JPH0521357A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0521357A
JPH0521357A JP16857591A JP16857591A JPH0521357A JP H0521357 A JPH0521357 A JP H0521357A JP 16857591 A JP16857591 A JP 16857591A JP 16857591 A JP16857591 A JP 16857591A JP H0521357 A JPH0521357 A JP H0521357A
Authority
JP
Japan
Prior art keywords
growth
insulating film
silicon
period
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16857591A
Other languages
Japanese (ja)
Inventor
Noriyuki Miyata
典幸 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16857591A priority Critical patent/JPH0521357A/en
Publication of JPH0521357A publication Critical patent/JPH0521357A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To rapidly manufacture a thick grown layer by a selective vapor epitaxial growth with an insulating film as a mask. CONSTITUTION:This method comprises the steps of growing epitaxially grown layers 5-8 selectively grown on an exposed surface of a substrate 1 within a latent period in which deposition of silicon does not occur on an insulating film 2 repeatedly a plurality of times through growth pausing periods to form a grown layer 9 having a desired thickness. During the pausing period, at least one of a step of irradiating with an ultraviolet ray, a step of holding a growing atmosphere under a pressure of 1/10,000 of the growing time and a step of holding it at a high temperature higher by 100 to 200 deg.C than that at the time of growing the substrate 1, is conducted, mixture gas of Si2H6 and hydrogen is used as a material, and held in hydrogen containing 0.1-10% of fluorine or chlorine during the pausing time. A period from the start of growing to a time point of rapidly increasing an Auger spectroscopic spectrum of Si on the surface of the insulating film is previously measured, and the period is formed as the latent period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体の製造方法,特に
絶縁膜をマスクとするシリコンの選択気相エピタキシャ
ル成長に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing method, and more particularly to selective vapor phase epitaxial growth of silicon using an insulating film as a mask.

【0002】目的の形状を結晶成長の際に直接形成する
選択エピタキシャル成長法は,複雑かつ微細な半導体装
置を製造する重要な技術として今日広く用いられてい
る。しかし,選択成長法での成長速度は遅く,また厚い
エピタキシャル成長層を製造することは容易ではない。
The selective epitaxial growth method for directly forming a desired shape during crystal growth is widely used today as an important technique for manufacturing a complicated and fine semiconductor device. However, the growth rate by the selective growth method is slow, and it is not easy to manufacture a thick epitaxial growth layer.

【0003】このため,所望の膜厚の選択エピタキシャ
ル結晶パターンを速く確実に成長する方法が必要とされ
ている。
Therefore, there is a need for a method for growing a selective epitaxial crystal pattern having a desired film thickness quickly and reliably.

【0004】[0004]

【従来の技術】選択成長は,マスクとなる絶縁膜上にシ
リコンが堆積せず,同時にシリコン結晶が露出する面に
はシリコンがエピタキシャル成長する条件下で行われ
る。
2. Description of the Related Art Selective growth is carried out under the condition that silicon is not deposited on an insulating film serving as a mask and at the same time silicon is epitaxially grown on a surface where a silicon crystal is exposed.

【0005】従来,絶縁膜上のシリコンの成長核の発生
を阻止して上記条件を満たす選択成長を実現するため
に,成長核をエッチングするHClガスを混入し,ある
いは通常のCVD法より低い圧力下で成長するULPC
VD(Ultralow pressure CVD) 法が使用されてい
た。
Conventionally, in order to prevent generation of growth nuclei of silicon on an insulating film and realize selective growth satisfying the above conditions, HCl gas for etching growth nuclei is mixed, or a pressure lower than that of a normal CVD method is used. ULPC growing below
The VD (Ultralow pressure CVD) method was used.

【0006】しかし,これら従来の方法では原料ガスの
供給が少ないことから通常のCVDよりも成長速度が遅
いのである。このため,厚いエピタキシャル層を成長す
るには長時間を必要とした。
However, in these conventional methods, the growth rate is slower than that of ordinary CVD because the supply of the source gas is small. Therefore, it took a long time to grow a thick epitaxial layer.

【0007】さらに,成長時間が長い時には絶縁膜上へ
のシリコンの堆積を阻止することができず,このため長
時間を必要とする厚いエピタキシャル成長層を選択成長
法により形成することはできなかった。
Further, when the growth time is long, it is not possible to prevent the deposition of silicon on the insulating film, so that it is impossible to form a thick epitaxial growth layer which requires a long time by the selective growth method.

【0008】そこで,成長速度が大きく,しかも絶縁膜
上へのシリコンの堆積を防止する方法として,スパッタ
法を併用するものが考案された。この方法は,絶縁膜上
のシリコンをスパッタすることにより絶縁膜上へのシリ
コンの堆積を阻害するのである。
Therefore, as a method of preventing the deposition of silicon on the insulating film with a high growth rate, a method using the sputtering method together has been devised. This method inhibits the deposition of silicon on the insulating film by sputtering the silicon on the insulating film.

【0009】しかし,エピタキシャル成長面をもスパッ
タすることから成長面にダメージを与えエピタキシャル
成長層の品質を低下するおそれがある。
However, since the epitaxial growth surface is also sputtered, the growth surface may be damaged and the quality of the epitaxial growth layer may be degraded.

【0010】[0010]

【発明が解決しようとする課題】上述のように従来の選
択エピタキシャル成長では,成長速度が遅いという欠点
があり,また厚いエピタキシャル層を成長することがで
きないという問題があった。
As described above, the conventional selective epitaxial growth has a drawback that the growth rate is slow and there is a problem that a thick epitaxial layer cannot be grown.

【0011】さらに,スパッタ法を併用して成長速度を
向上し,厚い成長を可能とする方法では,エピタキシャ
ル成長層の品質が低下するおそれがある。本発明はシリ
コンの厚い選択気相エピタキシャル成長層を迅速に製造
することができる半導体装置の製造方法を提供すること
を目的とする。
Further, in the method in which the growth rate is improved by using the sputtering method to enable thick growth, the quality of the epitaxial growth layer may be deteriorated. An object of the present invention is to provide a method for manufacturing a semiconductor device capable of rapidly manufacturing a thick selective vapor phase epitaxial growth layer of silicon.

【0012】[0012]

【課題を解決するための手段】図1は本発明の原理説明
図であり,図1(a)は成長時間に対する酸化膜からな
る絶縁膜マスク上のSiのオージェ分光スペクトルの強
度変化を,図1(b)は成長時間に対して露出したシリ
コン基板表面上に成長したエピタキシャル層の厚さを表
している。
FIG. 1 is a diagram for explaining the principle of the present invention. FIG. 1 (a) is a graph showing the intensity change of the Auger spectrum of Si on an insulating film mask made of an oxide film with respect to the growth time. 1 (b) represents the thickness of the epitaxial layer grown on the surface of the silicon substrate exposed with respect to the growth time.

【0013】図2は本発明の実施例工程図であり,基板
断面により選択成長の工程を表している。上記課題を解
決するための本発明の第一の構成は,図1,図2を参照
して,半導体基板1上に形成された絶縁膜2をマスクと
して該基板1の露出面上にシリコンを選択的に気相エピ
タキシャル成長する工程を有する半導体装置の製造方法
において,該絶縁膜2上に実質的にシリコンの堆積が起
こらない潜伏期間ts 内に該基板1の露出面上に選択的
に成長されたシリコンのエピタキシャル成長層5,6,
7,8を成長する工程を,成長休止期間を挟んで複数回
繰り返して所望の厚さのエピタキシャル成長層9を形成
する工程を有し,該成長休止期間に,紫外線を照射する
工程,成長雰囲気を成長時の1万分の1以下の圧力に保
つ工程,及び該基板1を成長時よりも100℃乃至20
0℃高温に保つ工程のうち少なくとも一工程を行うこと
を特徴として構成し,及び,第二の構成は,第一の構成
の半導体装置の製造方法において,シリコンの選択エピ
タキシャル成長をジシラン(Si2 6 )と水素との混
合ガスを原料ガスとする減圧CVD法により行い,該成
長休止期間に行う第一の構成の工程に代えて,該成長休
止期間に弗素及び塩素の何れかを0.1%〜10%含む
水素からなる雰囲気に保つことを特徴として構成する。
FIG. 2 is a process chart of an embodiment of the present invention, which shows the process of selective growth by the cross section of the substrate. A first configuration of the present invention for solving the above problem is to refer to FIGS. 1 and 2 by using an insulating film 2 formed on a semiconductor substrate 1 as a mask to form silicon on the exposed surface of the substrate 1. In a method of manufacturing a semiconductor device having a step of selectively performing vapor phase epitaxial growth, a selective growth is performed on an exposed surface of the substrate 1 within a latent period t s at which silicon is not substantially deposited on the insulating film 2. Epitaxially grown layers 5, 6 of silicon
There is a step of forming the epitaxial growth layer 9 having a desired thickness by repeating the steps of growing 7 and 8 a plurality of times with a growth pause period interposed therebetween. A step of maintaining the pressure at a level of 1 / 10,000 or less during growth, and the substrate 1 at 100 ° C. to 20 ° C. higher than during growth.
At least one of the steps of maintaining a high temperature of 0 ° C. is performed, and the second configuration is the method for manufacturing a semiconductor device of the first configuration, in which the selective epitaxial growth of silicon is performed by disilane (Si 2 H 2 6 ) and hydrogen are used as a source gas by a low pressure CVD method, and instead of the step of the first structure performed during the growth pause period, 0.1% of fluorine or chlorine is added during the growth pause period. % To 10% hydrogen is maintained in the atmosphere.

【0014】[0014]

【作用】シリコンの気相エピタキシャル成長では,絶縁
膜上にシリコンが堆積するため選択成長には適しないと
される条件であっても,成長初期には潜伏期間が存在
し,この期間内は絶縁膜上へのシリコンの成長が抑制さ
れる結果選択成長がなされることが知られている。
[Function] In vapor phase epitaxial growth of silicon, a latent period exists at the initial stage of growth even under the condition that silicon is deposited on the insulating film and is not suitable for selective growth. It is known that selective growth is performed as a result of the growth of silicon being suppressed.

【0015】本発明の発明者は,絶縁膜表面のSiのオ
ージェスペクトルを観測して,上記潜伏期間が,明瞭な
臨界的期間として観測されることを見出したのである。
以下この事実を図1により説明する。
The inventor of the present invention has found that the latent period is observed as a clear critical period by observing the Auger spectrum of Si on the surface of the insulating film.
This fact will be described below with reference to FIG.

【0016】図1(a)は,シリコンのULPCVDに
おいて,絶縁膜上に堆積したシリコンをオージェ分光に
より測定した結果であり,縦軸はSiLMM線の強度をO
KLL 線との比で表している。
FIG. 1 (a) shows the results of Auger spectroscopy of silicon deposited on an insulating film in ULPCVD of silicon, where the vertical axis represents the intensity of the Si LMM line.
It is expressed as a ratio with the KLL line.

【0017】図1(a)を参照して,成長開始から一定
時間ts まで絶縁膜上にSiが付着しないことは明らか
である。他方,図1(b)を参照して,この間シリコン
基板表面上にはエピタキシャル層は一定速度で成長し,
選択成長をしていることを示している。
With reference to FIG. 1A, it is apparent that Si does not adhere to the insulating film from the start of growth to the constant time t s . On the other hand, referring to FIG. 1 (b), during this period, the epitaxial layer grows at a constant rate on the surface of the silicon substrate,
It shows that it is growing selectively.

【0018】ところが,成長開始から一定時間ts を経
過すると,突如絶縁膜上のシリコンのスペクトルが強く
なり,絶縁膜上へのシリコンの堆積が始まったことを示
している。他方シリコン基板表面上の成長速度は変わら
ない。
However, when a certain time t s has passed from the start of growth, the spectrum of silicon on the insulating film suddenly became strong, indicating that the deposition of silicon on the insulating film started. On the other hand, the growth rate on the surface of the silicon substrate does not change.

【0019】この観測結果は,絶縁膜上へのシリコンの
堆積が臨界的な潜伏期間ts を有し , この潜伏期間前は
成長核の形成期間であり絶縁膜上にシリコンは堆積しな
いけれども, この期間を経過すると直ちに絶縁膜上にシ
リコンの堆積が始まることを明らかにしている。
This observation result shows that silicon on the insulating film
Incubation period t when deposition is criticalsHave ,Before this incubation period
It is a period for forming growth nuclei and silicon is not deposited on the insulating film.
Though,Immediately after this period, the insulating film
It reveals that the deposition of recon begins.

【0020】本発明は上記の事実に基づき考案された。
即ち,図2を参照して,本発明では,絶縁膜上の成長核
の形成期間である潜伏期間内に第一のエピタキシャル成
長層5を選択的に堆積する。
The present invention was devised based on the above facts.
That is, referring to FIG. 2, in the present invention, the first epitaxial growth layer 5 is selectively deposited within the latent period which is the period for forming the growth nuclei on the insulating film.

【0021】次いで,成長を停止し,成長核と雰囲気と
の平衡状態を崩し,成長核が消滅する状態に保つのであ
る。かかる平衡を崩す具体的手段として,紫外線を照射
する方法,雰囲気を減圧する方法,基板温度を成長時よ
りも高温にする方法があり,また成長雰囲気が成長核を
エッチングしない場合,例えばSi26 と水素との混
合ガスを原料ガスとする減圧CVD法の場合には化学的
にエッチングする活性ガス例えば塩素又は弗素を導入す
ることもできる。これらの手段の作用は化学平衡に基づ
くもので,スパッタの如き機械的作用を及ぼすものでは
ないから,成長表面を破壊し成長層の品質を劣化する恐
れはないのである。
Then, the growth is stopped, the equilibrium state between the growth nuclei and the atmosphere is broken, and the growth nuclei are maintained in a state of disappearing. As specific means for breaking such equilibrium, a method of irradiating ultraviolet rays, a method of reducing the pressure of an ambient, there is a method of high temperature than the growth temperature of the substrate, and if the growth atmosphere does not etch the growth nuclei, for example Si 2 H In the case of the low pressure CVD method using a mixed gas of 6 and hydrogen as a source gas, an active gas for chemically etching, such as chlorine or fluorine, can be introduced. Since the action of these means is based on chemical equilibrium and does not exert a mechanical action such as sputtering, there is no risk of destroying the growth surface and degrading the quality of the growth layer.

【0022】この成長核と雰囲気との不平衡状態中で絶
縁膜上に形成された成長核は消滅する。この結果,成長
停止期間後に再び成長するプロセスにおいて,成長開始
からts の間は新たな核形成に費やされ絶縁膜上にシリ
コンは堆積しないのである。従って,前に成長したエピ
タキシャル成長層5に重ねて選択的に次のエピタキシャ
ル成長層6が成長するのである。
The growth nuclei formed on the insulating film disappear in an unbalanced state of the growth nuclei and the atmosphere. As a result, in the process of growth after growth arrest period again, between the growth of a t s is silicon on insulator spent in new nucleation is not deposited. Therefore, the next epitaxial growth layer 6 is selectively grown over the previously grown epitaxial growth layer 5.

【0023】この工程を繰り返すことにより所望の厚さ
の成長層9を,絶縁膜上にシリコンを堆積させることな
く選択的に形成することができる。また,本発明では,
短時間で絶縁膜上にシリコンが成長する成長速度の速い
条件であっても,短時間の選択成長を繰り返すことで選
択的に成長された厚い成長層とすることができるので,
成長速度の速い選択エピタキシャル成長を実現すること
ができる。
By repeating this process, the growth layer 9 having a desired thickness can be selectively formed without depositing silicon on the insulating film. Further, in the present invention,
Even under the condition that the growth rate of silicon on the insulating film is high in a short time, a thick growth layer selectively grown can be obtained by repeating selective growth for a short time.
It is possible to realize selective epitaxial growth with a high growth rate.

【0024】なお,平衡状態を崩すことにより成長核を
消滅し得るのは堆積が始まる潜伏期間内にのみ可能であ
るから,各成長条件について精密な潜伏期間を測定する
必要がある。かかる潜伏期間ts は,前述の如くオージ
ェ分光により明瞭に知ることができるのである。
Since it is possible to extinguish the growth nuclei by breaking the equilibrium state only within the incubation period in which deposition starts, it is necessary to measure the precise incubation period for each growth condition. The latent period t s can be clearly known by Auger spectroscopy as described above.

【0025】[0025]

【実施例】本発明を実施例により詳細に説明する。シリ
コンの堆積は,基板を設置した石英ガラスの反応管に,
原料ガスとして分圧1.5×10-4TorrのSi2
6 を1TorrのH2 に混合して供給し,選択気相成長
を行った。
EXAMPLES The present invention will be described in detail with reference to Examples. Silicon is deposited on the quartz glass reaction tube on which the substrate is installed.
Si 2 H with a partial pressure of 1.5 × 10 −4 Torr as a source gas
6 was mixed with 1 Torr of H 2 and supplied, and selective vapor phase growth was performed.

【0026】基板温度は成長休止期間において特に言及
する場合を除き,全堆積工程を通じて750℃一定とし
た。先ず,図2(a)を参照して,シリコン基板1表面
に厚さ200nmの酸化膜からなる絶縁膜2を形成し,
フォトエッチングにより例えば幅5μmの線状パターン
の窓3を絶縁膜2に開口する。
The substrate temperature was kept constant at 750 ° C. during the entire deposition process, unless otherwise specified during the growth rest period. First, referring to FIG. 2A, an insulating film 2 made of an oxide film having a thickness of 200 nm is formed on the surface of a silicon substrate 1,
A window 3 having a linear pattern with a width of, for example, 5 μm is opened in the insulating film 2 by photoetching.

【0027】次いで,図2(b)を参照して,基板1を
反応管内に置き,絶縁膜2をマスクとして窓3の位置に
シリコンのエピタキシャル成長層5を選択成長する。成
長時間は例えば15分とし,このときのエピタキシャル
成長層の膜厚は50nmであった。これは図1(a)か
ら明らかにされた絶縁膜上へのシリコン堆積の潜伏期間
s =20分より短い。従って絶縁膜上には成長核4の
みが形成されシリコンは堆積しない。この成長時間は,
成長条件により異なる潜伏期間に基づき各条件毎に定め
ることができる。
Next, referring to FIG. 2B, the substrate 1 is placed in the reaction tube, and the silicon epitaxial growth layer 5 is selectively grown at the position of the window 3 using the insulating film 2 as a mask. The growth time was, for example, 15 minutes, and the film thickness of the epitaxial growth layer at this time was 50 nm. This is shorter than the latency period t s = 20 minutes for depositing silicon on the insulating film, which is clarified from FIG. Therefore, only the growth nucleus 4 is formed on the insulating film, and silicon is not deposited. This growth time is
It can be determined for each condition based on the incubation period that differs depending on the growth condition.

【0028】次いで,図2(c)を参照して,Si2
6 の供給を停止し,この成長停止期間中に成長核4を消
滅する以下の処理の何れか一つを施す。なお,2以上の
処理を重ねてしても差支えないのは当然である。
Next, referring to FIG. 2C, Si 2 H
The supply of 6 is stopped, and any one of the following processes for extinguishing the growth nucleus 4 during this growth stop period is performed. In addition, it goes without saying that there is no problem even if two or more processes are repeated.

【0029】(1)紫外線を照射する。光源は例えば水
銀ランプ,シンクロトロン軌道放射光を使用することが
できる。本処理は,成長条件を変更することがないから
精密な成長を続行できる,また光照射の窓を設けるだけ
で本発明を容易に適用できるという効果を奏する。
(1) Irradiate with ultraviolet rays. As the light source, for example, a mercury lamp or a synchrotron orbital radiation can be used. This process has the effects that precise growth can be continued because the growth conditions are not changed, and that the present invention can be easily applied only by providing a light irradiation window.

【0030】(2)基板温度を100℃〜200℃上昇
する。 (3)H2 の供給を停止し真空,例えば10-6Torr
とする。 (2),(3)の処理は,特別の設備を用意することな
く行うことができるという効果を奏する。
(2) The substrate temperature is raised by 100 ° C to 200 ° C. (3) The supply of H 2 is stopped and the vacuum, for example, 10 −6 Torr
And The processing of (2) and (3) can be performed without preparing special equipment.

【0031】(4)H2 の混合ガス例えば容量0.1〜
10%のCl又はF2 を含むガスを反応管内に供給す
る。 上記処理は何れも5分間とした。
(4) H 2 mixed gas, for example, a volume of 0.1
A gas containing 10% Cl or F 2 is supplied into the reaction tube. All the above treatments were performed for 5 minutes.

【0032】なお,既述のように,かかる成長核の消滅
工程を行わないときは,図1(a)に示す潜伏期間経過
後に絶縁膜上に堆積が始まるため,それ以上の厚さに選
択成長をすることはできないのである。
As described above, when the growth nucleus extinction process is not performed, deposition starts on the insulating film after the latent period shown in FIG. You cannot grow.

【0033】次いで,図2(d)を参照して,エピタキ
シャル成長層5と同一条件でエピタキシャル成長層6を
成長する。次いで,図2(e)を参照して,Si2 6
の供給を停止し,成長停止期間中に前記成長核を消滅す
るための処理を行う。
Next, referring to FIG. 2D, the epitaxial growth layer 6 is grown under the same conditions as the epitaxial growth layer 5. Next, referring to FIG. 2 (e), Si 2 H 6
Is stopped, and processing for extinguishing the growth nuclei is performed during the growth stop period.

【0034】以下,エピタキシャル成長と成長核の消滅
のための処理を上記と同様にして繰り返す。その結果,
図(f)を参照して,4層のエピタキシャル成長層5〜
8が絶縁膜2の窓3を埋めて成長する。
Hereinafter, the processes for epitaxial growth and extinction of growth nuclei are repeated in the same manner as above. as a result,
Referring to FIG. (F), four epitaxial growth layers 5 to
8 fills the window 3 of the insulating film 2 and grows.

【0035】最後に,絶縁膜2をエッチングして除去
し,エピタキシャル成長層5〜8からなる線形の成長層
9を形成する。本実施例例において,Si2 6 の分圧
を3.7×10-5Paとする従前の選択成長条件では成
長することができなかった,厚さ200nmの選択成長
層を成長することができた。
Finally, the insulating film 2 is removed by etching to form a linear growth layer 9 consisting of the epitaxial growth layers 5-8. In this example, it is possible to grow a selective growth layer having a thickness of 200 nm, which could not be grown under the conventional selective growth condition of Si 2 H 6 partial pressure of 3.7 × 10 −5 Pa. did it.

【0036】また,従前の方法と較べて成長速度は略2
倍であった。
The growth rate is about 2 as compared with the conventional method.
It was double.

【0037】[0037]

【発明の効果】本発明によれば,明瞭にされた潜伏期間
内に選択成長がなされ,その後成長核は不平衡状態によ
り消滅せられるため絶縁膜上にシリコン層が堆積しない
から,厚いエピタキシャル層を選択的に,また高速に成
長することができ,半導体装置の性能向上に寄与すると
ころが大きい。
According to the present invention, the selective growth is performed within the clarified latent period, and thereafter the growth nuclei are extinguished due to the unbalanced state, so that the silicon layer is not deposited on the insulating film. Can be grown selectively and at high speed, which greatly contributes to the performance improvement of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 本発明の実施例工程図FIG. 2 is a process chart of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

s 潜伏期間 1 基板 2 絶縁膜 3 窓 4 成長核 5,6,7,8 エピタキシャル成長層 9 成長層t s incubation period 1 substrate 2 insulating film 3 window 4 growth nuclei 5,6,7,8 epitaxial layer 9 grown layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板(1)上に形成された絶縁膜
(2)をマスクとして該基板(1)の露出面上にシリコ
ンを選択的に気相エピタキシャル成長する工程を有する
半導体装置の製造方法において, 該絶縁膜(2)上に実質的にシリコンの堆積が起こらな
い潜伏期間(ts )内に該基板(1)の露出面上に選択
的に成長されたシリコンのエピタキシャル成長層(5,
6,7,8)を成長する工程を,成長休止期間を挟んで
複数回繰り返して所望の厚さのエピタキシャル成長層
(9)を形成する工程を有し, 該成長休止期間に,紫外線を照射する工程,成長雰囲気
を成長時の1万分の1以下の圧力に保つ工程,及び該基
板(1)を成長時よりも100℃乃至200℃高温に保
つ工程のうち少なくとも一工程を行うことを特徴とする
半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising a step of selectively vapor-phase epitaxially growing silicon on an exposed surface of a substrate (1) using an insulating film (2) formed on the semiconductor substrate (1) as a mask. in, the insulating film (2) substantially incubation period in which the silicon deposition does not occur (t s) the substrate in (1) epitaxially grown layer of selectively grown silicon on the exposed surfaces of the top (5,
6, 7 and 8) are repeated a plurality of times with a growth quiescent period interposed therebetween to form an epitaxial growth layer (9) having a desired thickness, and ultraviolet rays are irradiated during the growth quiescent period. At least one of a step, a step of maintaining the growth atmosphere at a pressure of 10,000 times or less of that at the time of growth, and a step of keeping the substrate (1) at a temperature of 100 to 200 ° C. higher than that at the time of growth Of manufacturing a semiconductor device.
【請求項2】請求項1記載の半導体装置の製造方法にお
いて, シリコンの選択エピタキシャル成長をジシラン(Si2
6 )と水素との混合ガスを原料ガスとする減圧CVD
法により行い, 該成長休止期間に行う請求項1記載の工程に代えて,該
成長休止期間に弗素及び塩素の何れかを0.1%〜10
%含む水素からなる雰囲気に保つことを特徴とする半導
体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the selective epitaxial growth of silicon is performed by disilane (Si 2
Low pressure CVD using a mixed gas of H 6 ) and hydrogen as a source gas
In place of the step according to claim 1, which is performed during the growth quiescent period, 0.1% to 10% of fluorine or chlorine is added during the growth quiescent period.
% Of hydrogen contained in the atmosphere is maintained.
JP16857591A 1991-07-10 1991-07-10 Manufacture of semiconductor device Withdrawn JPH0521357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16857591A JPH0521357A (en) 1991-07-10 1991-07-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16857591A JPH0521357A (en) 1991-07-10 1991-07-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0521357A true JPH0521357A (en) 1993-01-29

Family

ID=15870591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16857591A Withdrawn JPH0521357A (en) 1991-07-10 1991-07-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0521357A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434698B1 (en) * 2001-09-05 2004-06-07 주식회사 하이닉스반도체 Method for growing epitaxial layer in semiconductor device
JP2007056288A (en) * 2005-08-23 2007-03-08 Hitachi Kokusai Electric Inc Semi-conductor device manufacturing method
JP2010171101A (en) * 2009-01-21 2010-08-05 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor apparatus, and substrate processing apparatus
US8282733B2 (en) 2007-04-02 2012-10-09 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor apparatus
KR20170113273A (en) * 2016-03-30 2017-10-12 도쿄엘렉트론가부시키가이샤 Method and apparatus for forming silicon film, and storage medium
KR20180029091A (en) * 2015-05-22 2018-03-19 스트라티오 인코포레이티드 Methods for removing nuclei formed during epitaxial growth

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434698B1 (en) * 2001-09-05 2004-06-07 주식회사 하이닉스반도체 Method for growing epitaxial layer in semiconductor device
JP2007056288A (en) * 2005-08-23 2007-03-08 Hitachi Kokusai Electric Inc Semi-conductor device manufacturing method
US8282733B2 (en) 2007-04-02 2012-10-09 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor apparatus
JP2010171101A (en) * 2009-01-21 2010-08-05 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor apparatus, and substrate processing apparatus
KR20180029091A (en) * 2015-05-22 2018-03-19 스트라티오 인코포레이티드 Methods for removing nuclei formed during epitaxial growth
KR20170113273A (en) * 2016-03-30 2017-10-12 도쿄엘렉트론가부시키가이샤 Method and apparatus for forming silicon film, and storage medium

Similar Documents

Publication Publication Date Title
JP3728465B2 (en) Method for forming single crystal diamond film
US5242530A (en) Pulsed gas plasma-enhanced chemical vapor deposition of silicon
JP3558200B2 (en) Method for forming polycrystalline film by crystallization of microcrystalline film, method for forming thin film transistor, thin film transistor, and liquid crystal display
JP3176493B2 (en) Method of forming highly oriented diamond thin film
JP3197036B2 (en) Method for forming crystalline silicon thin film
US5863324A (en) Process for producing single crystal diamond film
JPH0521357A (en) Manufacture of semiconductor device
JPH02213118A (en) Manafacture of sicmask supporting member for radiation lithography mask
US5139606A (en) Laser bilayer etching of GaAs surfaces
JP2683060B2 (en) Diamond film and its manufacturing method
JPH04139819A (en) Method and apparatus for selective growth of silicon epitaxial film
JPH07118854A (en) Formation of silicon carbide film
JPH0529234A (en) Epitaxial crowing method
JPH0513339A (en) Selective growth method for silicon epitaxial film and its manufacture
JPH04330717A (en) Manufacture of semiconductor film
JP2595935B2 (en) Surface cleaning method
JPH05267165A (en) Selective growth method for silicon epitaxial film and growth device
JPH07263342A (en) Manufacture of semiconductor device
JP2663518B2 (en) Silicon substrate cleaning method
JP2603553B2 (en) Thin film growth method
Johnson et al. A factorial analysis of the preparation and properties of aC: H thin films
JPH01189129A (en) Forming method of thin film
JPS61269305A (en) Semiconductor manufacturing equipment
JP3078101B2 (en) Large area polysilicon thin film and its low temperature formation method.
JP2000068203A (en) Polycrystalline silicon formed by crystallization of microcrystalline silicon and its forming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008