JP2003270221A - Apparatus and method for measuring properties of substance - Google Patents

Apparatus and method for measuring properties of substance

Info

Publication number
JP2003270221A
JP2003270221A JP2002073937A JP2002073937A JP2003270221A JP 2003270221 A JP2003270221 A JP 2003270221A JP 2002073937 A JP2002073937 A JP 2002073937A JP 2002073937 A JP2002073937 A JP 2002073937A JP 2003270221 A JP2003270221 A JP 2003270221A
Authority
JP
Japan
Prior art keywords
substance
measured
resonance
signal
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002073937A
Other languages
Japanese (ja)
Inventor
Sohei Kawabata
荘平 川端
Masuichi Sanpei
益市 三瓶
Hideki Takahashi
英樹 高橋
Yoshiyasu Matsumura
吉康 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IT RES KK
IT RESEARCH KK
Original Assignee
IT RES KK
IT RESEARCH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IT RES KK, IT RESEARCH KK filed Critical IT RES KK
Priority to JP2002073937A priority Critical patent/JP2003270221A/en
Publication of JP2003270221A publication Critical patent/JP2003270221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring properties of a substance or the like suitable for measuring a sound velocity of a substance having a large attenuation, measuring values corresponding to a sound velocity simply with high precision, and measuring properties of a substance including the degree of compaction of the ground and a layer thickness or the like. <P>SOLUTION: The apparatus comprises a detector 21 detecting the vibration of a substance to be measured 1 and gaining a signal representing the vibration, an amplifier 22 amplifying the signal gained by the detector 21, a vibrator 23 vibrating the substance to be measured 1 by the amplified signal, a resonance circuit 20 gaining a resonance signal by positioning the substance to be measured 1 between the vibrator 23 and the detector 21, and a signal processing unit 30 determining the properties of the substance to be measured 1 based on the resonance frequency of the resonance signal on the resonance circuit 20. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、減衰の大きい物質
の音速を測定するのに適した物質特性測定装置および物
質特性測定方法、さらに測定した音速により物質の強度
や厚さなどの物質の特性を測定するにも適した物質特性
測定装置および物質特性測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material characteristic measuring apparatus and a material characteristic measuring method suitable for measuring the sound velocity of a material having large attenuation, and further the material characteristic such as strength and thickness of the material according to the measured sound velocity. TECHNICAL FIELD The present invention relates to a material property measuring device and a material property measuring method suitable for measuring a substance.

【0002】[0002]

【従来の技術】従来、物質中を伝播する音速を求めるに
は、あらかじめ長さまたは距離がわかっている物質に何
らかの方法で連続的に振動を加えて共振を起こさせ、そ
の振動数から測定する共振法が知られている。共振法
は、進行波と反射波とでできる定在波の振動を用いるた
め、振動モードや振動数はその弾性体の形や大きさで決
まる。したがって、弾性体は棒状のような単純な形状で
なければ振動モードが多数存在し測定が困難になる。ま
た、土のように減衰の大きな弾性体は定在波ができにく
く測定が困難である。
2. Description of the Related Art Conventionally, in order to obtain the speed of sound propagating in a substance, a substance whose length or distance is known in advance is continuously vibrated by some method to cause resonance, and the resonance frequency is measured. The resonance method is known. Since the resonance method uses the vibration of a standing wave composed of a traveling wave and a reflected wave, the vibration mode and frequency are determined by the shape and size of the elastic body. Therefore, unless the elastic body has a simple shape such as a rod shape, there are many vibration modes, which makes measurement difficult. Moreover, an elastic body with large attenuation such as soil is difficult to generate a standing wave and is difficult to measure.

【0003】また従来から、地盤の強度・固さを測定す
るため、締固め層厚50〜60cmでは、起振機を用い
た密度測定装置やフレーム型RI(ラジオアイソトー
プ)密度・水分計を用いて締固め層の品質を確認するこ
とが行われている。フレーム型RI密度計は、締固め層
内に予め鋼製の導管フレームを埋設する必要はあるが、
非破壊方式であるため、定点で地盤の密度変化を検出す
るのには有効である。
Further, conventionally, in order to measure the strength and hardness of the ground, when the compaction layer thickness is 50 to 60 cm, a density measuring device using a vibrator or a frame type RI (radioisotope) density / moisture meter is used. The quality of the compaction layer is confirmed by the In the frame type RI densitometer, it is necessary to embed a steel conduit frame in the compaction layer in advance.
Since it is a non-destructive method, it is effective for detecting the density change of the ground at a fixed point.

【0004】[0004]

【発明が解決しようとする課題】通常の共振測定法を用
いて、地盤のように減衰の大きい物質の音速を測定する
と、共振モードのQが小さく、S/N比を大きく取れな
いために測定精度が悪く、測定そのものが非常に困難で
ある。
When the sound velocity of a material having a large attenuation such as the ground is measured by using a normal resonance measuring method, the Q of the resonance mode is small and the S / N ratio cannot be made large. The accuracy is poor and the measurement itself is very difficult.

【0005】一方、地盤の強度・固さを測定するため、
起振機を用いた密度測定装置では、地盤測定領域ごとに
起振機の重量を最適重量に設定し、スペクトルを計測し
て最適振動周波数を決定しなければならないなど、操作
が煩雑で装置の形状や重量が大きいという問題がある。
また、起振力を検出して測定した振動周波数を補正する
ことや、振動周波数の取り込みタイミングを調整するこ
とが必要で、精度の良い測定が難しいという欠点があ
る。また、フレーム型RI密度・水分計はガンマ線と呼
ばれる放射線を用いており、放射性物質の管理に問題が
ある。さらに、導管フレームを埋設したままで放置しな
ければならないため、コスト的には非常に不利である。
On the other hand, in order to measure the strength and hardness of the ground,
In the density measuring device using the exciter, the weight of the exciter must be set to the optimum weight for each ground measurement area, and the spectrum must be measured to determine the optimum vibration frequency. There is a problem that the shape and weight are large.
Further, it is necessary to correct the vibration frequency measured by detecting the exciting force and to adjust the timing of taking in the vibration frequency, which makes it difficult to perform accurate measurement. Further, the frame type RI density / moisture meter uses radiation called gamma rays, which is problematic in managing radioactive substances. Furthermore, since the conduit frame must be left buried, it is very costly.

【0006】本発明は、上記課題を解決するためになさ
れたものであり、その目的とするところは、簡便にしか
も精度良く弾性体を伝播する音速に対応する値を測定
し、その測定した値により地盤の締固め度や層厚等を含
む物質の特性を測定する物質特性測定装置および物質特
性測定方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to measure a value corresponding to the speed of sound propagating through an elastic body easily and accurately, and measure the measured value. The object of the present invention is to provide a material property measuring device and a material property measuring method for measuring the property of a material including the degree of compaction of the ground, the layer thickness and the like.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の物質特性測定装置は、被測定物質の振動を検出して
その振動を表わす信号を得る検出器と、その検出器で得
られた信号を増幅する増幅器と、その増幅器で増幅され
た後の信号で被測定物質を加振する加振器とを備え、そ
の加振器とその検出器との間に被測定物質を介在させて
共振信号を得る共振回路、および上記共振回路上の共振
信号の共振周波数に基づいて被測定物質の特性を求める
信号処理部を備えたことを特徴とする。
Means for Solving the Problems A substance property measuring apparatus of the present invention which achieves the above object is provided by a detector for detecting the vibration of a substance to be measured and obtaining a signal representing the vibration, and the detector. An amplifier for amplifying the signal and an exciter for exciting the substance to be measured with the signal amplified by the amplifier are provided, and the substance to be measured is interposed between the exciter and the detector. A resonance circuit for obtaining a resonance signal, and a signal processing unit for obtaining the characteristic of the substance to be measured based on the resonance frequency of the resonance signal on the resonance circuit.

【0008】ここで、上記の「共振周波数」はその被測
定物質中の音速に対応する値であり、ここではこの音速
に対応する値と音速とを区別せずに単に「音速」と表現
することがある。
Here, the above-mentioned "resonance frequency" is a value corresponding to the speed of sound in the substance to be measured, and here, the value corresponding to this speed of sound and the speed of sound are simply referred to as "speed of sound". Sometimes.

【0009】本発明の音速測定法は、減衰が大きい物質
の音速測定に適した音速測定法であり、この音速測定法
では、電子回路内の信号を含めた共振を用いている。す
なわち、一般的な共振法とは異なり、特定の周波数また
は周波数をスキャニングして加振器に加える必要はな
い。測定のスタート時は、もし必要であれば、例えば、
ホワイトノイズを加振器に加えれば、ハウリングのよう
な現象で自然に共振を発生する。したがって、物質中で
の振動波の伝播は一方向である。また、弾性体の一般的
な共振モードとは異なる振動数の共振も存在する。ただ
し、共振モードが複数あっても、最も共振し易いモード
で共振するため解析が容易という特徴がある。また、振
動波の減衰が大きい物質でも、電子回路の増幅度を上げ
れば共振するので、ほとんどの物質が測定可能である。
The sound velocity measuring method of the present invention is a sound velocity measuring method suitable for measuring the sound velocity of a substance having a large attenuation. In this sound velocity measuring method, resonance including a signal in an electronic circuit is used. That is, unlike a general resonance method, it is not necessary to scan a specific frequency or a frequency and add it to the exciter. At the start of the measurement, if necessary, for example,
If white noise is added to the exciter, resonance will occur naturally due to a phenomenon such as howling. Therefore, the propagation of oscillatory waves in a material is unidirectional. There are also resonances with frequencies different from the general resonance mode of the elastic body. However, even if there are a plurality of resonance modes, it is easy to analyze because it resonates in the mode that is most likely to resonate. Further, even a substance having a large attenuation of a vibration wave resonates if the amplification degree of the electronic circuit is increased, so that almost all substances can be measured.

【0010】ここで、上記本発明の物質特性測定装置に
おいて、上記信号処理部は、被測定物質中の音速を求め
るものであってもよいが、音速を求めるものに限られ
ず、あるいは音速を求めるとともに、上記信号処理部
は、被測定物質の厚さを求めるものであってもよく、あ
るいは、この物質特性測定装置が上記共振回路上の共振
信号の共振周波数あるいはその共振周波数から求められ
る音速と被測定物質の強度との関係を記憶しておく記憶
部を備え、上記信号処理部は、その記憶部を参照して被
測定物質の強度を求めるものであってもよい。さらに
は、上記本発明の物質特性測定装置において、上記共振
回路上の共振信号の共振周波数あるいはその共振周波数
から求められる音速と前記被測定物質の水分率との関係
を記憶しておく記憶部を備え、上記信号処理部は、その
記憶部を参照して被測定物質の水分率を求めるものであ
ってもよく、さらには、上記共振回路上の共振信号の共
振周波数あるいはその共振周波数から求められる音速と
被測定物質の脂肪率との関係を記憶しておく記憶部を備
え、上記信号処理部は、その記憶部を参照して被測定物
質の脂肪率を求めるものであってもよい。
Here, in the above-mentioned material property measuring apparatus of the present invention, the signal processing unit may be one that obtains the speed of sound in the substance to be measured, but is not limited to one that obtains the speed of sound, or obtains the speed of sound. In addition, the signal processing unit may be one that obtains the thickness of the substance to be measured, or this device for measuring the material properties is the resonance frequency of the resonance signal on the resonance circuit or the sound velocity obtained from the resonance frequency. The signal processing unit may include a storage unit that stores the relationship with the intensity of the substance to be measured, and the signal processing unit may refer to the storage unit to obtain the intensity of the substance to be measured. Further, in the material property measuring apparatus of the present invention, a storage unit for storing the relationship between the resonance frequency of the resonance signal on the resonance circuit or the sound velocity obtained from the resonance frequency and the moisture content of the measured substance. The signal processing unit may be configured to obtain the water content of the substance to be measured with reference to the storage unit, and further, it is obtained from the resonance frequency of the resonance signal on the resonance circuit or the resonance frequency thereof. The signal processing unit may include a storage unit that stores the relationship between the sound velocity and the fat percentage of the substance to be measured, and the signal processing unit may refer to the storage unit to obtain the fat percentage of the substance to be measured.

【0011】また、上記目的を達成する本発明の物質特
性測定方法は、被測定物質の振動を検出してその振動を
表わす信号を得る検出器と、その検出器で得られた信号
を増幅する増幅器と、その増幅器で増幅された後の信号
で被測定物質を加振する加振器とを備えた共振回路を用
い、その共振回路の加振器と検出器との間に被測定物質
を介在させて共振信号を得、その共振信号の共振周波数
に基づいて被測定物質の特性を求めることを特徴とす
る。
Further, the substance property measuring method of the present invention which achieves the above object, a detector for detecting a vibration of a substance to be measured to obtain a signal representing the vibration, and an amplifier for amplifying the signal obtained by the detector. A resonance circuit including an amplifier and an exciter that excites the substance to be measured with a signal amplified by the amplifier is used, and the substance to be measured is placed between the exciter and the detector of the resonance circuit. It is characterized in that a resonance signal is obtained through the interposition and the characteristic of the substance to be measured is obtained based on the resonance frequency of the resonance signal.

【0012】ここで、本発明の物質特性測定方法には、
上述した本発明の物質特性測定装置の各種態様に対応す
る態様全てが含まれる。
Here, in the method for measuring material properties of the present invention,
All aspects corresponding to the various aspects of the above-mentioned material property measuring apparatus of the present invention are included.

【0013】すなわち、本発明の物質特性測定方法は、
被測定物質中の音速を求めてもよく、あるいは、被測定
物質の厚さを求めてもよい。さらには、本発明の物質特
性測定方法は、上記共振回路上の共振信号の共振周波数
あるいはその共振周波数から求められる音速と被測定物
質の強度との関係を求めておき、その関係を参照して被
測定物質の強度を求めてもよく、上記共振回路上の共振
信号の共振周波数あるいはその共振周波数から求められ
る音速と被測定物質の水分率との関係を求めておき、そ
の関係を参照して被測定物質の水分率を求めてもよく、
あるいは、上記共振回路上の共振信号の共振周波数ある
いはその共振周波数から求められる音速と被測定物質の
脂肪率との関係を求めておき、その関係を参照して被測
定物質の脂肪率を求めてもよい。
That is, the material property measuring method of the present invention is
The speed of sound in the substance to be measured may be determined, or the thickness of the substance to be measured may be determined. Furthermore, the material property measuring method of the present invention, the resonance frequency of the resonance signal on the resonance circuit or the relationship between the sound velocity obtained from the resonance frequency and the strength of the measured substance is obtained in advance, and the relationship is referred to. The strength of the substance to be measured may be obtained, and the relation between the resonance frequency of the resonance signal on the resonance circuit or the sound velocity obtained from the resonance frequency and the moisture content of the substance to be measured is obtained in advance, and the relation is referred to. The moisture content of the substance to be measured may be calculated,
Alternatively, the relation between the resonance frequency of the resonance signal on the resonance circuit or the sound velocity obtained from the resonance frequency and the fat percentage of the substance to be measured is obtained in advance, and the fat percentage of the substance to be measured is obtained by referring to the relation. Good.

【0014】[0014]

【発明の実施の形態】以下では、先ず物質中の音波に関
する理論的考察を行ない、その後で、本発明の実施形態
について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the following, first, theoretical consideration will be given to sound waves in a substance, and then embodiments of the present invention will be described.

【0015】音波には縦波と横波があり、各々の伝播速
度をVP,VSすると、物質中のVPとVSはその材質(原
材料および水分、不純物、亀裂等の有無)によって異な
る。有限の大きさの物体を加振すれば、一般にVPとVS
は混成波になり、伝播速度の分析は非常に複雑である。
従って、物体を加振することなく、物体のVPとVSを個
別に測定することができれば、測定対象の物理量あるい
は物性といった特性を精度良く分析し判定することがで
きる。
[0015] The sound waves have transverse wave, each of the propagation velocity V P, V S Accordingly, different depending on the material is V P and V S in a material (raw materials and water, impurities, the presence or absence of cracks) . If an object of finite size is vibrated, V P and V S are generally
Becomes a mixed wave, and the analysis of the propagation velocity is very complicated.
Therefore, if V P and V S of the object can be individually measured without vibrating the object, the characteristics such as the physical quantity or the physical property of the measurement target can be accurately analyzed and determined.

【0016】物体の強度を表す物理量としてヤング率E
があり、ρを密度、σをポアソン比とすると、物体の中
を伝播する音波の伝播速度との間には次の関係がある。
Young's modulus E is a physical quantity representing the strength of an object.
Where ρ is the density and σ is the Poisson's ratio, there is the following relationship with the propagation velocity of the sound wave propagating in the object.

【0017】[0017]

【数1】 [Equation 1]

【0018】αとβは、ポアソン比によって表現され、
材質によって決定される定数である。
Α and β are expressed by Poisson's ratio,
It is a constant determined by the material.

【0019】一方、物質の密度が一定であれば、ヤング
率Eが大きいほど強度は大きくなるので、√(E/ρ)
は物質の強度(固さ度合)を決定する。(1)〜(2)
式は、伝播速度が速ければ物質の強度(固さ度合)が大
きくなり、逆に物質中の水分量が多かったり、固さが不
十分であると、伝播速度が遅くなることを示している。
On the other hand, if the density of the substance is constant, the strength increases as the Young's modulus E increases, so √ (E / ρ)
Determines the strength of the material. (1)-(2)
The formula shows that the higher the propagation speed, the greater the strength (hardness) of the substance, and conversely, the slower the propagation speed when the water content in the substance is large or the hardness is insufficient. .

【0020】音波の伝播速度は、加振器と検出器の間の
距離をL、縦波の共振基本周波数をfP、横波の共振基
本周波数をfSとすると、加振器と検出器の振動が同相
の場合(即ち、加振器の振動が外向きの時、検出器の振
動も外向き)、加振器と検出器が地盤に対して垂直な
ら、 VP=fP・L ……(3) VS=fS・L ……(4) で与えられる。
The propagation velocity of a sound wave is defined as follows: where the distance between the exciter and the detector is L, the longitudinal fundamental resonance frequency is f P , and the transverse fundamental resonance frequency is f S. When the vibration is in phase (that is, when the vibration of the exciter is outward, the vibration of the detector is also outward), if the exciter and the detector are perpendicular to the ground, then V P = f P · L (3) V S = f S · L (4)

【0021】本発明の特徴は、縦波の共振基本周波数f
P、横波の共振基本周波数fSを別々に精度良く測定し、
(3)〜(4)式から各々の伝播速度を求め、物質の強
度・固さ度合を判定することにある。以下、図面を参照
して本発明の実施の形態を説明する。
The feature of the present invention is that the resonance fundamental frequency f of the longitudinal wave is
P and the resonant fundamental frequency f S of the transverse wave are measured separately and accurately,
The purpose is to determine the propagation velocity of each from the equations (3) to (4) and determine the strength and hardness of the substance. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0022】図1は、本発明の第1実施形態に係わる物
質特性測定装置全体のブロック図である。
FIG. 1 is a block diagram of the entire material property measuring apparatus according to the first embodiment of the present invention.

【0023】この図1に示す物質特性測定装置10は、
共振回路20と信号処理部30と、さらにパーソナルコ
ンピュータ40とプリンタ50を備えている。
The material property measuring apparatus 10 shown in FIG.
The resonance circuit 20, the signal processing unit 30, a personal computer 40, and a printer 50 are further provided.

【0024】共振回路20は、被測定物質1を介在させ
て配置された検出器21と加振器23と、さらに増幅器
22とから構成されている。
The resonance circuit 20 is composed of a detector 21, a vibrator 23, and an amplifier 22, which are arranged with the substance to be measured 1 interposed.

【0025】検出器21は、被測定物質1の振動を検出
してその振動を表わす信号を得るものであり、小型のマ
イクロフォンあるいは加速度ピックアップ等が用いられ
る。この検出器21で得られた信号は増幅器22に入力
される。この増幅器22は、前置増幅器221、バッフ
ァ増幅器222、および出力増幅器223からなり、検
出器21から増幅器22に入力された信号は、前置増幅
器221、バッファ増幅器222、および出力増幅器2
23で増幅されて加振器23に印加される。加振器23
は、増幅器22で増幅された後の信号で被測定物質1を
加振する役割りを持つものであり、小型のスピーカある
いは圧電素子などが用いられる。
The detector 21 detects the vibration of the substance 1 to be measured and obtains a signal representing the vibration, and a small microphone or an acceleration pickup is used. The signal obtained by the detector 21 is input to the amplifier 22. The amplifier 22 includes a preamplifier 221, a buffer amplifier 222, and an output amplifier 223. The signal input from the detector 21 to the amplifier 22 is a preamplifier 221, a buffer amplifier 222, and an output amplifier 2.
It is amplified by 23 and applied to the vibrator 23. Shaker 23
Has a role of vibrating the substance to be measured 1 with the signal amplified by the amplifier 22, and a small speaker or a piezoelectric element is used.

【0026】この共振回路20は、検出器21と加振器
23との間に被測定物質1を介在させると、自然発生的
に、あるいは被測定物質1に何らかの振動刺激を加える
ことにより、この共振回路20上に、その被測定物質1
の様々な特性に応じた共振周波数の共振信号が生成され
る。検出器21と加振器23の間におかれた被測定物質
1はあたかも一つの回路素子のように振舞い、閉じられ
た系全体で正帰還回路を構成する。出力増幅器223の
周波数はホワイトノイズのように多数の周波数成分を含
んでおり、この出力増幅器223の出力を徐々に上げて
いけば、被測定物質1の強度・固さや水分率、脂肪率な
どの物理的特性に対応した周波数で共振が発生する。
In the resonance circuit 20, when the substance to be measured 1 is interposed between the detector 21 and the vibration exciter 23, the substance to be measured 1 is generated spontaneously or by applying some vibration stimulus to the substance to be measured 1. The substance to be measured 1 is placed on the resonance circuit 20.
A resonance signal having a resonance frequency according to various characteristics of the is generated. The substance to be measured 1 placed between the detector 21 and the vibrator 23 behaves as if it were one circuit element, and the closed system as a whole constitutes a positive feedback circuit. The frequency of the output amplifier 223 includes many frequency components such as white noise. If the output of the output amplifier 223 is gradually increased, the strength / solidity of the measured substance 1, moisture content, fat content, etc. Resonance occurs at a frequency corresponding to the physical characteristics.

【0027】バッファ増幅器222の出力信号は信号処
理部30にも伝達され、信号処理部30で共振周波数が
解析され、被測定物質1の評価が行なわれる。
The output signal of the buffer amplifier 222 is also transmitted to the signal processing section 30, and the resonance frequency is analyzed in the signal processing section 30 to evaluate the substance 1 to be measured.

【0028】信号処理部30における被測定物質1の評
価結果は、パーソナルコンピュータ40に入力されてそ
のパーソナルコンピュータ内にデータとして蓄積され、
必要に応じて、そのコンピュータ40に接続されたプリ
ンタ50によりその蓄積データがプリントアウトされ
る。
The evaluation result of the substance 1 to be measured in the signal processing unit 30 is input to the personal computer 40 and stored as data in the personal computer,
If necessary, the printer 50 connected to the computer 40 prints out the stored data.

【0029】図2は、図1に1つのブロックで示す信号
処理部30の構成を示すブロック図である。
FIG. 2 is a block diagram showing the configuration of the signal processing unit 30 shown by one block in FIG.

【0030】図1の共振回路20からこの信号処理部3
0に入力された共振信号は、周波数カウンタ31に入力
され、その周波数カウンタでは、その共振信号のパルス
数を計数することにより、その共振信号の共振周波数の
計測が行なわれる。
From the resonance circuit 20 of FIG. 1 to the signal processing unit 3
The resonance signal input to 0 is input to the frequency counter 31, and the frequency counter measures the resonance frequency of the resonance signal by counting the number of pulses of the resonance signal.

【0031】その周波数カウンタ31で得られた共振周
波数を表わす計数値はCPU32に入力され、そのCP
U32では、その計数値から被測定物質1中の音速が求
められる。メモリ33には、その被測定物質1の音速
と、その被測定物質の特性、例えば強度(固さ)、厚
さ、水分率、脂肪率等のそれぞれとの各対応関係(各キ
ャリブレーションカーブ)が記憶されており、CPU3
2では、音速を求めた後、そのメモリ33内の対応テー
ブルを参照して、その被測定物質1の目的とする特性が
求められる。尚、メモリ33には、音速と物質特性との
対応関係に代え、共振周波数(周波数カウンタ31)の
計数値と物質特性との対応関係を記憶しておき、CPU
32では、周波数カウンタ31の計数値を音速に換算す
ることなく、その計数値から直接に物質特性を求めても
よい。
The count value representing the resonance frequency obtained by the frequency counter 31 is input to the CPU 32 and its CP
At U32, the speed of sound in the substance to be measured 1 is obtained from the count value. In the memory 33, each correspondence relationship (each calibration curve) between the sound velocity of the substance to be measured 1 and the characteristics of the substance to be measured, for example, strength (firmness), thickness, moisture content, fat content, and the like. Is stored, and CPU3
In step 2, after obtaining the sound velocity, the target characteristic of the substance 1 to be measured is obtained by referring to the correspondence table in the memory 33. The memory 33 stores the correspondence between the count value of the resonance frequency (frequency counter 31) and the material property, instead of the correspondence between the sound velocity and the material property.
In 32, the material characteristic may be directly obtained from the count value without converting the count value of the frequency counter 31 into the sound velocity.

【0032】上記のようにして求められた、その被測定
物質1の特性を表わす測定データは、表示器34に表示
され、またその測定データは、インターフェース35を
介してパーソナルコンピュータ40に転送されてその測
定データが蓄積される。ここで、データ転送用インター
フェイス35としては、たとえばRS232C,GP−
IB,USBデバイスなどが用いられる。
The measurement data representing the characteristics of the substance 1 to be measured, obtained as described above, is displayed on the display 34, and the measurement data is transferred to the personal computer 40 via the interface 35. The measurement data is accumulated. Here, as the data transfer interface 35, for example, RS232C, GP-
IB, USB device, etc. are used.

【0033】図3は、本発明の第2実施形態に係わる物
質特性測定装置の共振回路部分を示すブロック図であ
る。
FIG. 3 is a block diagram showing a resonance circuit portion of the material property measuring apparatus according to the second embodiment of the present invention.

【0034】図1に示す第1実施形態の回路要素に対応
する回路要素には、図1に付した符号と同一の符号を付
して示し、相違点について説明する。
Circuit elements corresponding to those of the first embodiment shown in FIG. 1 are designated by the same reference numerals as those used in FIG. 1, and the differences will be described.

【0035】検出器21と加振器23は、相互の距離が
一定に保たれた筒状のケース211,231に入り、被
測定物質1の中に埋められる。筒状のケース211,2
31は、先端211a,231aがテーパ状になってお
り、被測定物質1の中に入りやすい構造となっている。
振動方向Aは音波の縦波、振動方向Bは音波の横波を表
している。
The detector 21 and the vibrator 23 enter the cylindrical cases 211 and 231 whose mutual distances are kept constant, and are embedded in the substance 1 to be measured. Tubular cases 211,2
31 has a tip 211a, 231a that is tapered, and has a structure that easily enters the substance to be measured 1.
The vibration direction A represents the longitudinal wave of the sound wave, and the vibration direction B represents the transverse wave of the sound wave.

【0036】この実施形態では、検出器21には、縦波
の振動方向の加速度を検出する加速度ピックアップと横
波の振動方向の加速度を検出する加速度ピックアップと
の双方が備えられており、縦波と横波を分離して検出す
ることができる。このように縦波、横波の成分を分離す
ることによって、精度の良い測定が可能となる。検出器
21と加振器23の間にある被測定物質1の平均化され
た縦波、横波を測定することになるので、多少の異物が
あっても測定に支障はないという特徴を有している。
In this embodiment, the detector 21 is provided with both an acceleration pickup for detecting acceleration in the vibration direction of longitudinal waves and an acceleration pickup for detecting acceleration in the vibration direction of transverse waves. The transverse wave can be detected separately. By separating the longitudinal wave component and the transverse wave component in this manner, accurate measurement can be performed. Since the averaged longitudinal and transverse waves of the substance to be measured 1 between the detector 21 and the vibrator 23 are to be measured, there is a feature that even if there is some foreign matter, the measurement is not hindered. ing.

【0037】図4は、共振周波数(信号)とノイズとの
分離方法の説明図である。
FIG. 4 is an explanatory diagram of a method of separating the resonance frequency (signal) from the noise.

【0038】共振周波数f0の基本波61および高調波
62,63と、回り込みによって発生した低周波ノイズ
64、高周波ノイズ65を、バンドパスフィルタ70を
設けることにより分離できる。
The fundamental wave 61 and the higher harmonic waves 62 and 63 of the resonance frequency f 0 and the low frequency noise 64 and the high frequency noise 65 generated by the sneak are separated by providing the band pass filter 70.

【0039】図5は、地盤の締固め度と共振周波数の相
関図である。
FIG. 5 is a correlation diagram between the degree of compaction of the ground and the resonance frequency.

【0040】この図5は、図3に示す構成の共振回路2
0を持つ本発明の一実施形態としての物質特性測定装置
を用いて地盤の音速を測定したときのその音速(横軸)
と、表面型RI密度水分計で地盤の締固め度を測定した
ときのその締固め度(縦軸)との相関図である。
FIG. 5 shows the resonance circuit 2 having the structure shown in FIG.
The sound velocity when measuring the sound velocity of the ground by using the material property measuring apparatus having the value 0 as an embodiment of the present invention (horizontal axis)
FIG. 3 is a correlation diagram between the compaction degree of the ground and the compaction degree (vertical axis) when the compaction degree of the ground is measured by a surface RI density moisture meter.

【0041】共振周波数が高ければ(音速が速ければ)
地盤の締固め度合は大きくなり、逆に地盤中の水分量が
多かったり締固めが不十分であると、共振周波数は低く
なる(音速は遅くなる)というはっきりとした相関があ
る。
If the resonance frequency is high (if the speed of sound is high)
The degree of compaction of the ground becomes large, and conversely, when the amount of water in the ground is large or the soil is not sufficiently compacted, the resonance frequency becomes low (the sound velocity becomes slow), which is a clear correlation.

【0042】このような相関に基づいて、本発明を適用
した物質特性測定装置10で測定した共振周波数あるい
は音速を表わすデータと、基準とする測定装置、例えば
RI密度・水分計で取得したデータとを比較してキャリ
ブレーションカーブをあらかじめ作成しておく。このキ
ャリブレーションカーブを、信号処理部30のメモリ3
3(図2参照)に記憶しておき、平均的な土壌を用いた
地盤の締固め度測定に用いることができる。さらに精度
良く測定するためには、試験施工時にあらかじめ本発明
の物質特性測定装置で測定し、圧密試験データを基準と
して補正用キャリブレーションカーブを別途作成すれば
良い。
Based on such a correlation, data representing the resonance frequency or sound velocity measured by the material property measuring apparatus 10 to which the present invention is applied, and data obtained by a reference measuring apparatus, for example, an RI density / moisture meter. And a calibration curve is created in advance. This calibration curve is stored in the memory 3 of the signal processing unit 30.
3 (see FIG. 2) and can be used to measure the degree of compaction of the ground using average soil. In order to measure with even higher accuracy, it is sufficient to measure in advance with the material property measuring apparatus of the present invention during test construction, and create a correction calibration curve separately based on the consolidation test data.

【0043】また、GPS(Global Posit
ioning System)用衛星受信機をインター
フェイス35(図2参照)を介してパーソナルコンピュ
ータ40に接続すれば、音速測定と同時に位置情報のデ
ータを取得することができる。
In addition, GPS (Global Position)
If a satellite receiver for an ionizing system) is connected to the personal computer 40 via the interface 35 (see FIG. 2), it is possible to acquire sound position data and position information data at the same time.

【0044】パーソナルコンピュータ40では、音速デ
ータをZ軸にまた位置情報データをX−Y軸上にプロッ
トし、3次元的なグラフィックイメージを作成すること
が可能である。このように地盤管理データをビジュアル
情報として提供することができる。
In the personal computer 40, it is possible to plot sound velocity data on the Z axis and position information data on the XY axes to create a three-dimensional graphic image. In this way, the ground management data can be provided as visual information.

【0045】図6は、本発明に係わる第3実施形態の物
質特性測定装置のブロック図である。上述の第1,第2
実施形態との相違点について説明する。
FIG. 6 is a block diagram of a material property measuring apparatus according to the third embodiment of the present invention. The above first and second
Differences from the embodiment will be described.

【0046】この図6に示す第3実施形態は、共振回路
20の増幅器22および信号処理部30等は、上述の第
1,第2実施形態と同様である。この第3実施形態は、
検出器21と加振器23を被測定物質1に向けて配置
し、その間の音速を測定する装置である。
In the third embodiment shown in FIG. 6, the amplifier 22 and the signal processing section 30 of the resonance circuit 20 are the same as those in the first and second embodiments. In the third embodiment,
This is a device in which the detector 21 and the vibration exciter 23 are arranged toward the substance to be measured 1 and the sound velocity therebetween is measured.

【0047】このように検出器21と加振器23を被測
定物質に向けて配置し、出力増幅器223の出力を徐々
に上げていけば、検出器21と加振器23の間で共振が
発生する。その共振振動数を測定し、検出器21と加振
器23の間の距離から音速を測定することができる。
As described above, when the detector 21 and the vibrator 23 are arranged toward the substance to be measured and the output of the output amplifier 223 is gradually increased, resonance occurs between the detector 21 and the vibrator 23. Occur. The resonance frequency can be measured, and the sound velocity can be measured from the distance between the detector 21 and the vibrator 23.

【0048】被測定物質の音速が求まれば、上述の第
1,第2実施形態の場合と同じく音速により被測定物質
の強度・固さあるいは水分含量、脂肪率のような物理特
性を測定することが可能である。この第3実施形態の場
合、被測定物質に検出器21と加振器23を突き刺す必
要がなく、測定器の形状と測定の準備に関しては非常に
簡単になる。
Once the speed of sound of the substance to be measured is obtained, physical properties such as strength and hardness or water content and fat percentage of the substance to be measured are measured by the speed of sound as in the case of the first and second embodiments. It is possible. In the case of the third embodiment, it is not necessary to puncture the substance to be measured with the detector 21 and the vibrator 23, and the shape of the measuring device and the preparation for the measurement are very simple.

【0049】図7は、図6に示す構成の共振回路20を
持つ本発明の一実施形態としての物質特性測定装置を用
いて地盤の音速を測定したときのその音速(横軸)とT
DR法による土壌水分計で地盤の含水率を測定したとき
の含有率との相関図である。地盤の含水率が小さけれ
ば、共振周波数は高く(音速は速く)、逆に地盤中の水
分含水率が大きくなれば、共振周波数は低くなる(音速
は遅くなる)という相関を示している。
FIG. 7 shows the sound velocity (horizontal axis) and T when the sound velocity of the ground is measured by using the material property measuring apparatus as one embodiment of the present invention having the resonance circuit 20 having the configuration shown in FIG.
It is a correlation diagram with the content rate when measuring the water content of the ground with the soil moisture meter by the DR method. There is a correlation that when the water content of the ground is low, the resonance frequency is high (the sound speed is high), and conversely, when the water content of the ground is high, the resonance frequency is low (the sound speed is slow).

【0050】ここでは、上記の第1〜第3実施形態につ
いて説明したが、本発明は、これらの実施形態に限られ
るものではなく、その要旨を逸脱しない範囲で、種々変
形して実施することが可能である。
Although the above-described first to third embodiments have been described here, the present invention is not limited to these embodiments, and various modifications may be made without departing from the spirit of the invention. Is possible.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
減衰の大きな物質であってもその物質の音速を精度良く
測定でき、その音速を用いて物質の強度・固さ・厚さな
ど、あるいは水分含量、脂肪率などといったその物質の
特性を精度良く測定することができる。装置は小型で軽
量でよく、操作性は非常に改善される。本発明は、わが
国における土木工事全体の質の向上および土木工事のコ
スト低減に貢献できる。さらに、水分含量、脂肪率など
の測定を現場で簡便に行いたいという、様々な産業界の
要望に応えることが可能である。
As described above, according to the present invention,
Even a substance with large attenuation can accurately measure the sound velocity of the substance, and the sound velocity can be used to accurately measure the properties of the substance such as the strength, hardness, and thickness of the substance, or the water content and the fat percentage. can do. The device can be small and lightweight, and the operability is greatly improved. INDUSTRIAL APPLICABILITY The present invention can contribute to improving the quality of civil engineering work as a whole and reducing the cost of civil engineering work in Japan. Further, it is possible to meet various industrial demands for easily measuring the water content and the fat percentage on site.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係わる物質特性測定装
置全体のブロック図である。
FIG. 1 is a block diagram of an entire material property measuring apparatus according to a first embodiment of the present invention.

【図2】図1に1つのブロックで示す信号処理部の構成
を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a signal processing unit shown by one block in FIG.

【図3】本発明の第2実施形態に係わる物質特性測定装
置の共振回路部分を示すブロック図である
FIG. 3 is a block diagram showing a resonance circuit portion of a material property measuring apparatus according to a second embodiment of the present invention.

【図4】共振周波数(信号)とノイズとの分離方法の説
明図である。
FIG. 4 is an explanatory diagram of a method of separating a resonance frequency (signal) and noise.

【図5】地盤の音速を測定したときのその音速(横軸)
と、表面型RI密度水分計で地盤の締固め度を測定した
ときのその締固め度(縦軸)との相関図である。
[Fig. 5] Sound velocity when the sound velocity of the ground is measured (horizontal axis)
FIG. 3 is a correlation diagram between the compaction degree of the ground and the compaction degree (vertical axis) when the compaction degree of the ground is measured by a surface RI density moisture meter.

【図6】本発明に係わる第3実施形態の物質特性測定装
置のブロック図である。
FIG. 6 is a block diagram of a material property measuring apparatus according to a third embodiment of the present invention.

【図7】地盤の音速を測定したときのその音速(横軸)
とTDR法による土壌水分計で地盤の含水率を測定した
ときのその含水率との相関図である。
[Fig. 7] Sound velocity when the sound velocity of the ground is measured (horizontal axis)
FIG. 4 is a correlation diagram with the water content when the water content of the ground is measured with a soil moisture meter by the TDR method.

【符号の説明】[Explanation of symbols]

1 被測定物質 10 物質特性測定装置 20 共振回路 21 検出器 22 増幅器 23 加振器 30 信号処理部 31 周波数カウンタ 32 CPU 33 メモリ 34 表示器 35 インターフェース 40 パーソナルコンピュータ 50 プリンタ 221 前置増幅器 222 バッファ増幅器 223 出力増幅器 1 Substance to be measured 10 Material property measuring device 20 resonance circuit 21 detector 22 Amplifier 23 shaker 30 signal processor 31 frequency counter 32 CPU 33 memory 34 Display 35 Interface 40 personal computer 50 printers 221 Preamplifier 222 buffer amplifier 223 output amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 荘平 宮城県仙台市泉区高森二丁目1番地の40 21世紀プラザ内 株式会社アイ・ティ・リ サーチ内 (72)発明者 三瓶 益市 宮城県仙台市泉区高森二丁目1番地の40 21世紀プラザ内 株式会社アイ・ティ・リ サーチ内 (72)発明者 高橋 英樹 宮城県仙台市宮城野区宮城野1丁目7−22 株式会社ビジネス・サポート・システム 内 (72)発明者 松村 吉康 宮城県仙台市太白区長町5丁目9番地10− 1003 Fターム(参考) 2G047 AA10 AB05 BA04 BC02 BC04 BC15 CA01 CA03 CA07 CB01 CB02 EA10 EA14 GD02 GG20 GG33 GJ21 2G064 AB05 BA02 BA23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Sohei Kawabata             40, 1-2-1, Takamori, Izumi-ku, Sendai City, Miyagi Prefecture             21st Century Plaza IT Re Co., Ltd.             Within the search (72) Inventor Sanbe Masuichi             40, 1-2-1, Takamori, Izumi-ku, Sendai City, Miyagi Prefecture             21st Century Plaza IT Re Co., Ltd.             Within the search (72) Inventor Hideki Takahashi             1-7-22 Miyagino, Miyagino-ku, Sendai City, Miyagi Prefecture               Business Support System Co., Ltd.             Within (72) Inventor Yoshiyasu Matsumura             5-9-10 Nagamachi, Taihaku-ku, Sendai City, Miyagi Prefecture             1003 F term (reference) 2G047 AA10 AB05 BA04 BC02 BC04                       BC15 CA01 CA03 CA07 CB01                       CB02 EA10 EA14 GD02 GG20                       GG33 GJ21                 2G064 AB05 BA02 BA23

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被測定物質の振動を検出して該振動を表
わす信号を得る検出器と、該検出器で得られた信号を増
幅する増幅器と、該増幅器で増幅された後の信号で被測
定物質を加振する加振器とを備え、該加振器と該検出器
との間に被測定物質を介在させて共振信号を得る共振回
路、および前記共振回路上の共振信号の共振周波数に基
づいて前記被測定物質の特性を求める信号処理部を備え
たことを特徴とする物質特性測定装置。
1. A detector for detecting a vibration of a substance to be measured to obtain a signal representing the vibration, an amplifier for amplifying a signal obtained by the detector, and a signal after being amplified by the amplifier. A resonance circuit that includes a vibrating device that vibrates a measurement substance, obtains a resonance signal by interposing the measurement substance between the vibration device and the detector, and a resonance frequency of the resonance signal on the resonance circuit. A material property measuring apparatus comprising a signal processing unit for determining the property of the material to be measured based on the above.
【請求項2】 前記信号処理部は、前記被測定物質中の
音速を求めるものであることを特徴とする請求項1記載
の物質特性測定装置。
2. The substance characteristic measuring apparatus according to claim 1, wherein the signal processing unit obtains a sound velocity in the substance to be measured.
【請求項3】 前記信号処理部は、前記被測定物質の厚
さを求めるものであることを特徴とする請求項1記載の
物質の特性測定装置。
3. The substance characteristic measuring apparatus according to claim 1, wherein the signal processing unit obtains a thickness of the substance to be measured.
【請求項4】 前記共振回路上の共振信号の共振周波数
あるいは該共振周波数から求められる音速と前記被測定
物質の強度との関係を記憶しておく記憶部を備え、 前記信号処理部は、前記記憶部を参照して前記被測定物
質の強度を求めるものであることを特徴とする請求項1
記載の物質特性測定装置。
4. A storage unit for storing the relationship between the resonance frequency of the resonance signal on the resonance circuit or the speed of sound obtained from the resonance frequency and the strength of the substance to be measured, wherein the signal processing unit comprises: The strength of the substance to be measured is obtained by referring to a storage unit.
The described material property measuring apparatus.
【請求項5】 前記共振回路上の共振信号の共振周波数
あるいは該共振周波数から求められる音速と前記被測定
物質の水分率との関係を記憶しておく記憶部を備え、 前記信号処理部は、前記記憶部を参照して前記被測定物
質の水分率を求めるものであることを特徴とする請求項
1記載の物質特性測定装置。
5. A storage unit for storing the resonance frequency of the resonance signal on the resonance circuit or the relationship between the sound velocity obtained from the resonance frequency and the moisture content of the substance to be measured, the signal processing unit comprising: The substance property measuring apparatus according to claim 1, wherein the moisture content of the substance to be measured is obtained by referring to the storage unit.
【請求項6】 前記共振回路上の共振信号の共振周波数
あるいは該共振周波数から求められる音速と前記被測定
物質の脂肪率との関係を記憶しておく記憶部を備え、 前記信号処理部は、前記記憶部を参照して前記被測定物
質の脂肪率を求めるものであることを特徴とする請求項
1記載の物質特性測定装置。
6. A resonance frequency of a resonance signal on the resonance circuit or a storage section for storing a relationship between a sound velocity obtained from the resonance frequency and a fat percentage of the substance to be measured, the signal processing section comprising: The substance property measuring apparatus according to claim 1, wherein the fat content of the substance to be measured is obtained by referring to the storage unit.
【請求項7】 被測定物質の振動を検出して該振動を表
わす信号を得る検出器と、該検出器で得られた信号を増
幅する増幅器と、該増幅器で増幅された後の信号で被測
定物質を加振する加振器とを備えた共振回路を用い、該
共振回路の該加振器と該検出器との間に被測定物質を介
在させて共振信号を得、 前記共振回路上の共振信号の共振周波数に基づいて前記
被測定物質の特性を求めることを特徴とする物質特性測
定方法。
7. A detector for detecting a vibration of a substance to be measured to obtain a signal representing the vibration, an amplifier for amplifying the signal obtained by the detector, and a signal after being amplified by the amplifier. A resonance circuit including a vibration exciter for vibrating a substance to be measured is used to obtain a resonance signal by interposing a substance to be measured between the vibration exciter and the detector of the resonance circuit. The material property measuring method, wherein the property of the material to be measured is obtained based on the resonance frequency of the resonance signal.
JP2002073937A 2002-03-18 2002-03-18 Apparatus and method for measuring properties of substance Pending JP2003270221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073937A JP2003270221A (en) 2002-03-18 2002-03-18 Apparatus and method for measuring properties of substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073937A JP2003270221A (en) 2002-03-18 2002-03-18 Apparatus and method for measuring properties of substance

Publications (1)

Publication Number Publication Date
JP2003270221A true JP2003270221A (en) 2003-09-25

Family

ID=29203469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073937A Pending JP2003270221A (en) 2002-03-18 2002-03-18 Apparatus and method for measuring properties of substance

Country Status (1)

Country Link
JP (1) JP2003270221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007982A (en) * 2010-06-24 2012-01-12 Taisei Corp Non-destructive density measuring device
CN107271563A (en) * 2017-08-21 2017-10-20 兰州交通大学 Vibration isolator experimental apparatus for capability and method
CN107356675A (en) * 2017-08-21 2017-11-17 兰州交通大学 Vibration isolator experimental apparatus for capability and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516751A (en) * 1974-07-09 1976-01-20 Kogyo Gijutsuin Choonpanyoru butsutainoatsusa mataha onsokunosokuteihoho
JPS6344164A (en) * 1986-08-12 1988-02-25 Hakutsuru Syuzo Kk Measurement of alcohol component and extract component
JPH03188842A (en) * 1989-12-20 1991-08-16 Sumitomo Bakelite Co Ltd Ultrasonic living body tester
JPH05215728A (en) * 1992-02-04 1993-08-24 Choonpa Kogyo Kk Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature
JP2968517B2 (en) * 1997-04-30 1999-10-25 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー Device for measuring and / or monitoring a predetermined filling level in a container
JPH11352114A (en) * 1998-06-10 1999-12-24 Fuji Kogyo Kk Ultrasonic measurement method and device
JP2001128972A (en) * 1999-11-02 2001-05-15 Mitsubishi Electric Corp Ultrasonic biotissue measuring apparatus and ultrasonic biotissue measuring method
JP2001165915A (en) * 1999-12-06 2001-06-22 Shimizu Corp Method of calculating density of banking and method of controlling degree of compaction of banking
JP2001208733A (en) * 2000-01-28 2001-08-03 Token Koei:Kk Device for measuring degradation of concrete structure
JP2001337013A (en) * 2000-05-29 2001-12-07 Token Koei:Kk Method and apparatus for measuring strength of soil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516751A (en) * 1974-07-09 1976-01-20 Kogyo Gijutsuin Choonpanyoru butsutainoatsusa mataha onsokunosokuteihoho
JPS6344164A (en) * 1986-08-12 1988-02-25 Hakutsuru Syuzo Kk Measurement of alcohol component and extract component
JPH03188842A (en) * 1989-12-20 1991-08-16 Sumitomo Bakelite Co Ltd Ultrasonic living body tester
JPH05215728A (en) * 1992-02-04 1993-08-24 Choonpa Kogyo Kk Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature
JP2968517B2 (en) * 1997-04-30 1999-10-25 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー Device for measuring and / or monitoring a predetermined filling level in a container
JPH11352114A (en) * 1998-06-10 1999-12-24 Fuji Kogyo Kk Ultrasonic measurement method and device
JP2001128972A (en) * 1999-11-02 2001-05-15 Mitsubishi Electric Corp Ultrasonic biotissue measuring apparatus and ultrasonic biotissue measuring method
JP2001165915A (en) * 1999-12-06 2001-06-22 Shimizu Corp Method of calculating density of banking and method of controlling degree of compaction of banking
JP2001208733A (en) * 2000-01-28 2001-08-03 Token Koei:Kk Device for measuring degradation of concrete structure
JP2001337013A (en) * 2000-05-29 2001-12-07 Token Koei:Kk Method and apparatus for measuring strength of soil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007982A (en) * 2010-06-24 2012-01-12 Taisei Corp Non-destructive density measuring device
CN107271563A (en) * 2017-08-21 2017-10-20 兰州交通大学 Vibration isolator experimental apparatus for capability and method
CN107356675A (en) * 2017-08-21 2017-11-17 兰州交通大学 Vibration isolator experimental apparatus for capability and method
CN107356675B (en) * 2017-08-21 2023-03-28 兰州交通大学 Vibration isolation pad performance experiment device and method
CN107271563B (en) * 2017-08-21 2023-03-31 兰州交通大学 Vibration isolator performance experiment device and method

Similar Documents

Publication Publication Date Title
JP2523324B2 (en) How to measure the degree of compaction of the ground
Kee et al. Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete
US20070095139A1 (en) Method and apparatus for non-destructive testing of concrete structures
US10648952B2 (en) Method and apparatus for non-destructive measurement of modulus of elasticity and/or the compressive strength of masonry samples
Moilanen et al. Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius
DE59702543D1 (en) METHOD FOR NON-DESTRUCTIVE THREE-DIMENSIONAL DETECTION OF STRUCTURES IN CONSTRUCTIONS
Sun et al. Acoustic evaluation of concrete delaminations using ball-chain impact excitation
JP2004150945A (en) Nondestructive measuring instrument and method for dynamic characteristic of concrete by surface wave
CN113406211B (en) Device and method for rapidly and quantitatively detecting horizontal joint defects of shear wall by ultrasonic
JP2003270221A (en) Apparatus and method for measuring properties of substance
JP2581929B2 (en) Measuring device for concrete thickness and intrinsic crack depth
JP2004053586A (en) Evaluation method for ground characteristic
CN1317086A (en) Energetic quantification method for composite materials
Birgül Hilbert transformation of waveforms to determine shear wave velocity in concrete
JP2005315622A (en) Nondestructive inspection method and device of concrete structure
Rodriguez et al. One channel defect imaging in a reverberating medium
JP2001208733A (en) Device for measuring degradation of concrete structure
US20100319454A1 (en) Method and system for determining young&#39;s modulus and poisson&#39;s ratio for a crystalline material
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
Hajali et al. Cross-hole sonic logging and frequency tomography analysis of drilled shaft foundations to better evaluate anomalies locations
US20090271130A1 (en) Method for measuring suspended sediment concentration in water
Toohey et al. Quality management of stabilized soil construction using lab and field seismic testing
Anand et al. Effect of High Confining Pressure on Ultrasonic Wave Velocities and Elastic Moduli of Cemented Sand
JPH0886775A (en) Method for evaluating durability of structure
Kachanov et al. Procedure for Determining the Factor of Correction for Geometric Dispersion of Speed of Sound in Compact Concrete Products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508