JPH04335196A - Abnormality diagnosis device for reactor - Google Patents

Abnormality diagnosis device for reactor

Info

Publication number
JPH04335196A
JPH04335196A JP3105617A JP10561791A JPH04335196A JP H04335196 A JPH04335196 A JP H04335196A JP 3105617 A JP3105617 A JP 3105617A JP 10561791 A JP10561791 A JP 10561791A JP H04335196 A JPH04335196 A JP H04335196A
Authority
JP
Japan
Prior art keywords
exhaust gas
radiation detector
reactor
steam
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3105617A
Other languages
Japanese (ja)
Inventor
Tatsuya Hirayama
達也 平山
Hitoshi Honma
均 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3105617A priority Critical patent/JPH04335196A/en
Publication of JPH04335196A publication Critical patent/JPH04335196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To defect immediately small leakage of primary coolant from heat conduction tubes in a steam generator of a pressurized water reactor. CONSTITUTION:In addition to an existing monitor 18 of turbine exhaust gas line provided in the exhaust gas line pipe 17 to sample a part of steam (gas) from a water condenser 12, a first radiation detector 19 of <16>N is installed on the secondary main steam pipe 13 from a steam generator 8. The first radiation detector 19 and the second radiation detector 21 for the monitor 18 of the turbine exhaust gas line are connected to an arithmetic processor 20.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は加圧水型原子炉(以下、
PWRと記す)における蒸気発生器内の伝熱管破損部か
らの一次系冷却材の漏洩を診断する原子炉の異常診断装
置に関する。
[Industrial Application Field] The present invention relates to a pressurized water nuclear reactor (hereinafter referred to as
The present invention relates to a nuclear reactor abnormality diagnosis device for diagnosing leakage of primary coolant from a broken part of a heat transfer tube in a steam generator in a nuclear reactor (hereinafter referred to as PWR).

【0003】0003

【従来の技術】図1により従来の加圧水型原子炉の概略
を説明する。図中、符号1は原子炉建屋、2は原子炉格
納容器、3は原子炉容器をそれぞれ示している。原子炉
容器3内の炉心4で加熱された一次系冷却材は一次系配
管7を流れて蒸気発生器8内の伝熱管9に流入する。蒸
気発生器8内の二次系冷却材は伝熱管9と熱交換して加
熱され高温・高圧蒸気となって二次系主蒸気配管13を
流れてタービン14へ流入する。タービン14は回転し
、発電機15を駆動して発電する。タービン14で仕事
を終えた蒸気は復水器12に流入し冷却されて復水とな
る。この復水は二次系給水管16を流れて蒸気発生器8
へ二次系冷却材として給水される。一方、蒸気発生器8
内の伝熱管9を流れる一次系冷却材は二次系冷却材と熱
交換して冷却され、一次系主冷却配管11からポンプ1
0により原子炉容器3内に戻り炉心4で加熱される。
2. Description of the Related Art A conventional pressurized water nuclear reactor will be schematically explained with reference to FIG. In the figure, reference numeral 1 indicates a reactor building, 2 indicates a reactor containment vessel, and 3 indicates a reactor vessel. The primary coolant heated in the reactor core 4 in the reactor vessel 3 flows through the primary system piping 7 and flows into the heat exchanger tubes 9 in the steam generator 8 . The secondary coolant in the steam generator 8 exchanges heat with the heat exchanger tubes 9 and is heated to become high-temperature, high-pressure steam, which flows through the secondary main steam piping 13 and flows into the turbine 14 . The turbine 14 rotates and drives the generator 15 to generate electricity. The steam that has completed its work in the turbine 14 flows into the condenser 12, where it is cooled and becomes condensed water. This condensate flows through the secondary water supply pipe 16 to the steam generator 8.
Water is supplied to the system as a secondary coolant. On the other hand, steam generator 8
The primary coolant flowing through the heat transfer tubes 9 is cooled by exchanging heat with the secondary coolant, and is cooled from the primary main cooling pipe 11 to the pump 1.
0, it returns to the reactor vessel 3 and is heated in the reactor core 4.

【0004】なお、図中5は制御棒、6は加圧器、17
は排ガス系配管をそれぞれ示している。また、18はタ
ービン排ガス系モニタで、排ガス中の放射性物質を測定
する放射線検出器を備えたものである。
In the figure, 5 is a control rod, 6 is a pressurizer, and 17 is a control rod.
indicate exhaust gas system piping. Further, 18 is a turbine exhaust gas system monitor, which is equipped with a radiation detector for measuring radioactive substances in the exhaust gas.

【0005】ところで、蒸気発生器8内には逆U字状の
細管からなる多数本の伝熱管9が管板に取着されており
、これらの伝熱管9の全数について定期検査時に点検を
行い健全性を確認している。原子炉運転中に仮に伝熱管
9が破損して一次系冷却材の漏洩が発生した場合、漏洩
した一次冷却材中の放射性物質は二次系主蒸気配管13
を通り、タービン14へ移行し、さらに復水器12を通
り給水系に戻ることになる。PWRでは復水器12から
一部の蒸気(ガス)を排ガス系配管17を通し抽気して
おり、抽気した蒸気中に放射性物質が警報設定値以上含
まれている場合にはタービン排ガス系モニタ18により
警報が発せられるように構成している。
By the way, in the steam generator 8, a large number of heat transfer tubes 9 made of inverted U-shaped thin tubes are attached to a tube plate, and all of these heat transfer tubes 9 are inspected during periodic inspections. The soundness has been confirmed. If the heat transfer tubes 9 are damaged during reactor operation and the primary coolant leaks, the radioactive materials in the leaked primary coolant will be transferred to the secondary main steam pipe 13.
The water passes through the turbine 14, and then passes through the condenser 12 and returns to the water supply system. In the PWR, some steam (gas) is extracted from the condenser 12 through the exhaust gas system piping 17, and if the extracted steam contains radioactive substances exceeding the alarm set value, the turbine exhaust gas system monitor 18 The system is configured so that an alarm will be issued.

【0006】[0006]

【発明が解決しようとする課題】蒸気発生器8内の伝熱
管9の破損に伴う一次冷却材の二次系への漏洩放射能を
対象として排ガス系の排ガス系モニタ18で連続監視を
続けている。通常運転時におけるPWRの二次系配管中
放射能濃度は、ほとんどゼロに近いため、伝熱管9の破
損監視の計測結果には時として自然放射線の変動または
計測系のノイズ等によりピーク状の変動が現れることが
ある。これが有意な信号かどうか判断する手段が無いの
が現状である。また、有意であり、かつ線量率がさらに
上昇した場合の破損部の状況把握が困難である。
[Problem to be Solved by the Invention] The exhaust gas system monitor 18 of the exhaust gas system is used to continuously monitor radioactivity leaked into the secondary system of the primary coolant due to damage to the heat transfer tube 9 in the steam generator 8. There is. The radioactivity concentration in the PWR secondary system piping during normal operation is almost zero, so the measurement results for damage monitoring of the heat transfer tubes 9 sometimes have peak-like fluctuations due to fluctuations in natural radiation or noise in the measurement system. may appear. Currently, there is no way to determine whether this is a significant signal. In addition, it is difficult to understand the situation of the damaged part when the damage is significant and the dose rate increases further.

【0007】すなわち、従来のPWRでは、一次系冷却
材が漏洩した場合、タービン排ガス系モニタ18におい
て対象としている放射性核種(希ガス,腐食生成物,核
分裂生成物等)の漏洩が警報設定値を超える量に達した
時点において警報が発せられることになる。ところがタ
ービン排ガス系モニタ18は二次系の系統でも終端部に
位置しており、伝熱管9の漏洩に伴って二次系に漏洩す
る一次冷却材の主要線源核種である16N(7秒)や1
5C(2秒)のような短半減期核種はタービン排ガス系
モニタ18に到達するまで減衰して、ほとんど計数され
なくなる。 このため、一次冷却材の漏洩によるタービン排ガス系モ
ニタ18が対象としている放射性核種は希ガス、腐食生
成物、核分裂生成物等である。しかしながら、一次冷却
材中に存在するこれらの放射性核種は16Nや15Cに
比較してもともと量が少ない上に主蒸気中に漏洩した一
部を抽気して測定していることから、微量の漏洩に際し
ては検知し難い。また、自然放射線によるバックグラン
ドの変動があるため、微量漏洩による異常徴候を有意な
値として判定できない装置となっている。さらに16N
や15Cの原子炉内における生成量は原子炉の運転状態
(原子炉出力、炉心流量等)により変化するため、一時
的な線量率上昇が異常の拡大か、または16Nや15C
の生成量の変化なのかが判定できない。
That is, in a conventional PWR, when the primary coolant leaks, the leakage of radionuclides (rare gases, corrosion products, fission products, etc.) targeted by the turbine exhaust gas system monitor 18 causes the alarm set value to be exceeded. An alarm will be issued when the amount exceeds. However, the turbine exhaust gas system monitor 18 is also located at the terminal end of the secondary system, and 16N (7 seconds), which is the main source nuclide of the primary coolant that leaks into the secondary system due to leakage of the heat exchanger tubes 9, is located at the end of the secondary system. Ya1
Short half-life nuclides such as 5C (2 seconds) are attenuated until they reach the turbine exhaust gas system monitor 18 and are hardly counted. Therefore, the radionuclides targeted by the turbine exhaust gas system monitor 18 due to primary coolant leakage include rare gases, corrosion products, nuclear fission products, and the like. However, these radionuclides present in the primary coolant are originally small in amount compared to 16N and 15C, and the part that leaked into the main steam is extracted and measured, so it is difficult to detect when a small amount leaks. is difficult to detect. Furthermore, due to background fluctuations due to natural radiation, the device cannot determine abnormal signs due to trace leakage as significant values. Another 16N
The amount of 16N and 15C produced in the reactor changes depending on the operating status of the reactor (reactor output, core flow rate, etc.), so a temporary increase in the dose rate may be an expansion of an abnormality or 16N or 15C.
It is not possible to determine whether this is due to a change in the amount of production.

【0008】その対応策として変化があった場合には二
次系の水をサンプリングして放射能測定を実施している
。このため、もし漏洩があった場合は結果が出るまで3
0〜60分間の時間的な遅れが生じ事故の拡大につなが
る危険性がある。このように、微量漏洩による異常徴候
の判定が困難となっている等の課題がある。
[0008] As a countermeasure, if there is a change, the secondary system water is sampled and radioactivity measurement is carried out. For this reason, if there is a leak, it will take up to 3 days until the results are available.
There is a risk that a time delay of 0 to 60 minutes will occur, leading to an escalation of the accident. As described above, there are problems such as difficulty in determining abnormal symptoms due to trace leakage.

【0009】本発明は上記課題を解決するためになされ
たもので、加圧水型原子炉における蒸気発生器内の伝熱
管からの一次系冷却材の微量漏洩を速やかに検知するこ
とができる原子炉の異常診断装置を提供することにある
。 [発明の構成]
The present invention has been made to solve the above problems, and is a nuclear reactor that can quickly detect a small amount of leakage of primary coolant from a heat transfer tube in a steam generator in a pressurized water reactor. The purpose of the present invention is to provide an abnormality diagnosis device. [Structure of the invention]

【0010】0010

【課題を解決するための手段】本発明は加圧水型原子炉
の蒸気発生器内の伝熱管破損に伴う一次冷却材の二次系
への漏洩放射能を検知する放射線検出器を備えた排ガス
モニタと、前記二次系主蒸気配管の上流側に設置した1
6Nを対象とする放射線検出器と、これらの放射線検出
器で検知した信号を時系列で処理し、その処理信号が漏
洩による有意な信号か、または自然放射線の変動或いは
計測系のノイズかを判定する演算処理系とから成ること
を特徴とする。
[Means for Solving the Problems] The present invention provides an exhaust gas monitor equipped with a radiation detector that detects radioactivity leaking into the secondary system of the primary coolant due to damage to the heat transfer tube in the steam generator of a pressurized water reactor. and 1 installed on the upstream side of the secondary main steam piping.
Radiation detectors targeting 6N and the signals detected by these radiation detectors are processed in time series to determine whether the processed signals are significant signals due to leakage, fluctuations in natural radiation, or noise in the measurement system. It is characterized by consisting of an arithmetic processing system.

【0011】[0011]

【作用】本発明における異常診断装置では、排ガス系の
排ガス抽気配管に設置された従来の排ガス系モニタと、
二次系主蒸気配管に設置した16Nを測定対象とした放
射線検出器の出力信号を時系列で比較することにより、
各放射線検出器の出力に変化が現れた場合、その変化が
バックグランドの変動、測定系のノイズがまたは漏洩に
よる変化かを判定することが可能となる。これは、排ガ
ス系で測定している放射能(例えば13N、希ガス)も
二次系主蒸気配管で測定している16Nも炉心内で生成
されており、蒸気発生器内で伝熱管破損を起こした場合
は両核種とも同時に二次系へ移行してくるものと思われ
る。そのため、漏洩により排ガス系の放射線検出器に変
化が現れれば、それ以前に蒸気の到達時間を考慮した時
間内にその上流側にあたる二次系主蒸気配管の検出器に
も同様な変化が現れているはずである。もし、バックグ
ランドの変動、測定系のノイズによる変化であれば、一
方の放射線検出器のみの変化、もしくは両方変化しても
時間的な対応がとれないことになる。
[Operation] The abnormality diagnosis device of the present invention uses a conventional exhaust gas system monitor installed in the exhaust gas bleed pipe of the exhaust gas system;
By comparing the output signals of the radiation detector installed in the secondary main steam piping and measuring 16N in time series,
When a change appears in the output of each radiation detector, it is possible to determine whether the change is due to background fluctuation, noise in the measurement system, or leakage. This is because both the radioactivity measured in the exhaust gas system (for example, 13N, rare gas) and the 16N measured in the secondary main steam piping are generated within the reactor core, and damage to the heat transfer tubes occurs within the steam generator. If this happens, both nuclides are likely to migrate to the secondary system at the same time. Therefore, if a change occurs in the radiation detector in the exhaust gas system due to a leak, a similar change will occur in the detector in the secondary main steam piping upstream within the time taken into account the arrival time of the steam. There should be. If the change is due to background fluctuations or noise in the measurement system, temporal correspondence will not be established even if only one radiation detector or both change.

【0012】このようにして16Nを測定対象とした放
射線検出器を二次系主蒸気配管の上流側に設置し、この
放射線検出器の測定系の放射線線量の変動と、排ガス抽
気配管に設置した放射線検出器の測定系の放射線線量の
変動が、測定点間の蒸気の時間遅れに対応して変動が現
れていれば同じ放射性物質による放射線線量の変動であ
ることが判定できる。各々の測定データはリアルタイム
で演算機能を備えた演算処理装置で構成する演算処理系
に転送され、放射線線量の変動が上流側と下流側に設置
した検出器の双方において到達時間を考慮した時間に測
定されれば同じ放射性物質の通過による放射線線量の変
動であることが判定され、放射線線量の変動が一次冷却
材の微量漏洩であること、その発生の時間を速やかに検
知し、プラントデータと比較することで原子炉の異常を
診断できる。
[0012] In this way, a radiation detector measuring 16N was installed upstream of the secondary main steam piping, and the radiation dose fluctuations of the measurement system of this radiation detector and the radiation dose installed in the exhaust gas bleed piping were measured. If the variation in the radiation dose of the measurement system of the radiation detector appears in response to the time delay of steam between measurement points, it can be determined that the variation in the radiation dose is due to the same radioactive substance. Each measurement data is transferred in real time to a processing system consisting of a processing unit equipped with calculation functions, and the fluctuations in radiation dose are checked at a time that takes into account the arrival time at both the upstream and downstream detectors. If measured, it is determined that the variation in radiation dose is due to the passage of the same radioactive material, and the system quickly detects that the variation in radiation dose is due to a small leakage of the primary coolant and the time of its occurrence, and compares it with plant data. By doing so, it is possible to diagnose abnormalities in the reactor.

【0013】[0013]

【実施例】図面を参照しながら本発明の実施例を説明す
る。図1は本発明の実施例を含んだ加圧水型原子力発電
所の概略を示している。図中、符号1は原子炉建屋、2
は原子炉格納容器、3は原子炉容器をそれぞれ示してい
る。原子炉容器3内の炉心4で加熱された一次系冷却材
は一次系配管7を流れて蒸気発生器8内の多数本の伝熱
管9に流入する。蒸気発生器8内の二次系冷却材は伝熱
管9と熱交換して加熱され高温・高圧蒸気となって二次
系主蒸気配管13を流れてタービン14へ流入する。タ
ービン14は回転し、発電機15を駆動して発電する。 タービン14で仕事を終えた蒸気は復水器12に流入し
冷却されて復水となる。この復水は二次系給水管16を
流れて蒸気発生器8へ二次系冷却材として給水される。 一方、蒸気発生器8内の伝熱管9を流れる一次系冷却材
は二次系冷却材と熱交換して冷却され、一次系主冷却配
管11からポンプ10により原子炉容器3内に戻り炉心
4で加熱される。なお、図中5は制御棒、6は加圧器を
それぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a pressurized water nuclear power plant including an embodiment of the present invention. In the figure, code 1 is the reactor building, 2
3 indicates the reactor containment vessel, and 3 indicates the reactor vessel. The primary coolant heated in the reactor core 4 in the reactor vessel 3 flows through the primary system piping 7 and flows into a large number of heat transfer tubes 9 in the steam generator 8 . The secondary coolant in the steam generator 8 exchanges heat with the heat exchanger tubes 9 and is heated to become high-temperature, high-pressure steam, which flows through the secondary main steam piping 13 and flows into the turbine 14 . The turbine 14 rotates and drives the generator 15 to generate electricity. The steam that has completed its work in the turbine 14 flows into the condenser 12, where it is cooled and becomes condensed water. This condensate flows through the secondary system water supply pipe 16 and is supplied to the steam generator 8 as a secondary system coolant. On the other hand, the primary coolant flowing through the heat transfer tubes 9 in the steam generator 8 is cooled by exchanging heat with the secondary coolant, and is returned to the reactor vessel 3 from the primary main cooling pipe 11 by the pump 10 into the reactor core 4. is heated. In addition, in the figure, 5 indicates a control rod, and 6 indicates a pressurizer.

【0014】ここで、本発明の実施例では復水器12か
ら一部の蒸気(ガス)を抽気する排ガス系配管17の下
流側測定点Aに設けられているタービン排ガス系モニタ
18に加え、蒸気発生器8の二次系主蒸気配管13の上
流側測定点Bに16Nを対象とする第1の放射線検出器
19を設置する。なお、タービン排ガス系モニタ18に
は第2の放射線検出器21が組込まれている。この第1
および第2の放射線検出器19,21は図2に示したよ
うに測定系A,Bを介して演算処理系20に接続してい
る。
In the embodiment of the present invention, in addition to the turbine exhaust gas system monitor 18 provided at the downstream measurement point A of the exhaust gas system piping 17 that extracts some steam (gas) from the condenser 12, A first radiation detector 19 that targets 16N is installed at the upstream measurement point B of the secondary main steam pipe 13 of the steam generator 8. Note that a second radiation detector 21 is incorporated into the turbine exhaust gas system monitor 18. This first
The second radiation detectors 19 and 21 are connected to an arithmetic processing system 20 via measurement systems A and B, as shown in FIG.

【0015】図2は本発明における測定系および演算処
理系20のブロックダイヤグラムを示したものである。 図2において、二次系主蒸気配管13に第1の放射線検
出器19が上流側測定点Bとして設置されており、排ガ
ス系配管17に第2の放射線検出器21が下流側測定点
Aとして設置されている。第1および第2の放射線検出
器19,21はそれぞれ電源22,23に接続し電圧が
印加され、また測定系Aおよび測定系Bに信号ケーブル
24,25を介して接続されている。測定系Aおよび測
定系Bは演算処理系20に接続されて、また第1および
第2のデータ出力装置26,27に接続している。演算
処理系20にはプラントデータ出力装置28からのデー
タが入力されるとともに第3のデータ出力装置29と接
続している。
FIG. 2 shows a block diagram of the measurement system and arithmetic processing system 20 in the present invention. In FIG. 2, a first radiation detector 19 is installed in the secondary main steam piping 13 as an upstream measurement point B, and a second radiation detector 21 is installed in the exhaust gas system piping 17 as a downstream measurement point A. is set up. The first and second radiation detectors 19 and 21 are connected to power supplies 22 and 23, respectively, to which a voltage is applied, and are also connected to measurement system A and measurement system B via signal cables 24 and 25. The measurement system A and the measurement system B are connected to the arithmetic processing system 20 and also to the first and second data output devices 26 and 27. The arithmetic processing system 20 receives data from a plant data output device 28 and is connected to a third data output device 29 .

【0016】図3は上流側測定点Bにおける線量と時間
との関係を示すグラフで、図4は同様に下流側測定点A
におけるグラフを示している。図中A,B,Cは単一信
号を、D−D′,E−E′,F−F′は同一信号を示し
ている。
FIG. 3 is a graph showing the relationship between dose and time at the upstream measurement point B, and FIG. 4 is a graph showing the relationship between the dose and time at the upstream measurement point A.
This shows a graph of . In the figure, A, B, and C indicate single signals, and D-D', E-E', and F-F' indicate the same signal.

【0017】上述したように本実施例は排ガス系配管1
7に設置されているタービン排ガス系モニタ18の放射
線線量率の変動の原因を検知するため、排ガス系配管1
7に設置されているタービン排ガス系モニタ18と、そ
の上流側の二次系主蒸気配管13に16Nを対象とした
第1の放射線検出器19が設けられている。タービン排
ガス系モニタ18と第1の放射線検出器19は演算処理
系20に信号ケーブル24,25によって接続されてい
る。
As mentioned above, in this embodiment, the exhaust gas system piping 1
In order to detect the cause of fluctuations in the radiation dose rate of the turbine exhaust gas system monitor 18 installed in the exhaust gas system piping 1
A first radiation detector 19 for 16N is provided in the turbine exhaust gas system monitor 18 installed at 7 and in the secondary main steam pipe 13 on the upstream side thereof. The turbine exhaust gas system monitor 18 and the first radiation detector 19 are connected to the arithmetic processing system 20 by signal cables 24 and 25.

【0018】第1の放射線検出器19は電離箱型または
NaI(Tl)シンチレーション検出器等を用いて線量
率または計数率としてタービン排ガス系モニタ18と同
様に連続測定する。測定データはリアルタイムで第1の
放射線検出器19の測定系B及びタービン排ガス系モニ
タ18の測定系Aから信号ケーブル24,25で演算処
理系20に転送され、第1の放射線検出器19で測定さ
れた放射線線量率の変動が測定点間の蒸気の到達時間(
蒸気の遅れ時間)後にタービン排ガス系モニタ18に放
射線線量率の変動があったかを判定し、漏洩の有無を検
知する。測定系で漏洩と検知された場合、プラントデー
タ出力装置28からプラントデータを取り込み比較する
ことで原子炉の異常を診断する。
The first radiation detector 19 uses an ionization chamber type or NaI (Tl) scintillation detector or the like to continuously measure the dose rate or count rate in the same manner as the turbine exhaust gas system monitor 18. The measurement data is transferred in real time from measurement system B of the first radiation detector 19 and measurement system A of the turbine exhaust gas system monitor 18 to the processing system 20 via signal cables 24 and 25, and is measured by the first radiation detector 19. The variation in the radiation dose rate determined by the arrival time of the steam between measurement points (
After the steam delay time), the turbine exhaust gas system monitor 18 determines whether there has been a change in the radiation dose rate, and detects the presence or absence of leakage. If a leak is detected in the measurement system, plant data is imported from the plant data output device 28 and compared, thereby diagnosing an abnormality in the reactor.

【0019】上記実施例では放射線検出器を2箇所設置
した例で説明したが、これに限ることなく、放射線検出
器は二次系主蒸気配管13および排ガス系配管17に任
意数設置することもできる。
In the above embodiment, an example was explained in which radiation detectors were installed at two locations, but the present invention is not limited to this, and an arbitrary number of radiation detectors may be installed in the secondary main steam pipe 13 and the exhaust gas system pipe 17. can.

【0020】[0020]

【発明の効果】本発明によれば、一次系冷却材が二次系
冷却材中に微量漏洩した場合でも、漏洩による放射線線
量の変動と自然放射能のバックグランドの変動とが判別
でき、一次系冷却材漏洩を早期に検知できるとともに、
測定データを経時変化として処理することから異常の発
生と推移が診断できる。
[Effects of the Invention] According to the present invention, even if a small amount of primary coolant leaks into the secondary coolant, it is possible to distinguish between fluctuations in the radiation dose due to the leakage and fluctuations in the background of natural radioactivity. In addition to being able to detect system coolant leaks early,
By processing measurement data as changes over time, it is possible to diagnose the occurrence and transition of abnormalities.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例を加圧水型原子力発電所の概略
とともに示す系統図。
FIG. 1 is a system diagram showing an embodiment of the present invention together with an outline of a pressurized water nuclear power plant.

【図2】本発明における測定系と演算処理系を示すブロ
ックダイヤグラム。
FIG. 2 is a block diagram showing a measurement system and an arithmetic processing system in the present invention.

【図3】図2における上流側測定点の線量と時間経過と
の関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the dose at the upstream measurement point in FIG. 2 and the passage of time.

【図4】図2における下流側測定点の線量と時間経過と
の関係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the dose at the downstream measurement point in FIG. 2 and the passage of time.

【符号の説明】[Explanation of symbols]

1…原子炉建屋、2…原子炉格納容器、3…原子炉容器
、4…炉心、5…制御棒、6…加圧器、7…一次系配管
、8…蒸気発生器、9…伝熱管、10…ポンプ、11…
一次系主冷却配管、12…復水器、13…二次系主蒸気
配管、14…タービン、15…発電機、16…二次系給
水管、17…排ガス系配管、18…タービン排ガス系モ
ニタ、19…第1の放射線検出器、20…演算処理系、
21…第2の放射線検出器、22,23…電源、24,
25…信号ケーブル、26,27,29…第1〜3のデ
ータ出力装置、28…プラントデータ出力装置。
1... Reactor building, 2... Reactor containment vessel, 3... Reactor vessel, 4... Reactor core, 5... Control rod, 6... Pressurizer, 7... Primary system piping, 8... Steam generator, 9... Heat exchanger tube, 10...pump, 11...
Primary system main cooling piping, 12... Condenser, 13... Secondary system main steam piping, 14... Turbine, 15... Generator, 16... Secondary system water supply pipe, 17... Exhaust gas system piping, 18... Turbine exhaust gas system monitor , 19...first radiation detector, 20...computation processing system,
21... Second radiation detector, 22, 23... Power supply, 24,
25... Signal cable, 26, 27, 29... First to third data output devices, 28... Plant data output device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加圧水型原子炉の蒸気発生器内の伝熱
管破損に伴う一次冷却材の二次系への漏洩放射能を検知
する放射線検出器を備えた排ガスモニタと、前記二次系
主蒸気配管の上流側に設置した16Nを対象とする放射
線検出器と、これらの放射線検出器で検知した信号を時
系列で処理し、その処理信号が漏洩による有意な信号か
、または自然放射線の変動或いは計測系のノイズかを判
定する演算処理系とから成ることを特徴とする原子炉の
異常診断装置。
1. An exhaust gas monitor equipped with a radiation detector for detecting leakage radioactivity of a primary coolant into a secondary system due to damage to a heat transfer tube in a steam generator of a pressurized water reactor; A radiation detector targeting 16N is installed upstream of the steam pipe, and the signals detected by these radiation detectors are processed in time series to determine whether the processed signal is a significant signal due to leakage or fluctuations in natural radiation. 1. A nuclear reactor abnormality diagnosis device comprising: an arithmetic processing system that determines whether noise is caused by measurement system noise or measurement system noise.
JP3105617A 1991-05-10 1991-05-10 Abnormality diagnosis device for reactor Pending JPH04335196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105617A JPH04335196A (en) 1991-05-10 1991-05-10 Abnormality diagnosis device for reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105617A JPH04335196A (en) 1991-05-10 1991-05-10 Abnormality diagnosis device for reactor

Publications (1)

Publication Number Publication Date
JPH04335196A true JPH04335196A (en) 1992-11-24

Family

ID=14412460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105617A Pending JPH04335196A (en) 1991-05-10 1991-05-10 Abnormality diagnosis device for reactor

Country Status (1)

Country Link
JP (1) JPH04335196A (en)

Similar Documents

Publication Publication Date Title
CN102426866A (en) Monitoring method and system for leakage at pressure boundary of primary coolant system in nuclear power station
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
Filliatre et al. In vessel detection of delayed neutron emitters from clad failure in sodium cooled nuclear reactors: Information treatment
JPH04335196A (en) Abnormality diagnosis device for reactor
JPH052093A (en) Abnormality diagnosis device for pressurized water reactor
Beliczey et al. Comments on probabilities of leaks and breaks of safety-related piping in PWR plants
JPH04268496A (en) Device and method for diagnostic abnormality of reactor
JPH04326093A (en) Abnormality diagnostic device for reactor
JPH0587973A (en) Monitoring of nuclear reactor
KR102415262B1 (en) System for Monitoring Rupture of Steam Generator Tube in Nuclear Power Plant and Method for Monitoring Using the Same
RU2191437C1 (en) Leak inspection method for steam generator of nuclear power plant
JPH06130177A (en) Nuclear reactor monitor
CN217111359U (en) Coolant leakage monitoring device
JPH04324398A (en) Abnormality diagnostic device for reactor
Fischer et al. Methods for leak detection for KWU pressurized and boiling water reactors
Wrightson et al. EBR-II water-to-sodium leak detection system
JPH05134081A (en) Diagnosing apparatus of abnormality of reactor
CN116864164A (en) Nuclear reactor primary loop radioactivity on-line monitoring system with double detectors
JPH05100075A (en) Nuclear reactor monitoring system
KR100597726B1 (en) Determination method of failed fuel discrimination ratio by applying the correction factors compensated for the flow rate differences among the coolant sampling lines
Yiduo et al. Research on Development of On-Line Monitoring of Fuel Damage in Nuclear Power Plant
Hovhannisyan Development of Advanced System for Early Detection of Primary Coolant Circuit Piping Leaks
Daugherty et al. Reliability evaluation of the Savannah River reactor leak detection system
JPS58100786A (en) Method of diagnosing abnormality of reactor plant
JPS582629A (en) Apparatus for detecting leakage from steam generator