JPH0521358A - Manufacture of silicon carbide - Google Patents

Manufacture of silicon carbide

Info

Publication number
JPH0521358A
JPH0521358A JP17138391A JP17138391A JPH0521358A JP H0521358 A JPH0521358 A JP H0521358A JP 17138391 A JP17138391 A JP 17138391A JP 17138391 A JP17138391 A JP 17138391A JP H0521358 A JPH0521358 A JP H0521358A
Authority
JP
Japan
Prior art keywords
silicon carbide
substrate
carbide layer
layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17138391A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Tajima
善光 田島
Masaki Furukawa
勝紀 古川
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17138391A priority Critical patent/JPH0521358A/en
Publication of JPH0521358A publication Critical patent/JPH0521358A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain silicon carbide in which a plurality of silicon carbide layers are formed on the same substrate, and to form many shapes with high controllability. CONSTITUTION:In the first step, gas to become a silicon source, a carbon source is so added with gas for third element as to dope suitable amount of third element when silicon carbide layers 3A, 3B are formed, and reacted on regions on a substrate 1. Thus, the layer 3A is grown on the outer periphery of the substrate 1, and the layer 3B is grown on the central part. The gas composition of the third element used in the first step, is variably selected in response to many shapes to be formed. In the second step to be conducted next, the above grown layers 3A, 3B are held in an environment having an atmosphere, pressure or temperature responsive to the many types to be formed, and crystallized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LEDなどの半導体素
子に使用可能であり、基板上の複数の領域に多形の異な
る炭化珪素層が形成された炭化珪素体を製造する新規な
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a silicon carbide body which can be used in a semiconductor device such as an LED and in which silicon carbide layers having different polymorphisms are formed in a plurality of regions on a substrate. It is a thing.

【0002】[0002]

【従来の技術】炭化珪素は、耐酸性、耐アルカリ性に優
れ、かつ、高エネルギー線に対する損傷も受け難いとい
った耐久性の高い材料であり、半導体材料としても使用
されている。半導体材料への炭化珪素の使用は、古く1
960年代以前から行われており、炭化珪素が後述する
多形という特色を有し、その多形に従って禁制帯幅を
2.2eVから3.3eVまで任意に選択できるからで
あり、またその動作可能な温度領域も他の材料に比べて
極めて範囲が広いからである。ここで、多形とは化学組
成が同一で結晶構造が異なる現象、又はその現象を示す
材料をいう。
2. Description of the Related Art Silicon carbide is a highly durable material which is excellent in acid resistance and alkali resistance and is hardly damaged by high energy rays, and is also used as a semiconductor material. The use of silicon carbide for semiconductor materials has long been
This has been done since before the 960's, because silicon carbide has a characteristic of polymorphism described later, and the band gap can be arbitrarily selected from 2.2 eV to 3.3 eV according to the polymorphism, and it can operate. This is because the wide temperature range is extremely wider than other materials. Here, the polymorph means a phenomenon having the same chemical composition but different crystal structures, or a material exhibiting the phenomenon.

【0003】ところで、炭化珪素を産業上利用するため
には、ある程度の大きさを有する高品質な単結晶である
ことが必要である。このため、従来、アチェソン法と呼
ばれる化学反応を利用するか、又はレーリー法と呼ばれ
る昇華再結晶法を利用して目的規模の大きさに単結晶を
成長させる方法、或はこれらの方法により得られた炭化
珪素の単結晶を基板として用い、その基板上に気相エピ
タキシャル成長法、或は液相エピタキシャル成長法によ
り炭化珪素の単結晶層を成長させ、目的規模の単結晶を
得る方法が採用されていた。
By the way, in order to industrially utilize silicon carbide, it is necessary that it is a high quality single crystal having a certain size. Therefore, conventionally, a single crystal is grown to a target size by using a chemical reaction called Acheson method, or a sublimation recrystallization method called Rayleigh method, or obtained by these methods. A method has been adopted in which a single crystal of silicon carbide is used as a substrate, and a single crystal layer of silicon carbide is grown on the substrate by a vapor phase epitaxial growth method or a liquid phase epitaxial growth method to obtain a target single crystal. ..

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
方法による場合は、禁制帯幅の異なる炭化珪素の多形を
同一基板上に制御性よく形成できないでいた。また、同
一基板上に多形の異なる炭化珪素層を形成しようとする
場合において、上述した従来方法では細かい制御が困難
であった。
However, in the case of the above-mentioned conventional method, it was not possible to form polymorphs of silicon carbide having different forbidden band widths on the same substrate with good controllability. Further, when trying to form different polymorphic silicon carbide layers on the same substrate, it is difficult to perform fine control by the above-mentioned conventional method.

【0005】本発明は、このような課題を解決すべくな
されたものであり、複数の炭化珪素層を同一基板上に形
成した炭化珪素体を得ることができ、しかも多形を制御
性よく形成できる炭化珪素体の製造方法を提供すること
を目的とする。
The present invention has been made to solve such problems, and it is possible to obtain a silicon carbide body in which a plurality of silicon carbide layers are formed on the same substrate, and moreover, polymorphism is formed with good controllability. An object of the present invention is to provide a method for producing a silicon carbide body that can be manufactured.

【0006】[0006]

【課題を解決するための手段】本発明の炭化珪素体の製
造方法は、基板上の複数の領域に多形の異なる炭化珪素
層が形成された炭化珪素体を製造する方法であって、各
領域に形成する炭化珪素層へ含有させる第3元素の組成
又は含有量を異ならせて炭化珪素層を各領域上に成長さ
せる第1工程と、第1工程で得られた各炭化珪素層を結
晶化させる第2工程とを含んでおり、そのことによって
上記目的が達成される。
A method of manufacturing a silicon carbide body according to the present invention is a method of manufacturing a silicon carbide body in which silicon carbide layers having different polymorphisms are formed in a plurality of regions on a substrate. A first step of growing a silicon carbide layer on each region by varying the composition or content of the third element contained in the silicon carbide layer formed in the region, and crystallizing each silicon carbide layer obtained in the first step And a second step of causing the reaction to be achieved, whereby the above object is achieved.

【0007】[0007]

【作用】本発明の第1工程にあっては、シリコン源、カ
ーボン源となるガスに、炭化珪素層が形成されたときに
第3元素が適当量ドーピングされるように第3元素用の
ガスを添加したものを基板の各領域上で反応させる。こ
れにより炭化珪素層が成長する。第1工程で使用する第
3元素のガス組成は、目的とする多形に応じて種々選択
される。その後に行う第2工程では、上述のようにして
成長した炭化珪素層を、目的とする多形に応じた雰囲
気、圧力又は温度を有する環境下に保持して結晶化させ
る。
In the first step of the present invention, the gas for the third element is doped so that the gas serving as the silicon source and the carbon source is doped with an appropriate amount of the third element when the silicon carbide layer is formed. Is added to each region of the substrate to be reacted. Thereby, the silicon carbide layer grows. The gas composition of the third element used in the first step is variously selected according to the desired polymorph. In the subsequent second step, the silicon carbide layer grown as described above is crystallized while being held in an environment having an atmosphere, pressure or temperature according to the desired polymorphism.

【0008】なお、多形の形成は、第1工程と第2工程
を繰り返して行ってもよいし、或は第1工程を複数回行
った後、第2工程を実施して行ってもよい。
The polymorphism may be formed by repeating the first step and the second step, or by performing the first step a plurality of times and then performing the second step. ..

【0009】[0009]

【実施例】本発明の実施例について以下に説明する。EXAMPLES Examples of the present invention will be described below.

【0010】(実施例1)図1は本発明方法により製造
された炭化珪素体を示す断面図である。この炭化珪素体
は、例えば円形をした基板1の中央部の上にホウ素を含
んだ炭化珪素層3Bが、基板1の外周部の上にアルミニ
ウムを含んだ炭化珪素層3Aが形成された構造となって
いる。
Example 1 FIG. 1 is a sectional view showing a silicon carbide body manufactured by the method of the present invention. This silicon carbide body has, for example, a structure in which a silicon carbide layer 3B containing boron is formed on a central portion of a circular substrate 1 and a silicon carbide layer 3A containing aluminum is formed on an outer peripheral portion of the substrate 1. Is becoming

【0011】上記炭化珪素体に適用した場合の本発明方
法を説明する。先ず、図2に示すように、基板1の中央
部の上に例えば窒化珪素からなるマスク層2を形成し、
これを図示しない反応炉、例えば高周波誘導コイルが外
周に設けられた反応炉の内部にセットした。基板1とし
ては、例えば前述したアチェソン法と呼ばれる化学反応
法により得られた6H構造を有する炭化珪素の単結晶を
用いた。
The method of the present invention when applied to the above silicon carbide body will be described. First, as shown in FIG. 2, a mask layer 2 made of, for example, silicon nitride is formed on the central portion of the substrate 1,
This was set inside a reaction furnace (not shown), for example, a reaction furnace provided with a high frequency induction coil on the outer periphery. As the substrate 1, for example, a silicon carbide single crystal having a 6H structure obtained by a chemical reaction method called the above-mentioned Acheson method was used.

【0012】次いで、マスク層2を除く基板1の上に選
択的にエピタキシャル成長させるために、例えば1%程
度の塩化水素ガスを含んだプロパンとシランとトリメチ
ルアルミニウムとを混合したガスを、前記反応炉内に給
送して1400°Cの温度で反応させ、図3に示すよう
にアルミニウムを原子比で約3%含んだ炭化珪素層3A
を基板1の外周部上に成長させた。
Then, for selective epitaxial growth on the substrate 1 excluding the mask layer 2, for example, a gas prepared by mixing propane, silane and trimethylaluminum containing about 1% hydrogen chloride gas with the reaction furnace is used. 3A in which the silicon carbide layer 3A containing aluminum is contained at about 3% by atomic ratio as shown in FIG.
Were grown on the outer periphery of the substrate 1.

【0013】次いで、図4に示すようにマスク層2を除
去した後、上述のアルミニウムを含んだ炭化珪素層3A
を覆い隠すように、例えば窒化珪素からなるマスク層4
を形成した(図5参照)。
Next, as shown in FIG. 4, after removing the mask layer 2, the above-mentioned silicon carbide layer 3A containing aluminum is formed.
Mask layer 4 made of, for example, silicon nitride so as to cover
Was formed (see FIG. 5).

【0014】続いて、例えば1%程度の塩化水素ガスを
含んだプロパンとシランとジボランの混合ガスを、前記
反応炉内に給送して1400°Cの温度で反応させ、図
6に示すように炭化珪素層3Aが形成されていない基板
1の中央部上にホウ素を原子比で約1%含んだ炭化珪素
層3Bを成長させた。
Then, a mixed gas of propane, silane and diborane containing, for example, about 1% hydrogen chloride gas is fed into the reaction furnace and reacted at a temperature of 1400 ° C., as shown in FIG. A silicon carbide layer 3B containing boron at an atomic ratio of about 1% was grown on the central portion of the substrate 1 on which the silicon carbide layer 3A was not formed.

【0015】次いで、図7に示すようにマスク層4を除
去した。以上の第1工程により、基板1の中央部とその
外周部の異なる領域に2種類の炭化珪素層3Aと炭化珪
素層3Bとを成長させた、結晶化前の炭化珪素体を得
た。
Then, the mask layer 4 was removed as shown in FIG. By the above first step, a silicon carbide body before crystallization was obtained in which two types of silicon carbide layers 3A and 3B were grown in different regions of the central portion and the outer peripheral portion of substrate 1.

【0016】次いで、第2工程を行う。この工程では、
図8に示すように反応炉の内部Cを0.2MPaの窒素
雰囲気とし、かつ温度を2500°Cとし、上記結晶化
前の炭化珪素体を100時間反応させた。この第2工程
により、前記炭化珪素層3Aと炭化珪素層3Bとが結晶
化されて図1に示す炭化珪素体が得られる。
Next, the second step is performed. In this process,
As shown in FIG. 8, the inside C of the reaction furnace was set to a nitrogen atmosphere of 0.2 MPa, the temperature was set to 2500 ° C., and the silicon carbide body before crystallization was reacted for 100 hours. By the second step, silicon carbide layer 3A and silicon carbide layer 3B are crystallized to obtain the silicon carbide body shown in FIG.

【0017】その後、得られた炭化珪素体をX線回折法
により炭化珪素層3Aと炭化珪素層3Bの多形を調べた
ところ、アルミニウムを含んだ炭化珪素層3Aの領域は
4H構造となっており、ホウ素を含んだ炭化珪素層3B
の領域は6H構造となっていることが確認された。
After that, when the obtained silicon carbide body was examined for polymorphism of the silicon carbide layer 3A and the silicon carbide layer 3B by X-ray diffraction, the region of the silicon carbide layer 3A containing aluminum had a 4H structure. And a silicon carbide layer 3B containing boron
It was confirmed that the region of 6 had a 6H structure.

【0018】(実施例2)上述した実施例1における第
1工程で得られた結晶化前の炭化珪素体を、1.0MP
aの窒素雰囲気で2500°Cの温度にした反応炉内で
100時間反応させたところ、アルミニウムを含んだ炭
化珪素層3Aの領域は4H構造となり、ホウ素を含んだ
炭化珪素層3Bの領域は3C構造となっていることが確
認された。即ち、反応炉の窒素雰囲気の状態を変えるこ
とにより、炭化珪素層3Aの領域を実施例1と同様に4
H構造としたまま、炭化珪素層3Bの領域を実施例1の
6H構造から3C構造と変化させることができる。
(Embodiment 2) The silicon carbide body before crystallization obtained in the first step in the above-mentioned Embodiment 1 is treated with 1.0MP
When the reaction was performed for 100 hours in the reaction furnace in which the temperature was set to 2500 ° C. in the nitrogen atmosphere of a, the region of the silicon carbide layer 3A containing aluminum had a 4H structure and the region of the silicon carbide layer 3B containing boron was 3C. The structure was confirmed. That is, by changing the state of the nitrogen atmosphere of the reaction furnace, the area of the silicon carbide layer 3A is changed to the same as in the first embodiment.
The region of the silicon carbide layer 3B can be changed from the 6H structure of Example 1 to the 3C structure while maintaining the H structure.

【0019】(実施例3)上述した実施例1における第
1工程で使用したガスに代えて、炭化珪素層となったと
きにアルミニウムの濃度が原子比で1%、ホウ素の濃度
が原子比で1%になるように各々組成を調整したガスを
使用した。これにより、基板外周部上に形成した炭化珪
素層3Aのアルミニウム濃度を3%から1%に変え、基
板中央部上に形成した炭化珪素層3Bは同様とした。
(Example 3) Instead of the gas used in the first step in Example 1 described above, when a silicon carbide layer was formed, the concentration of aluminum was 1% in atomic ratio and the concentration of boron was in atomic ratio. Gases each having a composition adjusted to 1% were used. Thereby, the aluminum concentration of the silicon carbide layer 3A formed on the outer peripheral portion of the substrate was changed from 3% to 1%, and the silicon carbide layer 3B formed on the central portion of the substrate was the same.

【0020】その後、この炭化珪素体を、実施例1と同
一条件の0.2MPaの窒素雰囲気で2500°Cの温
度にした反応炉内で反応させたところ、アルミニウムを
1%含んだ領域は3C構造となり、ホウ素を1%含んだ
領域は、6H構造となっていることが確認された。即
ち、濃度を変えたアルミニウムを含む領域を、実施例1
の4H構造から3C構造に変化させることが可能であ
る。
Thereafter, this silicon carbide body was reacted in a reactor having a temperature of 2500 ° C. in a nitrogen atmosphere of 0.2 MPa under the same conditions as in Example 1, and the area containing 1% of aluminum contained 3 C. It was confirmed that the region having a structure and containing 1% of boron had a 6H structure. That is, the region containing aluminum having a different concentration is set as in Example 1.
It is possible to change from the 4H structure to the 3C structure.

【0021】(実施例4)実施例1における第1工程で
使用したガスに代えて、炭化珪素層となったときにアル
ミニウムの濃度が原子比で1%、アルミニウムの濃度が
原子比で3%となるように各々組成を調整したガスを使
用した。これにより、基板外周部上に形成した炭化珪素
層3Aのアルミニウム濃度を3%から1%にし、基板中
央部上に形成した炭化珪素層3Bの第3元素をホウ素か
らアルミニウムに変えると共に、濃度を1%から3%に
変化させた。
(Example 4) Instead of the gas used in the first step in Example 1, when a silicon carbide layer was formed, the concentration of aluminum was 1% by atomic ratio and the concentration of aluminum was 3% by atomic ratio. A gas whose composition was adjusted so that Thereby, the aluminum concentration of the silicon carbide layer 3A formed on the outer peripheral portion of the substrate is changed from 3% to 1%, the third element of the silicon carbide layer 3B formed on the central portion of the substrate is changed from boron to aluminum, and the concentration is changed. It was changed from 1% to 3%.

【0022】その後、このようにして得た炭化珪素体
を、0.5MPaの窒素雰囲気で2500°Cの温度に
した反応炉で100時間反応させたところ、1%のアル
ミニウム濃度の領域は3C構造となり、3%のアルミニ
ウム濃度の領域は4H構造となっていることが確認され
た。即ち、2つの領域の多形を各々実施例1とは異なら
せることが可能である。
Then, the silicon carbide body thus obtained was reacted for 100 hours in a reactor having a temperature of 2500 ° C. in a nitrogen atmosphere of 0.5 MPa, and a region having an aluminum concentration of 1% had a 3C structure. Therefore, it was confirmed that the region having an aluminum concentration of 3% had a 4H structure. That is, the polymorphisms of the two regions can be different from those in the first embodiment.

【0023】したがって、本実施例にあっては、基板上
の2つの領域に多形の異なる炭化珪素層を形成でき、ま
た、その形成に要する制御条件の変更が容易であり、制
御性よく多形を形成することができる。
Therefore, according to the present embodiment, it is possible to form different polymorphic silicon carbide layers in the two regions on the substrate, and it is easy to change the control conditions required for the formation, and it is possible to control with good controllability. A shape can be formed.

【0024】なお、上述した実施例1から4は本発明方
法の実施態様の一部であり、本発明方法は第1工程で使
用するガス組成、第2工程での反応炉の雰囲気、圧力又
は温度等を変えることにより、上述した数種の炭化珪素
体とは異なるものを製造することができる。
The above-mentioned Examples 1 to 4 are some of the embodiments of the method of the present invention. The method of the present invention is such that the gas composition used in the first step, the atmosphere of the reaction furnace in the second step, the pressure or By changing the temperature and the like, it is possible to manufacture different ones from the above-mentioned several kinds of silicon carbide bodies.

【0025】また、上記説明では基板上の領域を2に区
分し、2種類の炭化珪素層を形成する構成としている
が、本発明はこのような構成に限らず、基板上を3つ以
上に区分し、各領域で多形を異ならせて、或はそのうち
の一部を同じ多形として、炭化珪素体を製造する場合に
も適用できる。
Further, in the above description, the region on the substrate is divided into two, and two types of silicon carbide layers are formed, but the present invention is not limited to such a configuration, and there are three or more regions on the substrate. The present invention can also be applied to the case where a silicon carbide body is manufactured by dividing and making the polymorphism different in each region, or making some of them the same polymorphism.

【0026】[0026]

【発明の効果】本発明による場合には、禁制帯幅の異な
る炭化珪素の多形を同一基板上に制御性よく製造するこ
とが可能であり、従来による方法では見られることがで
きなかった半導体素子構造を提供することが可能とな
り、これにより高密度の機能素子化、三次元構造を有す
る機能素子化の開発に寄与することが可能となる。
According to the present invention, polymorphs of silicon carbide having different forbidden band widths can be manufactured on the same substrate with good controllability, and semiconductors that cannot be seen by the conventional method. It becomes possible to provide an element structure, which can contribute to the development of a high-density functional element and a functional element having a three-dimensional structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1により得られた炭化珪素層を示す断面
図。
FIG. 1 is a cross-sectional view showing a silicon carbide layer obtained in Example 1.

【図2】第1工程の製造工程を示す断面図。FIG. 2 is a sectional view showing a manufacturing process of a first step.

【図3】第1工程の製造工程を示す断面図。FIG. 3 is a sectional view showing a manufacturing process of a first step.

【図4】第1工程の製造工程を示す断面図。FIG. 4 is a sectional view showing a manufacturing process of a first step.

【図5】第1工程の製造工程を示す断面図。FIG. 5 is a cross-sectional view showing the manufacturing process of the first step.

【図6】第1工程の製造工程を示す断面図。FIG. 6 is a cross-sectional view showing the manufacturing process of the first step.

【図7】第1工程の製造工程を示す断面図。FIG. 7 is a sectional view showing a manufacturing process of a first step.

【図8】第2工程の製造工程を示す断面図。FIG. 8 is a cross-sectional view showing the manufacturing process of the second step.

【符号の説明】[Explanation of symbols]

1 基板 2 マスク材 4 マスク材 3A 炭化珪素層 3B 炭化珪素層 1 Substrate 2 Mask Material 4 Mask Material 3A Silicon Carbide Layer 3B Silicon Carbide Layer

Claims (1)

【特許請求の範囲】 【請求項1】基板上の複数の領域に多形の異なる炭化珪
素層が形成された炭化珪素体を製造する方法であって、 各領域に形成する炭化珪素層へ含有させる第3元素の組
成又は含有量を異ならせて炭化珪素層を各領域上に成長
させる第1工程と、 第1工程で得られた各炭化珪素層を結晶化させる第2工
程とを含む炭化珪素体の製造方法。
Claim: What is claimed is: 1. A method of manufacturing a silicon carbide body in which a plurality of silicon carbide layers having different polymorphisms are formed in a plurality of regions on a substrate, the method comprising the step of adding to a silicon carbide layer formed in each region. Carbonization including a first step of growing a silicon carbide layer on each region with a different composition or content of the third element to be caused, and a second step of crystallizing each silicon carbide layer obtained in the first step Method for manufacturing silicon body.
JP17138391A 1991-07-11 1991-07-11 Manufacture of silicon carbide Withdrawn JPH0521358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17138391A JPH0521358A (en) 1991-07-11 1991-07-11 Manufacture of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17138391A JPH0521358A (en) 1991-07-11 1991-07-11 Manufacture of silicon carbide

Publications (1)

Publication Number Publication Date
JPH0521358A true JPH0521358A (en) 1993-01-29

Family

ID=15922162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17138391A Withdrawn JPH0521358A (en) 1991-07-11 1991-07-11 Manufacture of silicon carbide

Country Status (1)

Country Link
JP (1) JPH0521358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104799A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal ingot and its manufacturing method
JP2018019047A (en) * 2016-07-29 2018-02-01 富士電機株式会社 Silicon carbide semiconductor substrate, silicon carbide semiconductor substrate manufacturing method, semiconductor device and semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104799A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal ingot and its manufacturing method
JP4673528B2 (en) * 2001-09-28 2011-04-20 新日本製鐵株式会社 Silicon carbide single crystal ingot and method for producing the same
JP2018019047A (en) * 2016-07-29 2018-02-01 富士電機株式会社 Silicon carbide semiconductor substrate, silicon carbide semiconductor substrate manufacturing method, semiconductor device and semiconductor device manufacturing method
WO2018021575A1 (en) * 2016-07-29 2018-02-01 富士電機株式会社 Silicon carbide semiconductor substrate, production method for silicon carbide semiconductor substrate, semiconductor device, and production method for semiconductor device
US10453924B2 (en) 2016-07-29 2019-10-22 Fuji Electric Co., Ltd. Silicon carbide semiconductor substrate, method of manufacturing silicon carbide semiconductor substrate, semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
EP2484815B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2010095397A (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JPH0455397A (en) Production of alpha-sic single crystal
JP3237069B2 (en) Method for producing SiC single crystal
JPH1067600A (en) Single crystal silicon carbide ingot and its production
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JPH04193799A (en) Production of silicon carbide single crystal
JPS63224225A (en) Substrate of thin film single crystal diamond
JPH0521358A (en) Manufacture of silicon carbide
KR20150142245A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPS6120514B2 (en)
JP2002121099A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal wafer, and method for producing silicon carbide single crystal
JP2002293694A (en) Silicon carbide single crystal ingot and method of manufacturing for the same
JPH0416597A (en) Production of silicon carbide single crystal
JPS6350399A (en) Method for growing p-type sic single crystal
JP2680617B2 (en) Method for growing silicon carbide single crystal
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JPS6152119B2 (en)
JPS5928329A (en) Epitaxial growth method of silicon
JPH0364480B2 (en)
JPS5830280B2 (en) Method for manufacturing silicon carbide crystal layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008