JPH052093A - Abnormality diagnosis device for pressurized water reactor - Google Patents

Abnormality diagnosis device for pressurized water reactor

Info

Publication number
JPH052093A
JPH052093A JP3154393A JP15439391A JPH052093A JP H052093 A JPH052093 A JP H052093A JP 3154393 A JP3154393 A JP 3154393A JP 15439391 A JP15439391 A JP 15439391A JP H052093 A JPH052093 A JP H052093A
Authority
JP
Japan
Prior art keywords
main steam
leakage
pipe
cooling water
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3154393A
Other languages
Japanese (ja)
Inventor
Masahiko Kurosawa
正彦 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3154393A priority Critical patent/JPH052093A/en
Publication of JPH052093A publication Critical patent/JPH052093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To find abnormality of radioactives leakage due to heat conduction pipe rupture and grasp the evolution and the type of the leakage and fuel failure, etc. CONSTITUTION:In the secondary main steam line 8 and the primary coolant pipe 13, measurement systems for gamma spectrum 22 and dose rate 26 having bypass systems 21 and 25 capable of reducing sufficiently short half-life species are provided. An arithmetic processor 30 capable of comparing the data obtained with these measurement system 22 and 26, judging the existence of sign of abnormality due to leakage and calculating the radioactives density in the main steam at each measurement point using the dose rate and also the leakage radioactives density in the secondary main steam line with time, is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧水型原子炉(以下、
PWRと記す)における蒸気発生器内の伝熱管破損部か
らの一次系冷却水の漏洩を診断する加圧水型原子炉の異
常診断装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a pressurized water reactor (hereinafter referred to as
(Hereinafter referred to as PWR), an abnormality diagnosis device for a pressurized water reactor for diagnosing leakage of primary system cooling water from a damaged portion of a heat transfer tube in a steam generator.

【0002】[0002]

【従来の技術】図2により従来のPWRの概略と、その
異常診断装置の概略を説明する。図中、符号1は原子炉
建屋、2は原子炉格納容器、3は原子炉容器をそれぞれ
示している。原子炉容器3内の炉心4で加熱された一次
系冷却水は一次系配管5を流れて蒸気発生器6内の伝熱
管7に流入する。蒸気発生器6内の二次系冷却水は伝熱
管7と熱交換して加熱され高温・高圧蒸気となって二次
系主蒸気配管8を流れてタービン9へ流入する。タービ
ン9は回転し、発電機10を駆動して発電する。タービン
9で仕事を終えた蒸気は復水器11に流入し冷却されて復
水となる。この復水は二次系配水管12を流れて蒸気発生
器6へ二次系冷却水として給水される。一方、蒸気発生
器6内の伝熱管7を流れる一次系冷却水は二次系冷却水
と熱交換して冷却され、一次系冷却水配管13からポンプ
14により原子炉容器3内に戻り炉心4で加熱される。
2. Description of the Related Art An outline of a conventional PWR and an abnormality diagnosing apparatus thereof will be described with reference to FIG. In the figure, reference numeral 1 is a reactor building, 2 is a reactor containment vessel, and 3 is a reactor vessel. The primary system cooling water heated in the core 4 in the reactor vessel 3 flows through the primary system pipe 5 and flows into the heat transfer pipe 7 in the steam generator 6. The secondary system cooling water in the steam generator 6 exchanges heat with the heat transfer tube 7 to be heated to become high temperature / high pressure steam, flows through the secondary system main steam pipe 8 and flows into the turbine 9. The turbine 9 rotates and drives the generator 10 to generate electricity. The steam that has finished its work in the turbine 9 flows into the condenser 11 and is cooled to be condensed water. This condensate flows through the secondary system water pipe 12 and is supplied to the steam generator 6 as secondary system cooling water. On the other hand, the primary system cooling water flowing through the heat transfer pipe 7 in the steam generator 6 is cooled by exchanging heat with the secondary system cooling water, and is pumped from the primary system cooling water pipe 13.
It is returned to the reactor vessel 3 by 14 and is heated in the core 4.

【0003】なお、図中15は制御棒、16は加圧器、17は
スプレー管をそれぞれ示している。また、18は排ガス系
抽気配管、19はタービン排ガス系モニタで、排ガス中の
放射性物質を放射線検出器で検出し、電気回路で放射性
物質の核種や量を測定して異常診断するものである。
In the figure, 15 is a control rod, 16 is a pressurizer, and 17 is a spray tube. Further, 18 is an exhaust gas extraction pipe, and 19 is a turbine exhaust gas monitor, which detects radioactive substances in exhaust gas with a radiation detector and measures nuclides and amounts of radioactive substances with an electric circuit for abnormal diagnosis.

【0004】ところで、蒸気発生器6内には逆U字状の
細管からなる多数本の伝熱管7が管板に取着されてお
り、これらの伝熱管7の全数について定期検査時に点検
を行い健全性を確認している。原子炉運転中に仮に伝熱
管7が破損して一次系冷却水の漏洩が発生した場合、漏
洩した一次系冷却水中の放射性物質は二次系主蒸気配管
8を通り、タービン9へ移行し、さらに復水器11を通り
給水系に戻ることになる。PWRでは復水器11から一部
の蒸気(ガス)を排ガス系抽気配管18を通し抽気してお
り、抽気した蒸気中に放射性物質が警報設定値以上含ま
れている場合にはタービン排ガス系モニタ19により警報
が発せられるように構成している。
By the way, in the steam generator 6, a large number of heat transfer tubes 7 made of inverted U-shaped thin tubes are attached to the tube plate, and all the heat transfer tubes 7 are inspected at the time of periodic inspection. The soundness is confirmed. If the heat transfer pipe 7 is damaged during the reactor operation and leakage of the primary system cooling water occurs, the leaked radioactive material in the primary system cooling water passes through the secondary system main steam pipe 8 and is transferred to the turbine 9. Furthermore, it will return to the water supply system through the condenser 11. In PWR, some steam (gas) is extracted from the condenser 11 through the exhaust gas extraction pipe 18, and when the extracted steam contains radioactive substances above the alarm set value, the turbine exhaust gas system monitor It is configured so that an alarm can be issued by 19.

【0005】[0005]

【発明が解決しようとする課題】従来の技術では、一次
系冷却水が漏洩した場合、放射性物質がタービン排ガス
系モニタ19の警報設定値を越える量の漏洩に達した時点
において警報が発せられることになる。このため、一次
系冷却水の漏洩によるタービン排ガス系モニタ19が対象
としている放射性核種は希ガス,腐食生成物,核分裂生
成物等である。ところが一次系冷却水中に存在するこれ
らの放射性核種は、16Nや15Cに比べて、もともと量が
少ない上に主蒸気中に漏洩した一部を抽気して測定して
いることから、微量の漏洩に際しては検知し難くなって
いる。また、漏洩した放射性物質の状態や伝熱管の破損
部の規模漏洩量の推移を把握できない等の課題がある。
In the prior art, when the primary system cooling water leaks, an alarm is issued at the time when the radioactive material reaches the amount of leakage exceeding the alarm set value of the turbine exhaust gas system monitor 19. become. Therefore, the radionuclide targeted by the turbine exhaust gas system monitor 19 due to the leakage of the primary system cooling water is a rare gas, a corrosion product, a fission product, or the like. However, compared to 16 N and 15 C, these radionuclides existing in the primary system cooling water are originally small in amount, and partly leaked into the main steam is extracted and measured. It is difficult to detect the leak. In addition, there is a problem that it is not possible to grasp the state of the leaked radioactive material and the transition of the amount of leakage of the scale of the damaged portion of the heat transfer tube.

【0006】本発明は上記課題を解決するためになされ
たもので、PWRにおける蒸気発生器内の伝熱管からの
一次系冷却水の微量漏洩を速やかに検知し、破損部の規
模の推定を行うとともに漏洩量の推移を予測することが
できるPWRの異常診断装置を提供することにある。
The present invention has been made to solve the above problems, and promptly detects a small amount of leakage of primary cooling water from a heat transfer tube in a steam generator of a PWR, and estimates the scale of a damaged portion. Another object of the present invention is to provide a PWR abnormality diagnosis device capable of predicting changes in the amount of leakage.

【0007】[0007]

【課題を解決するための手段】本発明はPWRの二次系
主蒸気配管および一次系冷却水配管にそれぞれ短半減期
核種を減衰し得るバイパス系を有するガンマ線スペクト
ルおよび線量測定系を設け、これらの測定系から得られ
るデータの比較を行い漏洩による異常徴候の有無の判定
および線量率から各測定点における主蒸気中の放射能濃
度の算出、さらに二次系主蒸気配管における漏洩放射能
濃度の算出を経時変化で行う演算処理系を設けてなるこ
とを特徴とする。
According to the present invention, a gamma ray spectrum and dosimetry system having a bypass system capable of attenuating short half-life nuclides is provided in each of a secondary system main steam pipe and a primary system cooling water pipe of a PWR. The data obtained from the measurement systems are compared to determine whether there are any abnormal signs due to leakage, the radioactivity concentration in the main steam at each measurement point is calculated from the dose rate, and the leakage radioactivity concentration in the secondary system main steam pipe is calculated. It is characterized in that an arithmetic processing system for performing calculation with time is provided.

【0008】[0008]

【作用】例えば、伝熱管破損が発生した場合、一次系冷
却水の放射性物質は数秒でタービン排ガス系モニタ19の
放射線検出器の位置へ到達することになり、もともと正
常状態時における主蒸気中の放射能濃度はゼロに等しい
ので、前記検出器の出力は顕著に変化すると思われる。
16Nや15Cが線源となった場合は放出されるガンマ線の
エネルギーが高い(6MeV ,5MeV )ため主蒸気配管
(肉厚2〜3cm)の外側においても、微量でも十分に検
知可能であるが、燃料破損などが生じた場合に発生する
88Kr,87Kr等の核種によるガンマ線スペクトルは16
Nや15Cのような核種によるガンマ線スペクトルのバッ
クグラウンドになり、逆に測定しにくい。しかしなが
ら、本発明においては、一次系冷却水側と二次系主蒸気
配管側とで測定されたデータを比較することができるの
で、主蒸気配管側の放射能濃度上昇のうち、それが細管
の破断による冷却水の漏洩がどうかの判断をすることが
でき、さらに検知対象核種を88Kr,87Krなどに絞っ
ているので、燃料破損等の重大な異常を伴っているかど
うかの判断をすることができる。また、それらの測定デ
ータから一次系冷却水側と二次系主蒸気配管側との放射
能濃度を算出することができるので、一次系冷却水の漏
洩量と共に、燃料破損などの異常の程度を知ることがで
きる。
[Function] For example, when the heat transfer tube is damaged, the radioactive material of the primary system cooling water reaches the position of the radiation detector of the turbine exhaust gas system monitor 19 within a few seconds. Since the radioactivity concentration is equal to zero, the output of the detector will change significantly.
When 16 N or 15 C is used as the radiation source, the energy of gamma rays emitted is high (6 MeV, 5 MeV), so even a small amount can be detected even outside the main steam pipe (thickness 2-3 cm). Occurs when fuel is damaged, etc.
The gamma ray spectrum for nuclides such as 88 Kr and 87 Kr is 16
It becomes the background of the gamma ray spectrum due to nuclides such as N and 15 C, which is difficult to measure. However, in the present invention, since it is possible to compare the data measured on the primary system cooling water side and the secondary system main steam piping side, of the increase in radioactivity concentration on the main steam piping side, it is It is possible to judge whether the cooling water leaks due to breakage, and since the detection target nuclides are narrowed down to 88 Kr, 87 Kr, etc., judge whether there is a serious abnormality such as fuel damage. You can In addition, since it is possible to calculate the radioactivity concentration between the primary system cooling water side and the secondary system main steam piping side from these measured data, the leakage amount of the primary system cooling water and the degree of abnormality such as fuel damage can be calculated. I can know.

【0009】[0009]

【実施例】図1を参照しながら本発明の一実施例を説明
する。図1は本発明の実施例を含んだ加圧水型原子力発
電所の概略を示している。図中、符号1は原子炉建屋、
2は原子炉格納容器、3は原子炉容器をそれぞれ示して
いる。原子炉容器3内の炉心4で加熱された一次系冷却
水は一次系配管5を流れて蒸気発生器6内の多数本の伝
熱管7に流入する。蒸気発生器6内の二次系冷却水は伝
熱管7と熱交換して加熱され高温・高圧蒸気となって二
次系主蒸気配管8を流れてタービン9へ流入する。ター
ビン9は回転し、発電機10を駆動して発電する。タービ
ン9で仕事を終えた蒸気は復水器11に流入し冷却されて
復水となる。この復水は二次系給水管12を流れて蒸気発
生器6へ二次系冷却水として給水される。一方、蒸気発
生器6内の伝熱管7を流れる一次系冷却水は二次系冷却
水と熱交換して冷却され、一次系冷却水配管13からポン
プ(図示せず)により原子炉容器3内に戻り炉心4で加
熱される。なお、図中15は制御棒、16は加圧器、17はス
プレー管、18は排ガス系抽気配管、19はタービン排ガス
系モニタをそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 schematically shows a pressurized water nuclear power plant including an embodiment of the present invention. In the figure, reference numeral 1 is a reactor building,
Reference numeral 2 indicates a reactor containment vessel, and 3 indicates a reactor vessel. The primary system cooling water heated by the core 4 in the reactor vessel 3 flows through the primary system pipe 5 and flows into a large number of heat transfer tubes 7 in the steam generator 6. The secondary system cooling water in the steam generator 6 exchanges heat with the heat transfer tube 7 to be heated to become high temperature / high pressure steam, flows through the secondary system main steam pipe 8 and flows into the turbine 9. The turbine 9 rotates and drives the generator 10 to generate electricity. The steam that has finished its work in the turbine 9 flows into the condenser 11 and is cooled to be condensed water. This condensate flows through the secondary system water supply pipe 12 and is supplied to the steam generator 6 as secondary system cooling water. On the other hand, the primary system cooling water flowing through the heat transfer pipes 7 in the steam generator 6 is cooled by exchanging heat with the secondary system cooling water, and the primary system cooling water pipe 13 pumps a pump (not shown) into the reactor vessel 3. And is heated in the core 4. In the figure, 15 is a control rod, 16 is a pressurizer, 17 is a spray pipe, 18 is an exhaust gas extraction pipe, and 19 is a turbine exhaust gas system monitor.

【0010】ここで、二次系主蒸気配管8には第1の測
定入口配管20が接続されており、この第1の測定入口配
管20は第1のバイパス系21を介して第1のガンマ線スペ
クトルおよび線量率測定系22に接続されている。この測
定系22の出口側は第1の測定出口配管23を介して二次系
主蒸気配管8の下流側に接続している。一方、一次系冷
却水配管13には第2の測定入口配管24が接続されてお
り、この第2の測定入口配管24は第2のバイパス系25を
介して第2のガンマ線スペクトルおよび線量率測定系26
に接続されている。この測定系26の出口側は第2の測定
出口配管27を介して一次系冷却水配管13の下流側に接続
している。各測定系22,26は信号ケーブル28,29によっ
て演算処理系30に接続している。なお、第1および第2
のバイパス系21,25は短半減期核種を十分に減衰させる
ことができるものである。
Here, a first measurement inlet pipe 20 is connected to the secondary system main steam pipe 8, and the first measurement inlet pipe 20 is connected to a first gamma ray via a first bypass system 21. It is connected to the spectrum and dose rate measurement system 22. The outlet side of this measurement system 22 is connected to the downstream side of the secondary system main steam pipe 8 via a first measurement outlet pipe 23. On the other hand, a second measurement inlet pipe 24 is connected to the primary system cooling water pipe 13, and this second measurement inlet pipe 24 measures the second gamma ray spectrum and dose rate via the second bypass system 25. Line 26
It is connected to the. The outlet side of the measurement system 26 is connected to the downstream side of the primary system cooling water pipe 13 via a second measurement outlet pipe 27. The measurement systems 22 and 26 are connected to the arithmetic processing system 30 by signal cables 28 and 29. The first and second
The bypass systems 21 and 25 of the system are capable of sufficiently attenuating short half-life nuclides.

【0011】図中で第1の測定入口配管20から採取され
た蒸気の一部は第1のバイパス系21で16Nや15Cなどの
核種を十分減衰させた後、第1のガンマ線スペクトルお
よび線量率測定系22でスペクトルおよび線量率が測定さ
れる。同様に第2の測定入口配管24から採取された一次
系冷却水の一部は第2のバイパス系25を経由して、第2
のガンマ線スペクトルおよび線量質測定系26でスペクト
ルおよび線量率が測定される。これらの測定系で測定さ
れたデータは演算処理系30で処理される。この結果、第
1の測定系22で測定されたデータの変動を、第2の測定
系26の結果と比較することができるので、主蒸気側の放
射能濃度上昇のうち、それが一次系冷却水の漏洩による
ものかどうかの判断をすることができる。
In the figure, a part of the steam collected from the first measurement inlet pipe 20 is sufficiently attenuated by nuclides such as 16N and 15C in the first bypass system 21, and then the first gamma ray spectrum and dose rate are measured. The measurement system 22 measures the spectrum and dose rate. Similarly, a part of the primary system cooling water collected from the second measurement inlet pipe 24 passes through the second bypass system 25,
The spectrum and dose rate are measured by the gamma ray spectrum and dose quality measurement system 26 of. The data measured by these measurement systems is processed by the arithmetic processing system 30. As a result, the fluctuation of the data measured by the first measurement system 22 can be compared with the result of the second measurement system 26, so that the increase in the radioactivity concentration on the main steam side is the primary system cooling. You can judge whether it is due to water leakage.

【0012】ここで、N01,N02を第2の測定入口配管
24における16N,88Krの濃度、λ1 ,λ2 16N,88
Krの崩壊定数とすると、16Nの濃度が88Krの濃度の
Δとなる時間は次の(1)式で求まる。
Here, N 01 and N 02 are connected to the second measurement inlet pipe.
The concentration of 16 N, 88 Kr at 24, λ 1 , λ 2 is 16 N, 88
When the decay constant of Kr is used, the time when the concentration of 16 N becomes Δ of the concentration of 88 Kr can be calculated by the following equation (1).

【0013】[0013]

【数1】 [Equation 1]

【0014】ここでN01= 4.0×101 (μCi/g)、N
02= 2.8×10-1(μCi/g)(ANSI/ANS−18.1
−1984)とし、λ1 =7.13sec ,λ2 =2.84hとすると
Δ=0.01となる時間は上式より68.2sec と求まる。16
は6.12MeV のガンマ線を放出率69%で、88Krは2.39Me
V のガンマ線を放出率35%で放出するので、Δ=0.01ま
16Nを減衰させてしまうと88Krの放出するガンマ線
は第2の測定系26および演算処理系30で十分測定でき
る。次に、配管からの線量率は配管中の放射能濃度に比
例することから、予め計算により任意の濃度で測定点に
おける線量率を求め、ガンマ線スペクトルおよび線量率
測定系により得られた線量率の実測値と、計算により算
出された線量率の計算値との比(実測値/計算値)を計
算の際に用いた濃度に規格化して実測値の線量率に対す
る放射能濃度を演算処理系30により算出する。
Here, N 01 = 4.0 × 10 1 (μCi / g), N
02 = 2.8 x 10 -1 (μCi / g) (ANSI / ANS-18.1.
-1984) and λ 1 = 7.13sec and λ 2 = 2.84h, the time when Δ = 0.01 is calculated as 68.2sec from the above formula. 16 N
In release 69% is gamma rays 6.12MeV, 88 Kr is 2.39Me
Since the V gamma ray is emitted at an emission rate of 35%, if the 16 N is attenuated to Δ = 0.01, the 88 Kr emitted gamma ray can be sufficiently measured by the second measurement system 26 and the arithmetic processing system 30. Next, since the dose rate from the pipe is proportional to the radioactivity concentration in the pipe, the dose rate at the measurement point was calculated at an arbitrary concentration by calculation in advance, and the gamma ray spectrum and the dose rate obtained by the dose rate measurement system The ratio (actual value / calculated value) between the measured value and the calculated dose rate calculated by calculation is normalized to the concentration used in the calculation, and the radioactivity concentration for the measured dose rate is calculated. Calculate by

【0015】また、一次系冷却水の流量、主蒸気流量は
各制御系から知ることができるので、一次系冷却水の放
射能濃度RC(μCi/g)、主蒸気系の放射能濃度ST
A(μCi/g)および流量STB(g/s)から一次系
冷却水の漏洩量D(g/s)は次の (2)式により演算処
理系30で算出される。
Further, since the flow rate of the primary cooling water and the flow rate of the main steam can be known from each control system, the radioactivity concentration RC (μCi / g) of the primary cooling water and the radioactivity concentration ST of the main steam system can be obtained.
From A (μCi / g) and the flow rate STB (g / s), the leakage amount D (g / s) of the primary system cooling water is calculated by the arithmetic processing system 30 by the following equation (2).

【0016】[0016]

【数2】 [Equation 2]

【0017】[0017]

【発明の効果】本発明によれば、蒸気発生器内の伝熱管
から僅かでも一次系冷却水が二次系主蒸気配管に漏洩し
た場合にも、測定系の線量率に変化が現れることにな
り、異常現象の初期徴候の診断が可能になるとともに、
このデータを経時変化として処理することにより異常の
推移の予測ができ、かつ燃料破損時特有の核種を対象と
しているので、異常箇所の状態把握の診断を得ることが
できる。
According to the present invention, even if a small amount of primary system cooling water leaks to the secondary system main steam pipe from the heat transfer tube in the steam generator, the dose rate of the measurement system changes. It becomes possible to diagnose the early signs of abnormal phenomenon,
By processing this data as a change over time, it is possible to predict the transition of the abnormality, and since the target is a nuclide peculiar to the fuel damage, it is possible to obtain a diagnosis for grasping the state of the abnormality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加圧水型原子炉の異常診断装置の
一実施例を概略的に示す構成図。
FIG. 1 is a configuration diagram schematically showing an embodiment of a pressurized water nuclear reactor abnormality diagnosis apparatus according to the present invention.

【図2】従来の加圧水型原子炉の異常診断装置を示す構
成図。
FIG. 2 is a block diagram showing a conventional abnormality diagnosing device for a pressurized water reactor.

【符号の説明】[Explanation of symbols]

1…原子炉建屋、2…原子炉格納容器、3…原子炉容
器、4…炉心、5…一次系配管、6…蒸気発生器、7…
伝熱管、8…二次系主蒸気配管、9…タービン、10…発
電機、11…復水器、12…二次系給水管、13…一次系冷却
水配管、14…ポンプ、15…制御棒、16…加圧器、17…ス
プレー管、18…排ガス系抽気配管、19…タービン排ガス
系モニタ、20…第1の測定入口配管、21…第1のバイパ
ス系、22…第1のガンマ線スペクトルおよび線量率測定
系、23…第1の測定出口配管、24…第2の測定入口配
管、25…第2のバイパス系、26…第2のガンマ線スペク
トルおよび線量率測定系、27…第2の測定出口配管、2
8,29…信号ケーブル、30…演算処理系。
1 ... Reactor building, 2 ... Reactor containment vessel, 3 ... Reactor vessel, 4 ... Core, 5 ... Primary system piping, 6 ... Steam generator, 7 ...
Heat transfer pipe, 8 ... Secondary system main steam pipe, 9 ... Turbine, 10 ... Generator, 11 ... Condenser, 12 ... Secondary system water supply pipe, 13 ... Primary system cooling water pipe, 14 ... Pump, 15 ... Control Rod, 16 ... Pressurizer, 17 ... Spray pipe, 18 ... Exhaust gas extraction pipe, 19 ... Turbine exhaust gas monitor, 20 ... First measurement inlet pipe, 21 ... First bypass system, 22 ... First gamma ray spectrum And dose rate measurement system, 23 ... First measurement outlet pipe, 24 ... Second measurement inlet pipe, 25 ... Second bypass system, 26 ... Second gamma ray spectrum and dose rate measurement system, 27 ... Second Measuring outlet pipe, 2
8, 29 ... Signal cable, 30 ... Arithmetic processing system.

Claims (1)

【特許請求の範囲】 【請求項1】 加圧水型原子炉の二次系主蒸気配管およ
び一次系冷却水配管にそれぞれ短半減期核種を減衰し得
るバイパス系を有するガンマ線スペクトルおよび線量測
定系を設け、これらの測定系から得られるデータの比較
を行い漏洩による異常徴候の有無の判定および線量率か
ら各測定点における主蒸気中の放射能濃度の算出、さら
に二次系主蒸気配管における漏洩放射能濃度の算出を経
時変化で行う演算処理系を設けてなることを特徴とする
加圧水型原子炉の異常診断装置。
Claims: 1. A gamma ray spectrum and dosimetry system having a bypass system capable of attenuating short half-life nuclides is provided in each of the secondary system main steam piping and the primary system cooling water piping of a pressurized water reactor. , The data obtained from these measurement systems are compared to determine whether there are any abnormal signs due to leakage, the radioactivity concentration in the main steam at each measurement point is calculated from the dose rate, and the leakage activity in the secondary system main steam piping An abnormality diagnosing device for a pressurized water reactor, comprising an arithmetic processing system for calculating concentration over time.
JP3154393A 1991-06-26 1991-06-26 Abnormality diagnosis device for pressurized water reactor Pending JPH052093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154393A JPH052093A (en) 1991-06-26 1991-06-26 Abnormality diagnosis device for pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154393A JPH052093A (en) 1991-06-26 1991-06-26 Abnormality diagnosis device for pressurized water reactor

Publications (1)

Publication Number Publication Date
JPH052093A true JPH052093A (en) 1993-01-08

Family

ID=15583161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154393A Pending JPH052093A (en) 1991-06-26 1991-06-26 Abnormality diagnosis device for pressurized water reactor

Country Status (1)

Country Link
JP (1) JPH052093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063664A1 (en) * 2014-10-20 2016-04-28 三菱重工業株式会社 Nuclear power generation plant and operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063664A1 (en) * 2014-10-20 2016-04-28 三菱重工業株式会社 Nuclear power generation plant and operation method
JP2016080587A (en) * 2014-10-20 2016-05-16 三菱重工業株式会社 Nuclear power plant and nuclear power plant operation method

Similar Documents

Publication Publication Date Title
JP5542150B2 (en) Subcritical reactivity measurement method
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
KR20160073997A (en) A method for monitoring boron dilution during a reactor outage
KR20090120305A (en) Device for monitoring leakage of steam generator for atomic power plant and method thereof
US3712850A (en) Method for determining reactor coolant system leakage
Buell et al. A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions
JPH052093A (en) Abnormality diagnosis device for pressurized water reactor
Alberman et al. Technique for power ramp tests in the ISABELLE 1 loop of the OSIRIS reactor
JPH0587973A (en) Monitoring of nuclear reactor
JPH04268496A (en) Device and method for diagnostic abnormality of reactor
JPH04335196A (en) Abnormality diagnosis device for reactor
JPH04326093A (en) Abnormality diagnostic device for reactor
RU2191437C1 (en) Leak inspection method for steam generator of nuclear power plant
EP3848943B1 (en) Apparatus and method for real time precision measurement of the thermal power of a fission nuclear reactor
JPH05100075A (en) Nuclear reactor monitoring system
Tsypin et al. 16N γ-ray diagnostics of a nuclear reactor in a nuclear power plant
JPH04324398A (en) Abnormality diagnostic device for reactor
CN114496321A (en) Radioactivity on-line monitoring system of nuclear reactor primary circuit
JPH05134081A (en) Diagnosing apparatus of abnormality of reactor
Fischer et al. Methods for leak detection for KWU pressurized and boiling water reactors
JP3079447B2 (en) Radiation detector
JPS58100786A (en) Method of diagnosing abnormality of reactor plant
Knowles STATISTICS AND THE ESTIMATION OF DESIGN DATA-2
KR100597726B1 (en) Determination method of failed fuel discrimination ratio by applying the correction factors compensated for the flow rate differences among the coolant sampling lines
Ammon et al. Monitoring the Integrity of Control Rods On-Line with a Helium Leak Detector