JPH0520942A - Manufacture of bithmuth-based superconductor - Google Patents

Manufacture of bithmuth-based superconductor

Info

Publication number
JPH0520942A
JPH0520942A JP3128046A JP12804691A JPH0520942A JP H0520942 A JPH0520942 A JP H0520942A JP 3128046 A JP3128046 A JP 3128046A JP 12804691 A JP12804691 A JP 12804691A JP H0520942 A JPH0520942 A JP H0520942A
Authority
JP
Japan
Prior art keywords
phase
oxide
heat treatment
long
long wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3128046A
Other languages
Japanese (ja)
Inventor
Hisao Nonoyama
久夫 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Sumitomo Electric Industries Ltd
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Sumitomo Electric Industries Ltd
Priority to JP3128046A priority Critical patent/JPH0520942A/en
Publication of JPH0520942A publication Critical patent/JPH0520942A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase a critical current density by forming a superconductive phase oriented with relation to crystal orientation by diffusing at least Ca and Cu among Sr, Ca and Cu in oxide having a predetermined composition ratio. CONSTITUTION:An oxide having a ratio expressed by Bi1.95+wSr1.39+xCa1.29+yCu1.00+z (-0.2<=w; z<=0.2; -0.2<=x<=0.7; -0.29<=y<=0.1) for a start composition ratio is used for a raw material. Next, a solidified material, that is a long wire, obtained by melting and one-way solidification is used for a base material. By heat diffusing at least Ca and Cu in the base material, a superconductive phase of a phase 2212 of Bi:Sr:Ca:Cu of 2:2:1:2 is generated. In this case, the phase 2212 is generated continuously for the whole length of the long wire, so a long conductor can be manufactured, and the superconductive phase is generated along the orientation obtained by oxide, thereby a critical current density can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ビスマス系超電導導
体の製造方法に関するもので、特に、線材化されたビス
マス系超電導導体を得るのに適した方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bismuth-based superconducting conductor, and more particularly to a method suitable for obtaining a wire-shaped bismuth-based superconducting conductor.

【0002】[0002]

【従来の技術】近年、より高い臨界温度をもつ超電導材
料として、酸化物系のものが注目されている。このよう
な材料を用いて、超電導線材を作製する技術について盛
んに研究されている。
2. Description of the Related Art In recent years, oxide-based materials have attracted attention as superconducting materials having a higher critical temperature. A technique for producing a superconducting wire using such a material has been actively researched.

【0003】ビスマス系に限れば、超電導線材を作製す
る方法の中に、たとえば、Bi2 Sr2 Ca1 Cu2
x を出発組成とした原材料を、溶融および一方向凝固
し、線材化する例がある。特に、レーザビームを原料棒
に当て、狭い帯溶融域を作って、その領域を少しづつ移
動させる方法(レーザペデスタル法)によれば、比較的
高い臨界電流密度を有する超電導線材が得られている。
As far as the bismuth-based material is concerned, one of the methods for producing a superconducting wire is, for example, Bi 2 Sr 2 Ca 1 Cu 2 O.
There is an example in which a raw material having x as a starting composition is melted and unidirectionally solidified to be a wire rod. In particular, according to a method (laser pedestal method) in which a laser beam is applied to a raw material rod to form a narrow band melting region and the region is moved little by little, a superconducting wire rod having a relatively high critical current density is obtained. ..

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Bi2
Sr2 Ca1 Cu2 x を出発組成にしたものは、分解
溶融を起こすので、一方向凝固(成長)を行なっても、
成長速度が速くなれば、組織の配向性が乱れ、成長後の
熱処理を行なった後でも、得られたビスマス系超電導導
体の臨界電流密度は比較的低い、という問題があった。
However, Bi 2
A material having Sr 2 Ca 1 Cu 2 O x as a starting composition causes decomposition and melting, so that even if directional solidification (growth) is performed,
If the growth rate becomes faster, the orientation of the structure is disturbed, and there is a problem that the critical current density of the obtained bismuth-based superconducting conductor is relatively low even after the heat treatment after the growth.

【0005】それゆえに、この発明の目的は、臨界電流
密度の高いビスマス系超電導導体を得ることができる、
ビスマス系超電導導体の製造方法を提供しようとするこ
とである。
Therefore, an object of the present invention is to obtain a bismuth-based superconducting conductor having a high critical current density,
An object of the present invention is to provide a method for manufacturing a bismuth-based superconducting conductor.

【0006】[0006]

【課題を解決するための手段】この発明では、上記の技
術的課題を解決するため、Bi1.95+wSr1.39+xCa
1.29+yCu1.00+z(−0.2≦w;z≦0.2;−0.
2≦x≦0.7;−0.29≦y≦0.1)で表わされ
る比率を出発組成比とする酸化物を原料として、溶融お
よび一方向凝固することにより得られた凝固体すなわち
長尺線を母材として用いる。このような組成比の酸化物
は、高速で成長しても、高配向でほぼ単相の長尺線を与
えることを、本件発明者が見い出した。よって、これを
母材とし、これに少なくともCaおよびCuを熱拡散さ
せると、母材の表面に、母材の配向に沿って、超電導相
である、Bi:Sr:Ca:Cuがほぼ2:2:1:2
の2212相が生成する。この2212相は、長尺線全
長にわたって連続的に生成するので、長尺の超電導導体
の作製が可能となる。上述したCaおよびCuの熱拡散
は、たとえば、母材の表面にCaの有機酸塩を塗布し、
熱処理し、次いで、Cuの有機酸塩を塗布し、熱処理す
ることにより達成される。
According to the present invention, there is provided the above-mentioned technique.
In order to solve the surgical problem, Bi1.95 + wSr1.39 + xCa
1.29 + yCu1.00 + z(−0.2 ≦ w; z ≦ 0.2; −0.
2 ≦ x ≦ 0.7; −0.29 ≦ y ≦ 0.1)
The starting material composition is an oxide having the following composition.
And a solidified body obtained by unidirectional solidification, that is,
A long wire is used as a base material. Oxides with such composition ratio
Gives a long line of highly oriented and almost single phase even if it grows at high speed.
The inventors of the present invention have found that So this
As a base material, at least Ca and Cu are thermally diffused
The superconducting phase on the surface of the base metal along the orientation of the base metal.
Bi: Sr: Ca: Cu is almost 2: 2: 1: 2.
2212 phases are generated. This 2212 phase is a long line
Since it is generated continuously over a long length, a long superconducting conductor
Can be manufactured. Thermal diffusion of Ca and Cu described above
Is an organic acid salt of Ca applied to the surface of the base material,
Heat treatment, then apply Cu organic acid salt and heat treatment
It is achieved by

【0007】[0007]

【作用】この発明は、上述したように、所定の組成比を
有する酸化物に、Sr、Ca、Cuのうち、少なくとも
CaおよびCuを拡散させて、結晶方位的に配向した超
電導相を得ようとするものである。工業生産性の見地か
らの高速成長を行なっても、配向性の良いBi2 Sr2
Ca1 Cu2 x 相を作製するために、この発明では、
出発組成として、Bi2 Sr2 Ca1 Cu2 の酸化物で
はなく、上述した特定の組成比を有する酸化物を用いて
いる。この酸化物は、高速成長下で得られる配向性が、
Bi2 Sr2 Ca1 Cu2 を出発組成にしたものよりも
格段に優れている。よって、この酸化物を原料として、
まず、長尺線を作製してから、その表面に、上記酸化物
との拡散反応により超電導相を形成する少なくともCa
およびCuを付与した状態で熱処理すれば、上記酸化物
によって得られた配向性に沿って超電導相が生成される
ので、大きな臨界電流を流すことが可能となる。
As described above, according to the present invention, at least Ca and Cu of Sr, Ca and Cu are diffused in an oxide having a predetermined composition ratio to obtain a crystallographically oriented superconducting phase. It is what Bi 2 Sr 2 has good orientation even if it is grown at high speed from the viewpoint of industrial productivity.
In order to produce the Ca 1 Cu 2 O x phase, the present invention uses
As the starting composition, not the oxide of Bi 2 Sr 2 Ca 1 Cu 2 but the oxide having the above-mentioned specific composition ratio is used. This oxide has an orientation that can be obtained under high-speed growth.
It is significantly superior to the starting composition of Bi 2 Sr 2 Ca 1 Cu 2 . Therefore, using this oxide as a raw material,
First, after producing a long wire, at least Ca that forms a superconducting phase on its surface by a diffusion reaction with the above oxide.
When heat treatment is performed in the state of adding Cu and Cu, a superconducting phase is generated along the orientation obtained by the above oxide, so that a large critical current can be passed.

【0008】なお、上記酸化物からなる長尺線の作製方
法は、一方向凝固法であれば、いずれの方法でもよい
が、特に、大きな温度勾配と狭い溶融帯域とを作り出す
ことができる、レーザペデスタル法が望ましい。この方
法によれば、上記酸化物から、配向性に優れかつ細い長
尺線を能率的に製造することができる。
Any method can be used for producing the long wire made of the above-mentioned oxide as long as it is a unidirectional solidification method. In particular, a laser that can produce a large temperature gradient and a narrow melting zone can be used. Pedestal method is preferred. According to this method, a thin long wire having excellent orientation can be efficiently produced from the above oxide.

【0009】また、長尺線上に少なくともCaおよびC
uを付与する方法としては、好ましくは、有機酸塩熱分
解法または気相法が用いられる。その理由は、高い接着
力をもってこれらの元素を含む膜を長尺線上に形成する
ことができるとともに、その膜厚を制御でき、したがっ
て、熱処理による拡散領域を最適なものとする制御を容
易に行えるからである。
Further, at least Ca and C are present on the long line.
As a method of imparting u, an organic acid salt thermal decomposition method or a gas phase method is preferably used. The reason is that a film containing these elements can be formed on a long line with a high adhesive force, and the film thickness can be controlled. Therefore, the control for optimizing the diffusion region by heat treatment can be easily performed. Because.

【0010】この発明において、少なくともCaおよび
Cuを長尺線に熱拡散させるステップは、これらの元素
について、すべて同時に長尺線上に付与し、一度の熱処
理で同時に拡散させても、あるいは、それぞれの元素に
ついて、長尺線上への付与および熱処理を1回ずつ行な
い、それらを繰返してもよい。
In the present invention, the step of thermally diffusing at least Ca and Cu into a long wire may be performed by simultaneously applying all of these elements on the long wire and simultaneously diffusing them in a single heat treatment. The element may be applied to the long wire and heat-treated once, and then repeated.

【0011】なお、長尺線を得るための酸化物の出発組
成比を前述のような範囲に選んだのは、この範囲内であ
れば、一方向凝固時に極めて結晶配向性の優れた長尺線
が得られるが、この範囲をはずれると、その結晶配向性
は崩れてしまい、最終的に、良好な超電導特性が得られ
ないためである。
The starting composition ratio of the oxide for obtaining the long wire is selected in the above-mentioned range because, within this range, the long composition is excellent in crystal orientation during unidirectional solidification. This is because a line can be obtained, but if it deviates from this range, the crystal orientation will be broken, and eventually good superconducting properties cannot be obtained.

【0012】[0012]

【実施例】 実験例1 Bi2 3 、SrCO3 、CaCO3 、CuOを用い
て、Bi:Sr:Ca:Cuが、以下に示すような種々
の組成比になるように配合した。
Example 1 Experimental Example 1 Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO were used, and Bi: Sr: Ca: Cu was blended in various composition ratios as shown below.

【0013】(1) Bi1.95Sr1.39Ca0.29Cu
1.00 (2) Bi1.75Sr1.19Cu0.80 (3)* Bi1.65Sr1.09Cu0.70 (4) Bi2.15Sr2.09Ca0.39Cu1.20 (5)* Bi2.25Sr1.69Ca0.59Cu1.30 (6) Bi1.95Sr1.39Ca0.29Cu1.00 (7) Bi2.06Sr2.00Cu1.00 (8) Bi1.95Sr1.69Ca0.29Cu1.00 (9) Bi2.00Sr2.00Cu1.00 (上記試料番号に*を付したものは,比較例を示す。) 上記試料1〜9の各粉末に対して、750℃で12時
間、次いで800℃で96時間のそれぞれの熱処理およ
び各熱処理後の粉砕とを繰返し、得られた粉末を、CI
Pにより、直径4mmおよび長さ100mmの棒状に成
形した後、再び、800℃で20時間の熱処理を施し、
次いで、レーザペデスタル法にて、溶融および一方向凝
固を行なった。このとき、成長速度については、原料焼
結棒の供給速度が50mm/h、引上速度が500mm
/hとなるように設定した。これにより、直径0.8m
mおよび長さ100mmのファイバ(長尺線)が得られ
た。
(1) Bi 1.95 Sr 1.39 Ca 0.29 Cu
1.00 (2) Bi 1.75 Sr 1.19 Cu 0.80 (3) * Bi 1.65 Sr 1.09 Cu 0.70 (4) Bi 2.15 Sr 2.09 Ca 0.39 Cu 1.20 (5) * Bi 2.25 Sr 1.69 Ca 0.59 Cu 1.30 (6) Bi 1.95 Sr 1.39 Ca 0.29 Cu 1.00 (7) Bi 2.06 Sr 2.00 Cu 1.00 (8) Bi 1.95 Sr 1.69 Ca 0.29 Cu 1.00 (9) Bi 2.00 Sr 2.00 Cu 1.00 (The above sample numbers are marked with * are comparative examples. ) Each of the powders of the above Samples 1 to 9 was subjected to heat treatment at 750 ° C. for 12 hours, then at 800 ° C. for 96 hours, and pulverization after each heat treatment.
After being formed into a rod shape having a diameter of 4 mm and a length of 100 mm by P, heat treatment is again performed at 800 ° C. for 20 hours,
Then, melting and unidirectional solidification were performed by a laser pedestal method. At this time, regarding the growth rate, the feed rate of the raw material sintered rod was 50 mm / h and the pulling rate was 500 mm.
It was set to be / h. This makes the diameter 0.8 m
A fiber (long wire) having m and a length of 100 mm was obtained.

【0014】このようにして得られたファイバのそれぞ
れに対して、さらにトルエンを溶媒とした有機酸塩の塗
布および熱処理を行なった。有機酸塩の塗布は、有機酸
塩溶液にファイバを浸漬し、ゆっくり引上げてから、室
温にて10分、550℃にて10分の乾燥を行なった。
この浸漬および乾燥の工程を30回繰返すことにより、
ファイバ上に3μmの厚みの膜が形成された。また、熱
処理においては、上述のように処理されたファイバを炉
に入れ、840℃まで0.33℃/分の速度で昇温し、
同温度で100時間の熱処理を行なった。
Each of the fibers thus obtained was further coated with an organic acid salt using toluene as a solvent and heat-treated. The organic acid salt was applied by immersing the fiber in an organic acid salt solution, slowly pulling it up, and then drying it at room temperature for 10 minutes and at 550 ° C. for 10 minutes.
By repeating this dipping and drying process 30 times,
A 3 μm thick film was formed on the fiber. Further, in the heat treatment, the fiber treated as described above is put into a furnace and heated to 840 ° C. at a rate of 0.33 ° C./min.
Heat treatment was performed at the same temperature for 100 hours.

【0015】また、このような有機酸塩の塗布および熱
処理に用いた有機酸塩、ならびに塗布および熱処理方法
は、各試料につき、次のとおりとした。なお、有機酸塩
の溶媒はトルエンを用いた。
The organic acid salt used for coating and heat treatment of the organic acid salt and the coating and heat treatment method were as follows for each sample. Toluene was used as the solvent of the organic acid salt.

【0016】試料1〜5については、ナフテン酸ストロ
ンチウム、ナフテン酸カルシウム、ナフテン酸銅の順
に、塗布および熱処理を繰返した。
For Samples 1 to 5, coating and heat treatment were repeated in the order of strontium naphthenate, calcium naphthenate, and copper naphthenate.

【0017】試料6および7については、ナフテン酸カ
ルシウム、ナフテン酸銅の順に、塗布および熱処理を繰
返した。
For Samples 6 and 7, coating and heat treatment were repeated in the order of calcium naphthenate and copper naphthenate.

【0018】試料8については、ナフテン酸ストロンチ
ウム、ナフテン酸カルシウムおよびナフテン酸銅を、S
r:Ca:Cu=1:1:2の比率で混合したものを塗
布し、熱処理した。
For sample 8, strontium naphthenate, calcium naphthenate and copper naphthenate were added to S.
A mixture of r: Ca: Cu = 1: 1: 2 was applied and heat treated.

【0019】試料9については、ナフテン酸カルシウム
およびナフテン酸銅を、Ca:Cu=1:1の比率で混
合したものを塗布し、熱処理した。
For sample 9, a mixture of calcium naphthenate and copper naphthenate mixed at a ratio of Ca: Cu = 1: 1 was applied and heat treated.

【0020】このようにして得られた各ファイバの特性
を評価したところ、以下の表1に示すような結果が得ら
れた。この表1において、臨界温度「Tc」および零磁
場における液体窒素温度(77.3K)での臨界電流密
度「Jc(0T,77.3K)」が示されている。
When the characteristics of each fiber thus obtained were evaluated, the results shown in Table 1 below were obtained. In Table 1, the critical temperature "Tc" and the critical current density "Jc (0T, 77.3K)" at the liquid nitrogen temperature (77.3K) in the zero magnetic field are shown.

【0021】[0021]

【表1】 得られたファイバの横断面を光学顕微鏡で観察すると、
一方向凝固により得られたファイバと有機酸塩熱分解法
によって接着された膜との境界の部分に、厚さ1μmの
反応相が見え、EDXにより組成分析すると、この相は
Bi2 Sr2 Ca1 Cu2 x であることが判明した。
[Table 1] When observing the cross section of the obtained fiber with an optical microscope,
At the boundary between the bonded film by the fiber and an organic acid salt pyrolysis method obtained by unidirectional solidification, visible reaction phase with a thickness of 1μm is, when composition analysis by EDX, the phase Bi 2 Sr 2 Ca It was found to be 1 Cu 2 O x .

【0022】実験例2 Bi2 3 、SrCO3 、CaCO3 、CuOを用い
て、Bi:Sr:Ca:Cuが、以下に示すような種々
の組成比になるように配合した。
Experimental Example 2 Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO were blended so that Bi: Sr: Ca: Cu had various composition ratios as shown below.

【0023】(10) Bi1.95Sr1.39Ca0.29
1.00 (11) Bi1.75Sr1.19Cu0.80 (12)* Bi1.65Sr1.09Cu0.70 (13) Bi2.15Sr2.09Ca0.39Cu1.20 (14)* Bi2.25Sr1.69Ca0.59Cu1.30 (15) Bi1.95Sr1.39Ca0.29Cu1.00 (16) 同上 (17) Bi2.00Sr2.00Cu1.00 (18) 同上 (試料番号に*を付したものは、比較例を示す。) 上記試料10〜18の各粉末を用いて、実験例1と同様
の操作を行ない、直径0.8mmおよび長さ100mm
のファイバ(長尺線)を得た。
(10) Bi 1.95 Sr 1.39 Ca 0.29 C
u 1.00 (11) Bi 1.75 Sr 1.19 Cu 0.80 (12) * Bi 1.65 Sr 1.09 Cu 0.70 (13) Bi 2.15 Sr 2.09 Ca 0.39 Cu 1.20 (14) * Bi 2.25 Sr 1.69 Ca 0.59 Cu 1.30 (15) Bi 1.95 Sr 1.39 Ca 0.29 Cu 1.00 (16) Same as above (17) Bi 2.00 Sr 2.00 Cu 1.00 (18) Same as above (Samples marked with * indicate comparative examples.) Using the powders of Samples 10 to 18 above The same operation as in Experimental Example 1 was performed, and the diameter was 0.8 mm and the length was 100 mm.
Fiber (long wire) was obtained.

【0024】このようにして得られた試料10〜18に
よるファイバの各々に対して、次のような条件で、スパ
ッタおよび熱処理を行なった。
Each of the fibers of Samples 10 to 18 thus obtained was subjected to sputtering and heat treatment under the following conditions.

【0025】試料10〜14については、スパッタ物質
として、SrCO3とCaCO3 とCuOとの化合物を
用い、スパッタを行なった後、熱処理した。
Samples 10 to 14 were sputtered using a compound of SrCO 3 , CaCO 3 and CuO as a sputtering substance, and then heat-treated.

【0026】試料15および17については、スパッタ
物質として、CaCO3 とCuOとの化合物を用い、ス
パッタを行なった後、熱処理した。
For samples 15 and 17, a compound of CaCO 3 and CuO was used as a sputtering substance, and after sputtering, heat treatment was performed.

【0027】試料16および18については、CaCO
3 、CuOの順にスパッタおよび熱処理を繰返した。
For samples 16 and 18, CaCO
3 , sputtering and heat treatment were repeated in the order of CuO.

【0028】上述のスパッタにおいて、3μm(試料1
6および18においては、1回のスパッタ操作につい
て)の膜厚を得るように設定した。また、試料10〜1
5および17においては、SrCO3 、CaCO3 およ
びCuO、またはCaCO3 およびCuOを、それぞ
れ、等モル比で混合し、900℃で20時間、焼結した
ものをスパッタ物質として用いた。また、各試料につい
て、スパッタ後に行なわれる熱処理の条件は、840℃
まで0.33℃/分の速度で昇温し、同温度で100時
間保持するようにした。
In the above-mentioned sputtering, 3 μm (Sample 1
6 and 18 were set to obtain the film thickness (for one sputtering operation). Samples 10-1
In Nos. 5 and 17, SrCO 3 , CaCO 3 and CuO, or CaCO 3 and CuO were mixed in equimolar ratios and sintered at 900 ° C. for 20 hours, and used as the sputtering material. For each sample, the condition of heat treatment performed after sputtering is 840 ° C.
The temperature was raised at a rate of 0.33 ° C./minute until the temperature was maintained for 100 hours.

【0029】このようにして得られた各ファイバの特性
を、実験例1と同様に評価した。表2に、その結果が示
されている。
The characteristics of each fiber thus obtained were evaluated in the same manner as in Experimental Example 1. The results are shown in Table 2.

【0030】[0030]

【表2】 また、得られたファイバの横断面を光学顕微鏡で観察す
ると、一方向凝固法により得られたファイバとスパッタ
法により接着された膜との境界の部分に、実験例1の場
合と同様、厚さ1μmの反応相が見え、EDXにより組
成分析すると、この相はBi2 Sr2 Ca1 Cu2 x
であることが判明した。
[Table 2] Also, when observing the cross section of the obtained fiber with an optical microscope, the thickness at the boundary between the fiber obtained by the unidirectional solidification method and the film bonded by the sputtering method was the same as in Experimental Example 1. A reaction phase of 1 μm is visible, and when the composition is analyzed by EDX, this phase shows Bi 2 Sr 2 Ca 1 Cu 2 O x.
It turned out to be

【0031】他の比較実験例 Bi2 3 、SrCO3 、CaCO3 、CuOを用い
て、Bi:Sr:Ca:Cu=2:2:1:2の組成比
となるように配合し、800℃で12時間、次いで86
0℃で96時間のそれぞれの熱処理と各熱処理後の粉砕
とを繰返し、得られた粉末を、CIPにより、直径4m
mおよび長さ100mmの棒状に成形した後、再び、8
00℃で2時間の熱処理を施し、次いで、レーザペデス
タル法にて、溶融および一方向凝固を行なった。このと
き、成長速度として、原料焼結棒の供給速度が10mm
/h、引上速度が100mm/hとなるように設定し
た。これによって、直径0.8mmおよび長さ100m
mのファイバが得られた。さらに、このファイバに84
0℃で96時間の熱処理を施した後、得られたファイバ
の特性を評価した。それによれば、臨界電流密度が88
Kであり、零磁場における液体窒素温度(77.3K)
での臨界電流密度が5000A/cm2 であった。
Other Comparative Experimental Example Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO were mixed in a composition ratio of Bi: Sr: Ca: Cu = 2: 2: 1: 2, and 800 12 hours at ℃, then 86
Each of the heat treatments at 0 ° C. for 96 hours and the pulverization after each heat treatment were repeated, and the obtained powder was subjected to CIP to obtain a diameter of 4 m.
After forming into a rod shape of m and 100 mm in length,
Heat treatment was performed at 00 ° C. for 2 hours, and then melting and directional solidification were performed by a laser pedestal method. At this time, as the growth rate, the feed rate of the raw material sintering rod was 10 mm.
/ H, and the pulling speed was set to 100 mm / h. This gives a diameter of 0.8 mm and a length of 100 m.
m fibers were obtained. In addition, 84
After performing a heat treatment at 0 ° C. for 96 hours, the characteristics of the obtained fiber were evaluated. It shows that the critical current density is 88
K, the liquid nitrogen temperature at zero magnetic field (77.3K)
The critical current density was 5000 A / cm 2 .

【0032】また、横断面に見られる相をEDXにより
組成分析したところ、そのほとんどがBi2 Sr2 Ca
1 Cu2 x であった。
The composition of the phase observed in the cross section was analyzed by EDX. As a result, most of the phases were Bi 2 Sr 2 Ca.
It was 1 Cu 2 O x .

【0033】[0033]

【発明の効果】このように、この発明によれば、高速で
成長したファイバすなわち長尺線を前駆体としながら、
臨界電流密度に関して性能の優れたビスマス系超電導導
体を作製できる。したがって、このような方法によって
超電導線材を作製することにより、電力ケーブル、マグ
ネットへの実用化の可能性が高められる。
As described above, according to the present invention, while a fiber grown at a high speed, that is, a long wire is used as a precursor,
A bismuth-based superconducting conductor having excellent performance in terms of critical current density can be manufactured. Therefore, by producing a superconducting wire by such a method, the possibility of practical application to power cables and magnets is increased.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/04 ZAA 8936−5G Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H01B 12/04 ZAA 8936-5G

Claims (1)

【特許請求の範囲】 【請求項1】 Bi1.95+wSr1.39+xCa0.29+yCu
1.00+z(−0.2≦w;z≦0.2;−0.2≦x≦
0.7;−0.29≦y≦0.1)で表わされる比率を
出発組成比とする酸化物を原料として、溶融および一方
向凝固することにより長尺線を得るステップ、および 少なくともCaおよびCuを前記長尺線に熱拡散させる
ステップを備える、ビスマス系超電導導体の製造方法。
Claims 1. Bi 1.95 + w Sr 1.39 + x Ca 0.29 + y Cu
1.00 + z (−0.2 ≦ w; z ≦ 0.2; −0.2 ≦ x ≦
0.7; a step of obtaining a long wire by melting and unidirectionally solidifying an oxide whose starting composition ratio is a ratio represented by −0.29 ≦ y ≦ 0.1), and at least Ca and A method for producing a bismuth-based superconducting conductor, comprising the step of thermally diffusing Cu into the long wire.
JP3128046A 1990-06-15 1991-05-31 Manufacture of bithmuth-based superconductor Withdrawn JPH0520942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3128046A JPH0520942A (en) 1990-06-15 1991-05-31 Manufacture of bithmuth-based superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-158144 1990-06-15
JP15814490 1990-06-15
JP3128046A JPH0520942A (en) 1990-06-15 1991-05-31 Manufacture of bithmuth-based superconductor

Publications (1)

Publication Number Publication Date
JPH0520942A true JPH0520942A (en) 1993-01-29

Family

ID=26463833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3128046A Withdrawn JPH0520942A (en) 1990-06-15 1991-05-31 Manufacture of bithmuth-based superconductor

Country Status (1)

Country Link
JP (1) JPH0520942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020187A (en) * 2015-07-07 2017-01-26 ジオスター株式会社 Liquefaction prevention underground object and seismic ground deformation prevention structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020187A (en) * 2015-07-07 2017-01-26 ジオスター株式会社 Liquefaction prevention underground object and seismic ground deformation prevention structure

Similar Documents

Publication Publication Date Title
JP2674979B2 (en) Superconductor manufacturing method
US5972846A (en) Article comprising textured superconductive cuprate material
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
US4975416A (en) Method of producing superconducting ceramic wire
JPH04500061A (en) Epitaxial Ba-Y-Cu-O superconductor film on perovski structure support
JPH0520942A (en) Manufacture of bithmuth-based superconductor
US5229357A (en) Method of producing superconducting ceramic wire and product
KR890011126A (en) Composite oxide superconducting thin film or wire and its manufacturing method
JPH01275434A (en) Production of high temperature superconducting oxide film
US5242896A (en) Superconductor crystal and process for preparing the same
JP2550253B2 (en) Method for producing oxide high temperature superconductor
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JPH04362076A (en) Production of bismuth series superconductor
JP2822328B2 (en) Superconductor manufacturing method
EP1003228A2 (en) Method of producing oxide superconductive composite material
KR100500494B1 (en) Super conductor and precursor therefor, their preparation and use of super conductor
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH0350118A (en) Superconducting wire and its production
JPH03112810A (en) Production of oxide superconducting film
AU656665B2 (en) Method of producing superconducting ceramic wire
JPH02102123A (en) Production of superconductor
JPS63274019A (en) Structure of superconductor and its manufacture
JPH01164706A (en) Thin film of starting material for oxide superconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806