対応できず、種々の現場で簡便に利用できる測定装置とはならない。   Furthermore, the metal fatigue evaluation is a non-destructive inspection, which is a major requirement for practical use. However, in general, these devices cannot cope with it and cannot be a measuring device that can be easily used in various fields.

一方、金属疲労の非破壊検査方法として、特許文献1,2に開示されているように、超音波を用いた検査方法が提案されている。特許文献1に開示された検査方法は、超音波が被検査体に伝播され、超音波の減衰係数、周波数、波形、伝播時間、受信感度などを測定して、その実測値が標準試料における同様のデータと比較し、判定しきい値との比較判断によって、材料の表面劣化、疲労等を相対的に診断するものである。また、特許文献2に開示された測定方法は、金属材料の表面に超音波を伝播させ、この超音波の伝播速度に基づいて、金属材料の疲労を測定するものである。特に、表面硬化した金属材料では、疲労によって残留圧縮応力が増加し、金属材料の表面を伝播する超音波の伝播速度が低下することを利用して、表面硬化した金属材料の疲労測定しているものである。
特開平9−5309号公報 特開2003−329657号公報
On the other hand, as a non-destructive inspection method for metal fatigue, as disclosed in Patent Documents 1 and 2, an inspection method using ultrasonic waves has been proposed. In the inspection method disclosed in Patent Document 1, the ultrasonic wave is propagated to the object to be inspected, and the attenuation coefficient, frequency, waveform, propagation time, reception sensitivity, etc. of the ultrasonic wave are measured, and the measured values are the same as those in the standard sample. In comparison with the above data, the surface deterioration of the material, fatigue, and the like are relatively diagnosed by comparison with the determination threshold value. Moreover, the measurement method disclosed in Patent Document 2 is to propagate ultrasonic waves on the surface of a metal material and measure fatigue of the metal material based on the propagation speed of the ultrasonic waves. In particular, surface-hardened metal materials measure fatigue of surface-hardened metal materials by utilizing the fact that residual compressive stress increases due to fatigue and the propagation speed of ultrasonic waves propagating on the surface of metal materials decreases. Is.
Japanese Patent Laid-Open No. 9-5309 JP 2003-329657 A

上記の特許文献1、2に開示された金属疲労測定方法は、測定したその時点での状態を検知するものである。しかしながら、六方晶系の結晶構造を持つマグネシウムなどすべりによる変形が強く制限されている金属材料においては、その疲労過程において、マイクロクラックの発生により、残留応力の蓄積が断続的に開放されるという特徴的な疲労挙動を有する場合がある。このため、上記特許文献1,2に開示された金属疲労測定方法では、ある時点の超音波の伝播についての情報を得たとしても、残留応力の状態により超音波の伝播状態から得られる値が大きく異なり、同程度の疲労状態であったとしても、正確な疲労情報を得ることができない場合が考えられる。   The metal fatigue measurement methods disclosed in Patent Documents 1 and 2 above detect the measured state at that time. However, in the case of metallic materials that are severely limited in deformation due to slip, such as magnesium with a hexagonal crystal structure, the accumulation of residual stress is intermittently released due to the occurrence of microcracks during the fatigue process. May have a general fatigue behavior. For this reason, in the metal fatigue measurement methods disclosed in Patent Documents 1 and 2, even if information on ultrasonic propagation at a certain point in time is obtained, the value obtained from the ultrasonic propagation state depends on the state of residual stress. Even if the fatigue states are substantially the same, there may be cases where accurate fatigue information cannot be obtained.

この発明は、上記背景技術に鑑みて成されたものであり、簡単な構造で小型であり、可搬性にも優れ、短時間で正確な金属疲労度の測定が可能な金属疲労損傷度の非破壊評価方法と超音波金属疲労損傷度測定装置を提供することを目的とする。   The present invention has been made in view of the above-described background art, and has a simple structure, a small size, excellent portability, and a metal fatigue damage degree that allows accurate measurement of metal fatigue in a short time. An object is to provide a fracture evaluation method and an ultrasonic metal fatigue damage degree measuring apparatus.

この発明は、金属材料の表面に接触し超音波を送信する送信機と、前記金属材料の表面近傍を伝播した前記超音波を受信する受信機と、前記送信機と受信機を一定間隔離して一体的に保持した本体部とを設け、前記超音波が前記金属材料の表面近傍を伝播する際の音圧減衰率若しくは伝播時間を測定し、既知の金属疲労損傷度に対する音圧減衰率若しくは伝播時間と、前記測定により得られた音圧減衰率若しくは伝播時間とを比較して、前記金属材料の金属疲労損傷度を算出する金属疲労損傷度の非破壊評価方法である。   The present invention relates to a transmitter that contacts the surface of a metal material and transmits ultrasonic waves, a receiver that receives the ultrasonic waves propagated in the vicinity of the surface of the metal material, and the transmitter and receiver are separated from each other by a certain distance. A body part integrally held, and the sound pressure attenuation rate or propagation time when the ultrasonic wave propagates near the surface of the metal material is measured, and the sound pressure attenuation rate or propagation with respect to a known degree of metal fatigue damage This is a non-destructive evaluation method for the degree of metal fatigue damage in which the metal fatigue damage degree of the metal material is calculated by comparing the time with the sound pressure decay rate or propagation time obtained by the measurement.

また、前記金属材料表面の金属疲労度測定部には、前記金属材料表面との密着を確実にするとともに前記金属材料表面での超音波の伝播を良好にする液体の媒体を塗布し、前記送信機と受信機に各々取り付けられ前記固体表面に接触する一対のプローブ部を、前記媒体を介して前記金属疲労度測定部に接触させるものである。   In addition, the metal fatigue level measurement unit on the surface of the metal material is coated with a liquid medium that ensures close contact with the surface of the metal material and improves the propagation of ultrasonic waves on the surface of the metal material. A pair of probe parts, which are respectively attached to a machine and a receiver and are in contact with the solid surface, are brought into contact with the metal fatigue level measuring part via the medium.

前記超音波は、SH波を用いるものであり、前記金属部材は、マグネシウム合金等の六方晶系の結晶構造を有した金属材料である。   The ultrasonic waves use SH waves, and the metal member is a metal material having a hexagonal crystal structure such as a magnesium alloy.

またこの発明は、金属材料の表面に接触し超音波を送信する送信機と、前記金属材料の表面近傍を伝播した前記超音波を受信する受信機と、前記送信機と受信機とを一定間隔離して一体的に保持した本体部と、前記超音波が上記金属材料の表面近傍を伝播する際の音圧減衰率若しくは伝播時間を測定する測定手段と、測定した音圧減衰率若しくは伝播時間の履歴データの変化量を基にして、前記金属材料の金属疲労損傷度を解析算出する対する演算手段とを備えた超音波金属疲労損傷度測定装置である。   The present invention also provides a transmitter that contacts the surface of the metal material and transmits ultrasonic waves, a receiver that receives the ultrasonic waves propagated in the vicinity of the surface of the metal material, and the transmitter and the receiver that are spaced at regular intervals. A body part that is integrally held apart, a measuring means for measuring the sound pressure attenuation rate or propagation time when the ultrasonic wave propagates near the surface of the metal material, and the measured sound pressure attenuation rate or propagation time. It is an ultrasonic metal fatigue damage degree measuring apparatus provided with a calculation means for analyzing and calculating a metal fatigue damage degree of the metal material based on a change amount of history data.

前記本体部はコ字状に形成され、前記送信機はコ字状の前記本体部の一方の端部に設けられ、前記送信機の超音波出力部は前記金属材料表面側を向くとともに前記受信機の方を向いて設けられ、前記受信機はコ字状の前記本体部の他方の端部に設けられ、前記受信機の超音波受信部は前記金属材料表面側を向くとともに前記送信機側を向いて位置し、前記送信機の超音波出力部と前記受信機の超音波受信部には、各々前記金属材料表面に接触するプローブ部が設けられているものである。   The main body is formed in a U-shape, the transmitter is provided at one end of the U-shaped main body, and the ultrasonic output unit of the transmitter faces the metal material surface side and receives the signal. The receiver is provided at the other end of the U-shaped main body, and the ultrasonic receiver of the receiver faces the metal material surface side and the transmitter side. The ultrasonic output section of the transmitter and the ultrasonic reception section of the receiver are each provided with a probe section that contacts the surface of the metal material.

この発明の金属疲労損傷度の非破壊評価方法と超音波金属疲労損傷度測定装置によれば、簡単な構造で小型であり、測定対象物までの搬送や測定対象物への取り付けが容易に可能である。これにより、金属材料である測定対象物に対して、より頻繁に金属疲労度の測定が可能となり、製品の安全性や耐久性の評価を容易に行うことが出来る。   According to the metal fatigue damage degree nondestructive evaluation method and ultrasonic metal fatigue damage degree measuring apparatus of the present invention, the structure is small with a simple structure and can be easily transported to and attached to a measurement object. It is. As a result, the metal fatigue degree can be measured more frequently with respect to the measurement object that is a metal material, and the safety and durability of the product can be easily evaluated.

以下この発明の実施の形態について説明する。この発明の超音波金属疲労損傷度測定装置10は、図1に示すように、測定対象物である金属材料12の表面に接触させ超音波を送信する送信機14と、金属材料12の表面近傍を伝播した超音波を受信する受信機16を備える。送信機14と受信機16は、一定間隔離して位置し、これらを一体的に保持した本体部20に設けられている。送信機14は、超音波領域の周波数を発信する発信回路による発振回路部15を備え、受信機16も超音波領域の周波数を受信する受信回路を備えた受信回路部17を有している。   Embodiments of the present invention will be described below. As shown in FIG. 1, the ultrasonic metal fatigue damage degree measuring apparatus 10 of the present invention is in contact with the surface of a metal material 12 that is an object to be measured and transmits an ultrasonic wave, and the vicinity of the surface of the metal material 12. Is provided with a receiver 16 for receiving the ultrasonic wave propagated through. The transmitter 14 and the receiver 16 are located apart from each other by a certain distance, and are provided in a main body 20 that integrally holds them. The transmitter 14 includes an oscillation circuit unit 15 that is a transmission circuit that transmits a frequency in the ultrasonic region, and the receiver 16 also includes a reception circuit unit 17 that includes a reception circuit that receives the frequency in the ultrasonic region.

本体部20には、金属材料12に送信機14と受信機16のプローブ部14a,16aを圧接させるための重り22と、重り22を金属材料12に確実に押し付ける押圧治具24が設けられている。圧接圧力は、適宜設定可能であるが、超音波の伝播を良好にするためには、例えば3MPa程度が好ましい。また、測定に際しては、金属材料12の表面に音響カップリング剤としてグリースが塗布され、プローブ部14a,16aに接する。グリースは吸湿の影響を避けるため油性が好ましい。   The main body 20 is provided with a weight 22 for pressing the transmitter 14 and the probe parts 14a and 16a of the receiver 16 against the metal material 12, and a pressing jig 24 that reliably presses the weight 22 against the metal material 12. Yes. The pressing pressure can be set as appropriate, but is preferably about 3 MPa, for example, in order to improve the propagation of ultrasonic waves. In measurement, grease is applied to the surface of the metal material 12 as an acoustic coupling agent and comes into contact with the probe portions 14a and 16a. The grease is preferably oily to avoid the effects of moisture absorption.

本体部20は、送信機14と受信機16を一定間隔離すために例えば略コ字状に形成され、送信機14はコ字状の一方の端部に位置し、内部には圧電素子等の超音波出力部14bがプローブ部14aに接続して設けられている。超音波出力部14bは金属材料12の表面側を向くように配置されているとともに、受信機16の方を向いて斜めに設けられている。受信機16はコ字状の他方の端部に位置し、内部には圧電素子等の超音波受信部16bがプローブ部16aに接続して設けられている。超音波受信部16bも金属材料12の表面側を向くように配置されているとともに、送信機14の方を向いて斜めに設けられている。なお、これら超音波出入力部(14bおよび16b)の試験片表面に対する角度は、超音波を試験片の表層近傍に効率良く伝播させるため、試験片の固体音速に応じ、臨界角近傍に調整される。例えば、評価材料がマグネシウム合金の場合は、超音波出力部14bと超音波受信部16bのマグネシウム合金表面に対する角度は21°程度が望ましい。   The main body 20 is formed, for example, in a substantially U shape so as to separate the transmitter 14 and the receiver 16 from each other for a certain distance. The transmitter 14 is located at one end of the U shape, and includes a piezoelectric element or the like inside. An ultrasonic output unit 14b is provided in connection with the probe unit 14a. The ultrasonic output unit 14 b is disposed so as to face the surface side of the metal material 12, and is provided obliquely toward the receiver 16. The receiver 16 is located at the other end of the U-shape, and an ultrasonic receiving unit 16b such as a piezoelectric element is connected to the probe unit 16a. The ultrasonic receiver 16b is also arranged so as to face the surface side of the metal material 12, and is provided obliquely toward the transmitter 14. Note that the angles of the ultrasonic input / output portions (14b and 16b) with respect to the surface of the test piece are adjusted to be close to the critical angle according to the solid sound velocity of the test piece in order to efficiently propagate the ultrasonic wave to the vicinity of the surface layer of the test piece. The For example, when the evaluation material is a magnesium alloy, the angle of the ultrasonic output unit 14b and the ultrasonic receiving unit 16b with respect to the magnesium alloy surface is preferably about 21 °.

受信回路部17の出力は、受信した超音波によるアナログの電気信号をデジタル信号に変換するA/Dコンバータ26に接続され、A/Dコンバータ26の出力は、受信した波形データを記憶する波形メモリ28に接続されている。波形メモリ28の出力は、ピーク検出器30に接続され、後述する演算処理を行うCPUやメモリを備えたマイクロコンピュータ等の演算処理装置32に接続されている。演算処理装置32には図示しないモニタや入出力装置、記憶装置等が接続されている。使用する超音波は、剪断水平波(本願発明ではSH波(Horizontally Polarized Shear Wave)と言う)である。   The output of the receiving circuit unit 17 is connected to an A / D converter 26 that converts an analog electrical signal generated by ultrasonic waves into a digital signal, and the output of the A / D converter 26 is a waveform memory that stores received waveform data. 28. The output of the waveform memory 28 is connected to a peak detector 30 and is connected to an arithmetic processing device 32 such as a microcomputer having a CPU or memory for performing arithmetic processing described later. A monitor, an input / output device, a storage device, etc. (not shown) are connected to the arithmetic processing device 32. The ultrasonic wave to be used is a shear horizontal wave (referred to as SH wave (Horizontally Polarized Shear Wave in the present invention)).

この実施形態の超音波金属疲労度測定装置10の測定原理は、図2〜図4に示すように、本体部20に設けられ一定間隔離れて位置した送信機14と受信機16により、超音波sの伝播時間を測定するもので、超音波sの伝播時間は、金属材料12の内部応力の状態により異なることを利用している。測定には、超音波(SH波)を発振する超音波出力部14bと超音波受信部16bのプローブ14a,16aを対向配置し、金属材料12の表層近傍に超音波を伝播させ、その受信波形の変化量を演算することで、材料の金属疲労状態を評価する。   As shown in FIGS. 2 to 4, the measurement principle of the ultrasonic metal fatigue measuring apparatus 10 of this embodiment is that ultrasonic waves are generated by a transmitter 14 and a receiver 16 that are provided in the main body 20 and are spaced apart from each other by a predetermined distance. It measures the propagation time of s, and utilizes the fact that the propagation time of the ultrasonic wave s varies depending on the state of internal stress of the metal material 12. In the measurement, an ultrasonic output unit 14b that oscillates an ultrasonic wave (SH wave) and probes 14a and 16a of the ultrasonic wave receiving unit 16b are arranged to face each other, and an ultrasonic wave is propagated near the surface layer of the metal material 12, and a received waveform thereof. By calculating the amount of change, the metal fatigue state of the material is evaluated.

超音波は弾性波であり、結晶構造の歪(応力状態)によってそのエネルギフローがシフトする。SH波の場合、送受信角を固定したプローブ間において、応力場が引張側にシフトすれば、音波エネルギはより材料の表層側に屈折迂回する(図2の一点鎖線s1)。一方、圧縮の場合はその逆に作用する(図2の二点鎖線s2)。これを音弾性効果と呼ぶ。本効果のため、上記SH波の伝播時間及び音圧の減衰率は、材料の応力状態に応じて変化する(図3)。つまり、伝播時間及び音圧の減衰率は、材料の応力状態が引張り側に変化した場合に減少し、逆に材料の応力状態が圧縮側へ変化した場合には増加する(図4)。   The ultrasonic wave is an elastic wave, and its energy flow is shifted by the strain (stress state) of the crystal structure. In the case of the SH wave, if the stress field is shifted to the tension side between the probes having fixed transmission and reception angles, the sonic energy is further refracted to the surface layer side of the material (dashed line s1 in FIG. 2). On the other hand, in the case of compression, it acts in reverse (two-dot chain line s2 in FIG. 2). This is called the acoustoelastic effect. Due to this effect, the propagation time of the SH wave and the attenuation rate of the sound pressure change according to the stress state of the material (FIG. 3). That is, the propagation time and sound pressure decay rate decrease when the stress state of the material changes to the tension side, and conversely increases when the stress state of the material changes to the compression side (FIG. 4).

本願発明の評価方法は、SH波を用いた透過法の非破壊検査法であり、上述の音弾性効果に基づく音圧減衰率または伝播時間の増減から、金属材料の残留応力の変動情報を正確に抽出・演算処理することで、特にマグネシウム合金の金属疲労非破壊評価を行うものである。   The evaluation method of the present invention is a non-destructive inspection method using a transmission method using SH waves, and accurate information on residual stress fluctuations in metallic materials is obtained from the increase or decrease in sound pressure attenuation rate or propagation time based on the above-mentioned acoustoelastic effect. In particular, the metal fatigue nondestructive evaluation of a magnesium alloy is performed by performing extraction / calculation processing.

マグネシウム合金は結晶構造が六方晶であり、常温ではすべり変形が生じにくい。また、マグネシウム合金は、繰り返しの応力に対し、介在物などを起点としたマイクロクラックを生じる。そのため、疲労過程において、残留応力の蓄積と解放を繰り返しながら破壊に至る。アルミニウム合金などすべりやすい結晶構造の材料では、疲労度の増加に伴い、残留応力がほぼ一方向に変化していくが、マグネシウム合金では、疲労蓄積によりマイクロクラックが生じるため、残留応力が一時的にある程度開放される。この挙動は繰り返され、残留応力の変動幅を狭めながら(応力変動幅を収束させながら)最終的に破壊に至る。このため、マグネシウム合金では、超音波振動の音圧減衰率もしくは伝播時間の収束量を演算することで、金属疲労損傷度を評価することが可能となる。   Magnesium alloys have a hexagonal crystal structure and are less likely to slip at room temperature. In addition, the magnesium alloy generates microcracks starting from inclusions and the like against repeated stress. For this reason, in the fatigue process, destruction and repetitive accumulation and release of residual stress occur. In a slippery crystal structure material such as an aluminum alloy, the residual stress changes in almost one direction as the fatigue level increases, but in a magnesium alloy, microcracks occur due to fatigue accumulation, so the residual stress temporarily Open to some extent. This behavior is repeated, and eventually the fracture is caused while narrowing the fluctuation range of the residual stress (while converging the fluctuation range of the stress). For this reason, in a magnesium alloy, it becomes possible to evaluate a metal fatigue damage degree by calculating the sound pressure attenuation rate of ultrasonic vibration or the convergence amount of propagation time.

超音波sの伝播時間T1は、図3に示すように、受信した超音波波形の最初のピークA1をピーク検出器30により検知して求め、送信時からピークA1までの期間が伝播時間T1となる。これらのタイミングは、演算処理装置32内のクロックにより同期を取って、送信時間及びピーク検出時間等が求められる。   As shown in FIG. 3, the propagation time T1 of the ultrasonic wave s is obtained by detecting the first peak A1 of the received ultrasonic waveform with the peak detector 30, and the period from the time of transmission to the peak A1 is the propagation time T1. Become. These timings are synchronized with a clock in the arithmetic processing unit 32, and a transmission time, a peak detection time, and the like are obtained.

また、音圧減衰率の評価は、ピーク検出器30で検知されたピークをもとに演算処理装置32により行われるが、これは、時間的に早い音圧のピークを時間的に遅い音圧のピークで除して行う。例えば、図3中のプラス側のピークの比であるA1/A2などが評価指標となるが、必ずしも同じ符号の音圧ピークにより評価する必要はなく、例えば図3中において、A1に対し、A1に隣り合うA1とA2の間のマイナス側のピークとの関係を評価してもよい。このような異なる符号の音圧で減衰率を評価する場合は、その音圧の比を絶対値として扱うことで、図4の残留応力に対する関係を同じく表現することができる。なお、音圧減衰率はその変化率から、自然対数等により整理しても良い。   The evaluation of the sound pressure attenuation rate is performed by the arithmetic processing unit 32 based on the peak detected by the peak detector 30. This is because the sound pressure peak earlier in time is slower than the sound pressure later in time. Divide by the peak of. For example, A1 / A2 which is the ratio of the positive peak in FIG. 3 is an evaluation index, but it is not always necessary to evaluate by the sound pressure peak having the same sign. For example, in FIG. You may evaluate the relationship with the negative peak between A1 and A2 which adjoin. When the attenuation rate is evaluated with the sound pressures having such different signs, the relationship with respect to the residual stress in FIG. 4 can be similarly expressed by treating the ratio of the sound pressures as an absolute value. Note that the sound pressure attenuation rate may be organized by natural logarithm or the like based on the rate of change.

伝播時間若しくは音圧減衰率と金属疲労損傷度の関係は、予め精密な金属疲労度測定機により、測定対象物と同じ材料について金属疲労損傷度を測定し、各々伝播時間若しくは音圧減衰率を測定し記録して、所定のテーブル又は演算式を作成して演算処理装置32のメモリに記憶させておく。そして、金属疲労損傷度が未知の部材の測定時には、このテーブルや式と、測定した伝播時間若しくは音圧減衰率から金属疲労損傷度を評価してモニタ等に表示する。   The relationship between the propagation time or sound pressure decay rate and the metal fatigue damage level is determined in advance by measuring the metal fatigue damage level for the same material as the object to be measured using a precise metal fatigue level measuring machine. Measurement and recording are performed, and a predetermined table or arithmetic expression is created and stored in the memory of the arithmetic processing unit 32. When measuring a member whose degree of metal fatigue damage is unknown, the degree of metal fatigue damage is evaluated from this table or formula and the measured propagation time or sound pressure decay rate and displayed on a monitor or the like.

具体的な装置においての評価方法としては、定期検査、もしくは設備にこの金属疲労損傷度測定機をインプラント化などして、超音波データの履歴蓄積を行う。音圧の対数減衰率、または伝播時間の測定データを記録し、後述する図5の実施例のようなグラフを求め、それらの上下包絡線幅比率、もしくは包絡線の微分係数の減少比率を、あらかじめ設定したデータベースのしきい値と比較することで、その装置の金属材料の疲労健全性を判断する。   As a specific evaluation method in the apparatus, the history of ultrasonic data is accumulated by performing a periodic inspection or implanting the metal fatigue damage degree measuring machine in equipment. Logarithmic decay rate of sound pressure, or measurement data of propagation time is recorded, a graph like the example of FIG. 5 described later is obtained, and the upper and lower envelope width ratios, or the decreasing ratio of the differential coefficient of the envelope, The fatigue soundness of the metal material of the apparatus is judged by comparing with a preset threshold value of the database.

なお、疲労に伴う転位増殖や弾性率変化は、固体音速に強く影響し、伝播時間を大きく変化させる。そのため、伝播時間は音圧減衰率に比較し、残留応力の変動を正確に反映しない。従って、残留応力の変動をより正確に評価する必要がある場合は、音圧の減衰率を評価項とすることが望ましい。   Note that dislocation growth and change in elastic modulus accompanying fatigue strongly affect the sound velocity of the solid and greatly change the propagation time. Therefore, the propagation time does not accurately reflect the variation in residual stress compared to the sound pressure decay rate. Therefore, when it is necessary to more accurately evaluate the fluctuation of the residual stress, it is desirable to use the sound pressure attenuation rate as an evaluation term.

この実施形態の超音波金属疲労度測定装置10によれば、演算を行う演算処理装置32を1チップ化する等により、極めて小型の金属疲労損傷度測定装置を構成することができ、可搬性があり、任意の場所で任意の金属材料の疲労損傷度を測定することができる。また、金属疲労度を予測して、その材料の安全性や予測寿命等を簡単に求めることができ、幅広い製品検査等に利用可能なものである。   According to the ultrasonic metal fatigue degree measuring apparatus 10 of this embodiment, an extremely small metal fatigue damage degree measuring apparatus can be configured by, for example, integrating the arithmetic processing unit 32 that performs calculation into one chip, and the portability is high. Yes, the fatigue damage degree of any metal material can be measured at any place. In addition, by predicting the degree of metal fatigue, the safety and predicted life of the material can be easily obtained, which can be used for a wide range of product inspections.

なお、本発明の金属疲労損傷度の非破壊評価方法と超音波金属疲労損傷度測定装置は、上記実施形態に限定されるものではなく、本体部の形状はコ字状以外に、曲率面等の評価面形状に合わせた形状で、送信機と受信機が所定間隔離れて一体に設けられていればよい。また、適用可能な材料は、マグネシウム以外に、六方晶系の金属やそれらの合金に適用可能であり、例えばTiやCo、Zn、Zr、Be、Bi等の合金材料にも利用可能である。その他、立方晶系の金属においても、疲労破壊の過程で残留応力に収束を伴うものであれば適用可能である。超音波の周波数も適宜選択可能であり、表面に塗布する液体もグリースの他、超音波用のジェルやその他オイル等でも良い。   In addition, the non-destructive evaluation method and the ultrasonic metal fatigue damage degree measuring apparatus of the metal fatigue damage degree of the present invention are not limited to the above-described embodiment, and the shape of the main body portion other than the U-shape, the curvature surface, etc. It is sufficient that the transmitter and the receiver are integrally provided with a predetermined interval in a shape that matches the shape of the evaluation surface. In addition to magnesium, applicable materials are applicable to hexagonal metals and alloys thereof, and for example, alloy materials such as Ti, Co, Zn, Zr, Be, and Bi can also be used. In addition, a cubic metal can be applied as long as the residual stress is converged in the process of fatigue fracture. The frequency of the ultrasonic wave can be selected as appropriate, and the liquid applied to the surface may be an ultrasonic gel or other oil in addition to grease.

以下に、本願発明の一実施例として、マグネシウム合金AZ31圧延材の疲労試験の測定データを示す(測定条件:単軸引張、応力比0、応力振幅64MPa、加振周波数30Hz、試験温度:室温)。試験片の形状及び寸法(mm)を図6に示す。この試験片40の中央部の計測領域42を、この実施例の超音波金属疲労損傷度測定装置により測定した。図5は、疲労度N/Nf(N:金属材料に掛かる加重の繰り返し数、Nf:破壊に至った繰り返し数)に対する超音波の伝播時間及び音圧減衰率の関係を示す。   Hereinafter, as one embodiment of the present invention, measurement data of a fatigue test of a magnesium alloy AZ31 rolled material is shown (measurement conditions: uniaxial tension, stress ratio 0, stress amplitude 64 MPa, excitation frequency 30 Hz, test temperature: room temperature). . The shape and dimensions (mm) of the test piece are shown in FIG. The measurement area 42 at the center of the test piece 40 was measured by the ultrasonic metal fatigue damage degree measuring apparatus of this example. FIG. 5 shows the relationship between the ultrasonic wave propagation time and the sound pressure attenuation rate with respect to the fatigue level N / Nf (N: the number of repetitions of weight applied to the metal material, Nf: the number of repetitions leading to the fracture).

この結果によれば、図5(a),(b)に示す通り、伝播時間及び音圧減衰率ともに、増減を繰り返しながら疲労破壊に至ることが確かめられ、新品からの測定データの上下の包絡線の、上下包絡線幅比率、もしくは包絡線の微分係数の減少比率を、あらかじめ設定したデータベースと比較することで、その金属材料の疲労損傷度を判断することができた。また、上下包絡線の傾向から疲労破壊に至る加重の繰り返し数や、その金属材料の使用期限等も予測することができた。   According to this result, as shown in FIGS. 5 (a) and 5 (b), it was confirmed that the propagation time and the sound pressure decay rate both lead to fatigue failure while repeatedly increasing and decreasing, and the upper and lower envelopes of the measurement data from the new product The degree of fatigue damage of the metal material could be judged by comparing the ratio of the upper and lower envelope widths of the line or the reduction ratio of the differential coefficient of the envelope with a preset database. It was also possible to predict the number of weighted repetitions leading to fatigue failure from the tendency of the upper and lower envelopes, the expiration date of the metal material, and the like.

また、図7に上記試験に用いたものと同ロットの試験片において、同一負荷を与え、X線回折により残留応力を測定した結果を示す。このグラフは、試験片への繰り返し荷重により、残留応力が疲労の蓄積とともに圧縮側へシフトし、途中解放を生じて、再び圧縮側に向うサイクルを繰り返していることを示している。   FIG. 7 shows the result of measuring the residual stress by X-ray diffraction with the same load applied to the test piece of the same lot as that used in the above test. This graph shows that, due to repeated loading on the test piece, the residual stress shifts to the compression side with the accumulation of fatigue, causing release in the middle, and repeating the cycle toward the compression side again.

図7に示す測定結果によれば、試験片の残留応力が変動しながら収束し、破断に至っている。このグラフの変動の傾向は、図5(b)に示す音圧減衰率と同様な傾向を示しており、応力の蓄積および解放を繰り返して、次第に変動幅を狭め破壊に至っていることから、音圧減衰率を測定することにより、繰り返し荷重による疲労破壊を予測することができることが確かめられた。   According to the measurement results shown in FIG. 7, the residual stress of the test piece converges while fluctuating, leading to fracture. The trend of fluctuation in this graph shows the same tendency as the sound pressure attenuation rate shown in FIG. 5 (b). Since the accumulation and release of stress is repeated, the fluctuation range is gradually narrowed, leading to destruction. It was confirmed that fatigue failure due to repeated loading can be predicted by measuring the pressure decay rate.

この発明の一実施形態の超音波金属疲労損傷度測定装置を示す概略ブロック図である。It is a schematic block diagram which shows the ultrasonic metal fatigue damage degree measuring apparatus of one Embodiment of this invention. この実施形態の超音波金属疲労損傷度測定装置による超音波の金属材料内での伝播を説明した模式図である。It is the schematic diagram explaining propagation in the metal material of the ultrasonic wave by the ultrasonic metal fatigue damage degree measuring apparatus of this embodiment. この実施形態の超音波金属疲労損傷度測定装置により受信した超音波の波形を示すグラフである。It is a graph which shows the waveform of the ultrasonic wave received by the ultrasonic metal fatigue damage degree measuring apparatus of this embodiment. この発明の超音波金属疲労損傷度測定における、金属材料の残留応力に対する超音波の伝播時間及び音圧減衰率の関係を示すグラフである。It is a graph which shows the relationship between the propagation time of an ultrasonic wave and the sound pressure attenuation factor with respect to the residual stress of a metal material in the ultrasonic metal fatigue damage degree measurement of this invention. この発明の一実施例の超音波金属疲労損傷度測定における、疲労度N/Nf(N:繰り返し加重数、Nf:破壊に至った繰り返し荷重数)に対する伝播時間(a)及び音圧減衰率(b)の関係を示すグラフである。In the measurement of the ultrasonic metal fatigue damage degree according to one embodiment of the present invention, the propagation time (a) and the sound pressure decay rate with respect to the fatigue level N / Nf (N: number of repeated weights, Nf: number of repeated loads leading to fracture) ( It is a graph which shows the relationship of b). 上記実施例の超音波金属疲労損傷度測定に用いたマグネシウム合金の試験片形状を示す正面図である。It is a front view which shows the test piece shape of the magnesium alloy used for the ultrasonic metal fatigue damage degree measurement of the said Example. 上記実施例の試験に用いたものと同ロットの試験片において、同一負荷を与え、X線回折により残留応力を測定した結果を示すグラフである。It is a graph which shows the result of having applied the same load in the test piece of the same lot as what was used for the test of the said Example, and measuring the residual stress by X-ray diffraction.

符号の説明Explanation of symbols

10 超音波金属疲労損傷度測定装置
12 金属材料
14 送信機
14a,16a プローブ部
14b 超音波出力部
15 発振回路部
16 受信機
16b 超音波受信部
17 受信回路部
20 本体部
32 演算処理装置
DESCRIPTION OF SYMBOLS 10 Ultrasonic metal fatigue damage measuring apparatus 12 Metal material 14 Transmitters 14a and 16a Probe part 14b Ultrasonic output part 15 Oscillation circuit part 16 Receiver 16b Ultrasonic reception part 17 Reception circuit part 20 Main body part 32 Arithmetic processing device

Claims (6)

金属材料の表面に接触し超音波を送信する送信機と、前記金属材料の表面近傍を伝播した前記超音波を受信する受信機と、前記送信機と受信機を一定間隔離して一体的に保持した本体部とを設け、前記超音波が前記金属材料の表面近傍を伝播する際の音圧減衰率若しくは伝播時間を測定し、既知の金属疲労損傷度に対する音圧減衰率若しくは伝播時間と、前記測定により得られた音圧減衰率若しくは伝播時間とを比較して、前記金属材料の金属疲労損傷度を算出することを特徴とする金属疲労損傷度の非破壊評価方法。   A transmitter that contacts the surface of the metal material and transmits ultrasonic waves, a receiver that receives the ultrasonic waves propagated in the vicinity of the surface of the metal material, and the transmitter and receiver are separated from each other and held together. And measuring the sound pressure attenuation rate or propagation time when the ultrasonic wave propagates in the vicinity of the surface of the metal material, the sound pressure attenuation rate or propagation time with respect to a known degree of metal fatigue damage, A non-destructive evaluation method for the degree of metal fatigue damage, characterized in that the metal fatigue damage degree of the metal material is calculated by comparing the sound pressure attenuation rate or propagation time obtained by the measurement. 前記金属材料表面の金属疲労度測定部には、前記金属材料表面との密着を確実にするとともに前記金属材料表面での超音波の伝播を良好にする液体の媒体を塗布し、前記送信機と受信機に各々取り付けられ前記固体表面に接触する一対のプローブ部を、前記媒体を介して前記金属疲労度測定部に接触させることを特徴とする請求項1記載の金属疲労損傷度の非破壊評価方法。   The metal fatigue level measurement unit on the surface of the metal material is coated with a liquid medium that ensures close contact with the surface of the metal material and improves the propagation of ultrasonic waves on the surface of the metal material, and the transmitter. The non-destructive evaluation of the degree of metal fatigue damage according to claim 1, wherein a pair of probe parts each attached to a receiver and in contact with the solid surface are brought into contact with the metal fatigue degree measurement part via the medium. Method. 前記超音波は、SH波を用いることを特徴とする請求項1又は2記載の金属疲労損傷度の非破壊評価方法。   The non-destructive evaluation method for metal fatigue damage degree according to claim 1, wherein an SH wave is used as the ultrasonic wave. 前記金属部材は、六方晶系の結晶構造を有した金属材料である請求項1、2又は3記載の金属疲労損傷度の非破壊評価方法。   The method for nondestructive evaluation of the degree of metal fatigue damage according to claim 1, wherein the metal member is a metal material having a hexagonal crystal structure. 金属材料の表面に接触し超音波を送信する送信機と、前記金属材料の表面近傍を伝播した前記超音波を受信する受信機と、前記送信機と受信機とを一定間隔離して一体的に保持した本体部と、前記超音波が上記金属材料の表面近傍を伝播する際の音圧減衰率若しくは伝播時間を測定する測定手段と、測定した音圧減衰率若しくは伝播時間の履歴データの変化量を基にして、前記金属材料の金属疲労損傷度を解析算出する対する演算手段とを備えたことを特徴とする超音波金属疲労損傷度測定装置。   A transmitter that contacts the surface of the metal material and transmits ultrasonic waves, a receiver that receives the ultrasonic waves propagated in the vicinity of the surface of the metal material, and the transmitter and the receiver are separated from each other by a certain distance. Main body held, measuring means for measuring the sound pressure attenuation rate or propagation time when the ultrasonic wave propagates near the surface of the metal material, and the amount of change in the history data of the measured sound pressure attenuation rate or propagation time An ultrasonic metal fatigue damage degree measuring apparatus comprising: a calculation means for analyzing and calculating the metal fatigue damage degree of the metal material based on the above. 前記本体部はコ字状に形成され、前記送信機はコ字状の前記本体部の一方の端部に設けられ、前記送信機の超音波出力部は前記金属材料表面側を向くとともに前記受信機の方を向いて設けられ、前記受信機はコ字状の前記本体部の他方の端部に設けられ、前記受信機の超音波受信部は前記金属材料表面側を向くとともに前記送信機側を向いて位置し、前記送信機の超音波出力部と前記受信機の超音波受信部には、各々前記金属材料表面に接触するプローブ部が設けられていることを特徴とする請求項5記載の超音波金属疲労損傷度測定装置。
The main body is formed in a U-shape, the transmitter is provided at one end of the U-shaped main body, and the ultrasonic output unit of the transmitter faces the metal material surface side and receives the signal. The receiver is provided at the other end of the U-shaped main body, and the ultrasonic receiver of the receiver faces the metal material surface side and the transmitter side. 6. A probe unit that is positioned facing the transmitter and that is in contact with the surface of the metal material is provided on each of the ultrasonic output unit of the transmitter and the ultrasonic receiver unit of the receiver. Ultrasonic metal fatigue damage measuring device.
JP2008201050A 2008-08-04 2008-08-04 Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument Pending JP2010038696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008201050A JP2010038696A (en) 2008-08-04 2008-08-04 Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008201050A JP2010038696A (en) 2008-08-04 2008-08-04 Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument

Publications (1)

Publication Number Publication Date
JP2010038696A true JP2010038696A (en) 2010-02-18

Family

ID=42011406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201050A Pending JP2010038696A (en) 2008-08-04 2008-08-04 Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument

Country Status (1)

Country Link
JP (1) JP2010038696A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013447A (en) * 2010-06-29 2012-01-19 Hitachi Cable Ltd Method for inspecting defect in semiconductor single crystal
JP2018124205A (en) * 2017-02-02 2018-08-09 株式会社東芝 Degradation diagnosis method, degradation diagnosis system, and sensor
CN109668960A (en) * 2018-11-23 2019-04-23 中山大学 A kind of point sound source house group decay calculation method
CN109917023A (en) * 2019-03-19 2019-06-21 长沙理工大学 A kind of magnesium alloy LPSO structural appraisal method based on acoustic emission
CN113051768A (en) * 2021-04-08 2021-06-29 广州海关技术中心 Method, system, equipment and medium for evaluating metal fatigue life

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013447A (en) * 2010-06-29 2012-01-19 Hitachi Cable Ltd Method for inspecting defect in semiconductor single crystal
JP2018124205A (en) * 2017-02-02 2018-08-09 株式会社東芝 Degradation diagnosis method, degradation diagnosis system, and sensor
CN109668960A (en) * 2018-11-23 2019-04-23 中山大学 A kind of point sound source house group decay calculation method
CN109917023A (en) * 2019-03-19 2019-06-21 长沙理工大学 A kind of magnesium alloy LPSO structural appraisal method based on acoustic emission
CN113051768A (en) * 2021-04-08 2021-06-29 广州海关技术中心 Method, system, equipment and medium for evaluating metal fatigue life
CN113051768B (en) * 2021-04-08 2023-10-17 广州海关技术中心 Metal fatigue life evaluation method, system, equipment and medium

Similar Documents

Publication Publication Date Title
Mi et al. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth
US7665362B2 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
US7917311B2 (en) Method for structural health monitoring using a smart sensor system
Ohtsu et al. Principles of the acoustic emission (AE) method and signal processing
JP5251911B2 (en) Residual stress calculation device, residual stress measurement device, residual stress calculation method, residual stress measurement method, and program
US20080201089A1 (en) System and method for determining neutral temperature of a metal
Jin et al. Impact-based nonlinear acoustic testing for characterizing distributed damage in concrete
US9176108B2 (en) Method and device for measuring corrosion metal loss
JP2010038696A (en) Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument
Kube et al. Stress-dependent ultrasonic scattering in polycrystalline materials
Erofeev et al. Ultrasonic sensing method for evaluating the limit state of metal structures associated with the onset of plastic deformation
EP1893972B1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
Jiao et al. Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structural health monitoring
JP2002131291A (en) Method and device for inspecting structure
Jassby et al. Experimental technique for measurement of stress-acoustic coefficients of Rayleigh waves: An experimental technique is described for determining the two stress-acoustic coefficients relating Rayleight-wave velocity to biaxial surface stress in elastic solids. The method is applied to two aluminum alloys
US8820137B2 (en) Method of determining void rate by nonlinear acoustic resonance spectrometry in a biphase medium and application in a nuclear reactor
KR100817617B1 (en) Inspection Device, Method for Thickness and Material Properties of Structure and Monitoring Method for Thickness Thinning of the Same
Sgalla et al. A device for measuring the velocity of ultrasonic waves: An application to stress analysis
US20100319454A1 (en) Method and system for determining young&#39;s modulus and poisson&#39;s ratio for a crystalline material
KR101452442B1 (en) Elasticity Test method
Li et al. The Law of Response of L CR Wave in the Plastic and Elastic Deformation in A36 Steel
Buck et al. Rayleigh waves for continuous monitoring of a propagating crack front
Gushchina et al. Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy
US8677825B1 (en) Identification of lamb wave modes
CN115950916B (en) Object surface heat flux density detection method, device and equipment