JPH04324398A - Abnormality diagnostic device for reactor - Google Patents

Abnormality diagnostic device for reactor

Info

Publication number
JPH04324398A
JPH04324398A JP3094245A JP9424591A JPH04324398A JP H04324398 A JPH04324398 A JP H04324398A JP 3094245 A JP3094245 A JP 3094245A JP 9424591 A JP9424591 A JP 9424591A JP H04324398 A JPH04324398 A JP H04324398A
Authority
JP
Japan
Prior art keywords
reactor
main steam
neutron detector
steam
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3094245A
Other languages
Japanese (ja)
Inventor
Tomoharu Sasaki
智治 佐々木
Hitoshi Honma
均 本間
Eiji Mihashi
三橋 偉司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3094245A priority Critical patent/JPH04324398A/en
Publication of JPH04324398A publication Critical patent/JPH04324398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To diagnose the operation status of a reactor by detecting quickly the leak of primary coolant due to the rupture of heat conduction pipe in a steam generator in a pressurized water reactor. CONSTITUTION:In a secondary main steam pipe 8 to send steam generated in a steam generator 6 to a turbine 9, a neutron detector 18 is provided. Radiation rate or count rate is constantly measured with the neutron detector 18. By sending the measured data to an arithmetic processing system 19 and comparing it to a normal value, the existence of a leak is diagnosed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は加圧水型原子炉(以下、
PWRと記す)における蒸気発生器内の伝熱管破損部か
らの一次系冷却材の漏洩を診断する原子炉の異常診断装
置に関する。
[Industrial Application Field] The present invention relates to a pressurized water nuclear reactor (hereinafter referred to as
The present invention relates to a nuclear reactor abnormality diagnosis device for diagnosing leakage of primary coolant from a broken part of a heat transfer tube in a steam generator in a nuclear reactor (hereinafter referred to as PWR).

【0003】0003

【従来の技術】図1により従来の加圧水型原子炉の概略
を説明する。図中、符号1は原子炉建屋、2は原子炉格
納容器、3は原子炉容器をそれぞれ示している。原子炉
容器3内の炉心4で加熱された一次系冷却材は一次系配
管5を流れて蒸気発生器6内の伝熱管7に流入する。蒸
気発生器6内の二次系冷却材は伝熱管7と熱交換して加
熱され高温・高圧蒸気となって二次系主蒸気配管8を流
れてタービン9へ流入する。タービン9は回転し、発電
機10を駆動して発電する。タービン9で仕事を終えた
蒸気は復水器11に流入し冷却されて復水となる。この
復水は二次系配水管12を流れて蒸気発生器6へ二次系
冷却材として給水される。一方、蒸気発生器6内の伝熱
管7を流れる一次系冷却材は二次系冷却材と熱交換して
冷却され、一次系主冷却配管13からポンプ14により
原子炉容器3内に戻り炉心4で加熱される。
2. Description of the Related Art A conventional pressurized water nuclear reactor will be schematically explained with reference to FIG. In the figure, reference numeral 1 indicates a reactor building, 2 indicates a reactor containment vessel, and 3 indicates a reactor vessel. The primary coolant heated in the reactor core 4 in the reactor vessel 3 flows through the primary system piping 5 and flows into the heat transfer tube 7 in the steam generator 6 . The secondary coolant in the steam generator 6 is heated by exchanging heat with the heat exchanger tube 7 , becomes high-temperature, high-pressure steam, flows through the secondary main steam pipe 8 , and flows into the turbine 9 . The turbine 9 rotates and drives the generator 10 to generate electricity. The steam that has completed its work in the turbine 9 flows into the condenser 11, where it is cooled and becomes condensed water. This condensate flows through the secondary water pipe 12 and is supplied to the steam generator 6 as a secondary coolant. On the other hand, the primary coolant flowing through the heat transfer tubes 7 in the steam generator 6 is cooled by exchanging heat with the secondary coolant, and is returned to the reactor vessel 3 from the primary main cooling pipe 13 by the pump 14 into the reactor core 4. is heated.

【0004】なお、図中15は制御棒、16は加圧器、
17はスプレー管をそれぞれ示している。また、21は
排ガス系抽気配管、22はタービン排ガス系モニタで、
排ガス中の放射性物質を測定するものである。
[0004] In the figure, 15 is a control rod, 16 is a pressurizer,
Reference numeral 17 indicates a spray tube. In addition, 21 is an exhaust gas system bleed pipe, 22 is a turbine exhaust gas system monitor,
It measures radioactive substances in exhaust gas.

【0005】ところで、蒸気発生器6内には逆U字状の
細管からなる多数本の伝熱管7が管板に取着されており
、これらの伝熱管7の全数について定期検査時に点検を
行い健全性を確認している。原子炉運転中に仮に伝熱管
7が破損して一次系冷却材の漏洩が発生した場合、漏洩
した一次冷却材中の放射性物質は二次系主蒸気配管8を
通り、タービン9へ移行し、さらに復水器11を通り給
水系に戻ることになる。PWRでは復水器11から一部
の蒸気(ガス)を排ガス系抽気配管21を通し抽気して
おり、抽気した蒸気中に放射性物質が警報設定値以上含
まれている場合には排ガスモニタ22により警報が発せ
られるように構成している。
By the way, in the steam generator 6, a large number of heat transfer tubes 7 made of inverted U-shaped thin tubes are attached to a tube plate, and all of these heat transfer tubes 7 are inspected during regular inspections. The soundness has been confirmed. If the heat transfer tubes 7 are damaged during reactor operation and the primary coolant leaks, the radioactive materials in the leaked primary coolant will pass through the secondary main steam piping 8 and transfer to the turbine 9. Furthermore, it passes through the condenser 11 and returns to the water supply system. In the PWR, some steam (gas) is extracted from the condenser 11 through the exhaust gas extraction piping 21, and if the extracted steam contains radioactive substances exceeding the alarm set value, the exhaust gas monitor 22 detects It is configured to issue an alarm.

【0006】[0006]

【発明が解決しようとする課題】従来のPWRでは、一
次系冷却材が漏洩した場合、排ガスモニタ22において
対象としている放射性核種(希ガス,腐食生成物,核分
裂生成物等)の漏洩が警報設定値を超える量に達した時
点において警報が発せられることになる。ところが一次
系冷却材中に存在するこれらの放射性核種は、もともと
量が少ない上に主蒸気中に漏洩した一部を抽気して測定
していることから、微量の漏洩に際しては検知し難くな
っている。また、漏洩した放射性物質の状態や伝熱管の
破損部の規模漏洩量の推移を把握できない等の課題があ
る。
[Problems to be Solved by the Invention] In conventional PWRs, when the primary coolant leaks, an alarm is set on the exhaust gas monitor 22 to detect the leakage of targeted radionuclides (rare gases, corrosion products, nuclear fission products, etc.). An alarm will be issued when the amount exceeds the value. However, the amount of these radionuclides present in the primary coolant is small to begin with, and the measurement is performed by extracting a portion of the leakage into the main steam, making it difficult to detect when a small amount leaks. There is. In addition, there are other problems such as the inability to grasp the status of leaked radioactive materials and changes in the scale of leakage from damaged parts of heat exchanger tubes.

【0007】本発明は上記課題を解決するためになされ
たもので、加圧水型原子炉における蒸気発生器内の伝熱
管からの一次系冷却材の微量漏洩を速やかに検知し、破
損部の規模の推定を行うとともに漏洩量の推移を予測す
ることができる原子炉の異常診断装置を提供することに
ある。 [発明の構成]
The present invention has been made to solve the above problems, and is capable of quickly detecting a small amount of leakage of primary coolant from a heat transfer tube in a steam generator in a pressurized water reactor, and reducing the scale of the damaged part. It is an object of the present invention to provide a nuclear reactor abnormality diagnosis device that can perform estimation and predict the transition of leakage amount. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段】本発明は加圧水型原子炉
の二次系主蒸気系統、または二次系の主蒸気配管、ある
いはタービンに中性子検出器を設置した線量率測定系と
、この線量率測定系から得られたデータから正常状態時
との比較を行い漏洩による異常徴候の有無の判断および
線量率から測定点における主蒸気中の放射能濃度の算出
を行い、漏洩の推移を予測し、破損部の測定を経時変化
で行う演算処理系とからなることを特徴とする。
[Means for Solving the Problems] The present invention provides a dose rate measurement system in which a neutron detector is installed in the secondary main steam system of a pressurized water reactor, the secondary main steam piping, or the turbine, and the The data obtained from the rate measurement system is compared with normal conditions to determine whether there are any abnormal signs due to leakage, and the radioactivity concentration in the main steam at the measurement point is calculated from the dose rate to predict the transition of the leakage. , and an arithmetic processing system that measures the damage over time.

【0009】[0009]

【作用】本発明は加圧水型原子炉の二次系主蒸気系統に
中性子検出器を設置した線量率測定系と、この測定系よ
り得られたデータから正常状態時との比較を行う。そし
て、演算処理系で漏洩による異常徴候の有無の判断、お
よび線量率から測定点における主蒸気中の放射能濃度の
算出を行い、漏洩の推移を予測し破損部の規模の推定を
経時変化で行う。仮に、蒸気発生器内の伝熱管が破損し
た場合には一次系冷却材中の放射性物質は数秒で前記中
性子検出器の位置へ到達することになる。なお、測定対
象とする核種が中性子を放出する17Nであり、測定に
際しては中性子を測定するため自然放射線や他の一次系
に存在する線源核種が放出するガンマ線に影響されるこ
となく検知できるため、中性子検出器の出力は顕著に変
化する。
[Operation] The present invention uses a dose rate measurement system in which a neutron detector is installed in the secondary main steam system of a pressurized water reactor, and compares data obtained from this measurement system with data obtained under normal conditions. The arithmetic processing system then determines whether there are any abnormal signs due to the leak, calculates the radioactivity concentration in the main steam at the measurement point from the dose rate, predicts the course of the leak, and estimates the scale of the damaged part based on changes over time. conduct. If the heat transfer tube in the steam generator were to break, the radioactive substances in the primary coolant would reach the neutron detector within a few seconds. The nuclide to be measured is 17N, which emits neutrons, and since neutrons are measured, it can be detected without being affected by natural radiation or gamma rays emitted by source nuclides that exist in other primary systems. , the output of the neutron detector changes significantly.

【0010】また、加圧水型原子炉の蒸気発生器とター
ビンをつなぐ二次系主蒸気配管近傍に面して、主蒸気の
流路に沿う上流側(蒸気発生器に近い位置)に中性子検
出器を設置した場合には線量率測定系より得られたデー
タから正常状態時との比較を行い漏洩による異常徴候の
有無の判断、および線量率から測定点における主蒸気中
の放射能濃度の算出を行い、漏洩の推移を予測し破損部
の規模の推定を経時変化で行う。また、測定対象が中性
子であり、主蒸気配管(内厚2〜3cm)による減衰効
果が小さいため、微量の漏洩でも十分に検知可能である
[0010] Furthermore, a neutron detector is installed on the upstream side (closer to the steam generator) along the flow path of the main steam, facing the vicinity of the secondary main steam piping that connects the steam generator and the turbine of the pressurized water reactor. If a system is installed, the data obtained from the dose rate measurement system can be compared with normal conditions to determine whether there are abnormal signs due to leakage, and the radioactivity concentration in the main steam at the measurement point can be calculated from the dose rate. The leakage trend is predicted and the scale of the damaged area is estimated based on changes over time. Furthermore, since the object to be measured is neutrons and the attenuation effect of the main steam pipe (inner thickness 2 to 3 cm) is small, even a small amount of leakage can be sufficiently detected.

【0011】さらに、加圧水型原子炉のタービンに中性
子検出器を設置した場合には線量率測定系より得られた
データから正常状態時との比較を行い漏洩による異常徴
候の有無の判断、および線量率から測定点における主蒸
気中の放射能濃度の算出を行い、漏洩の推移を予測し破
損部の規模の推定を経時変化で行う。
Furthermore, when a neutron detector is installed in the turbine of a pressurized water reactor, the data obtained from the dose rate measurement system is compared with normal conditions to determine the presence or absence of abnormal signs due to leakage, and to determine the dose rate. The radioactivity concentration in the main steam at the measurement point is calculated from the rate, the leakage transition is predicted, and the scale of the damaged part is estimated based on changes over time.

【0012】本発明における異常診断装置では、中性子
放出核種であり17O(n,p)17N反応で生成され
る17Nを二次系主蒸気系統または二次系の主蒸気配管
近傍おるいはタービンに設置した中性子検出器により連
続に監視する。これにより、自然放射線の変動に左右さ
れることなく、かつ他のガンマ線放出核種にも影響され
ずに測定することができるので、伝熱管破損による放射
性物質の微量の漏洩を早期に検知し破損部の規模を推定
できるとともに、破損の拡大に伴う漏洩量の推移も予測
可能となる。
In the abnormality diagnosis device of the present invention, 17N, which is a neutron-emitting nuclide and is generated by the 17O(n,p)17N reaction, is sent to the secondary main steam system, near the main steam piping of the secondary system, or to the turbine. It will be continuously monitored by the installed neutron detector. This makes it possible to perform measurements without being affected by fluctuations in natural radiation or by other gamma-ray-emitting nuclides, allowing early detection of small amounts of radioactive material leaking from damaged heat exchanger tubes. In addition to estimating the scale of damage, it is also possible to predict changes in the amount of leakage as the damage expands.

【0013】[0013]

【実施例】図面を参照しながら本発明の実施例を説明す
る。図1は本発明の実施例を含んだ加圧水型原子力発電
所の概略を示している。図中、符号1は原子炉建屋、2
は原子炉格納容器、3は原子炉容器をそれぞれ示してい
る。原子炉容器3内の炉心4で加熱された一次系冷却材
は一次系配管5を流れて蒸気発生器6内の多数本の伝熱
管7に流入する。蒸気発生器6内の二次系冷却材は伝熱
管7と熱交換して加熱され高温・高圧蒸気となって二次
系主蒸気配管8を流れてタービン9へ流入する。タービ
ン9は回転し、発電機10を駆動して発電する。タービ
ン9で仕事を終えた蒸気は復水器11に流入し冷却され
て復水となる。この復水は二次系給水管12を流れて蒸
気発生器6へ二次系冷却材として給水される。一方、蒸
気発生器6内の伝熱管7を流れる一次系冷却材は二次系
冷却材と熱交換して冷却され、一次系主冷却配管13か
らポンプ14により原子炉容器3内に戻り炉心4で加熱
される。なお、図中15は制御棒、16は加圧器、17
はスプレー管をそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a pressurized water nuclear power plant including an embodiment of the present invention. In the figure, code 1 is the reactor building, 2
3 indicates the reactor containment vessel, and 3 indicates the reactor vessel. The primary coolant heated in the reactor core 4 in the reactor vessel 3 flows through the primary system piping 5 and flows into a large number of heat transfer tubes 7 in the steam generator 6 . The secondary coolant in the steam generator 6 is heated by exchanging heat with the heat exchanger tube 7 , becomes high-temperature, high-pressure steam, flows through the secondary main steam pipe 8 , and flows into the turbine 9 . The turbine 9 rotates and drives the generator 10 to generate electricity. The steam that has completed its work in the turbine 9 flows into the condenser 11, where it is cooled and becomes condensed water. This condensate flows through the secondary system water supply pipe 12 and is supplied to the steam generator 6 as a secondary system coolant. On the other hand, the primary coolant flowing through the heat transfer tubes 7 in the steam generator 6 is cooled by exchanging heat with the secondary coolant, and is returned to the reactor vessel 3 from the primary main cooling pipe 13 by the pump 14 into the reactor core 4. is heated. In the figure, 15 is a control rod, 16 is a pressurizer, and 17 is a control rod.
indicate the spray tubes, respectively.

【0014】ここで、第1の実施例では二次系主蒸気系
統の17Nのβ−崩壊にともなって放出される中性子を
測定するため、中性子検出器18が二次系主蒸気系統に
設けられている。この中性子検出器18は演算処理系1
9に信号ケーブル20によって接続されている。
In the first embodiment, a neutron detector 18 is provided in the secondary main steam system in order to measure the neutrons released due to β-decay of 17N in the secondary main steam system. ing. This neutron detector 18 is an arithmetic processing system 1
9 by a signal cable 20.

【0015】図2は本発明における測定系と演算処理系
のブロックダイヤグラムを示したものである。図2にお
いて、二次系主蒸気配管8の測定点に中性子検出器18
が設置されており、中性子検出器18に前置増幅器23
が接続している。前置増幅器23は信号ケーブル20を
介して高圧・低圧電源24に接続し、電圧が印加される
。一方、信号ケーブル20には分岐して演算処理系19
が接続している。 演算処理系19は変換器25,マルチチャンネル・スケ
ーリング(MCS)26,および演算処理装置27から
なっている。演算処理装置27にはプラントデータ出力
装置28およびデータ出力装置29が接続されている。
FIG. 2 shows a block diagram of the measurement system and arithmetic processing system in the present invention. In FIG. 2, a neutron detector 18 is installed at the measurement point of the secondary main steam pipe 8.
is installed, and a preamplifier 23 is installed in the neutron detector 18.
is connected. The preamplifier 23 is connected to a high-voltage/low-voltage power source 24 via a signal cable 20, and a voltage is applied thereto. On the other hand, the signal cable 20 is branched to the arithmetic processing system 19.
is connected. The arithmetic processing system 19 includes a converter 25, a multichannel scaling (MCS) 26, and an arithmetic processing unit 27. A plant data output device 28 and a data output device 29 are connected to the arithmetic processing device 27 .

【0016】中性子検出器18はレムカウンタ,ボナー
ボール,液体シンチレータ等を用い線量率または計数率
としてMCS26(マルチチャンネル・スケーリング)
モードで連続測定する。測定データはリアルタイムで同
軸ケーブルまたは光ケーブル等の信号ケーブル20でデ
ータの入出力、演算機能を備えたたとえばパソコン等の
演算処理装置27で構成する演算処理系19に転送され
る。
The neutron detector 18 uses a REM counter, a Bonner ball, a liquid scintillator, etc., and calculates the dose rate or count rate using MCS26 (multichannel scaling).
Measure continuously in mode. Measured data is transferred in real time via a signal cable 20 such as a coaxial cable or an optical cable to an arithmetic processing system 19 comprising an arithmetic processing unit 27, such as a personal computer, equipped with data input/output and arithmetic functions.

【0017】測定対象とする17Nは中性子放出核種な
ので、自然放射線における中性子のバックグラウンドは
ゼロであることから中性子を中性子検出器18によって
検出した場合には直ちに伝熱管破損により一次系冷却材
が二次系主蒸気系統へ漏洩したものと判断するとともに
、線量率を放射能濃度に換算しその値および変化量を出
力し、その結果をもとに漏洩の推移を予測する。
Since the 17N to be measured is a neutron-emitting nuclide, the background of neutrons in natural radiation is zero, so when a neutron is detected by the neutron detector 18, the heat transfer tube breaks and the primary coolant is immediately turned off. It is determined that the leak has occurred to the next main steam system, the dose rate is converted to radioactivity concentration, the value and the amount of change are output, and the progress of the leak is predicted based on the results.

【0018】上記第1の実施例によれば蒸気発生器6と
タービン9をつなぐ二次系主蒸気系統に中性子検出器1
8を設置した線量率測定系と、この測定系から得られた
データをもとに正常状態時との比較を行い漏洩による異
常徴候の有無の判断および線量率から測定点における主
蒸気中の放射能濃度の算出を行い、経時変化で処理でき
る演算処理系19とからなっている。なお、測定対象と
する17Nは17O(n,p)17N反応で生成され 
4.2秒の半減期で約1Mevの中性子を放出する核種
である。測定に際しては中性子を測定するため自然放射
線や他の一次系に存在する線源核主が放出するガンマ線
に影響されることなく検出でき、中性子検出器の出力は
顕著に変化する。
According to the first embodiment, the neutron detector 1 is installed in the secondary main steam system connecting the steam generator 6 and the turbine 9.
Based on the data obtained from this measurement system and the data obtained from this measurement system, the data obtained from this measurement system is compared with normal conditions to determine the presence or absence of abnormal signs due to leakage, and the radiation in the main steam at the measurement point is determined from the dose rate. It is comprised of an arithmetic processing system 19 that can calculate the concentration of energy and process changes over time. Note that the 17N to be measured is generated by the 17O(n,p)17N reaction.
It is a nuclide that emits approximately 1 Mev of neutrons with a half-life of 4.2 seconds. Since neutrons are measured during measurement, they can be detected without being affected by natural radiation or gamma rays emitted by source nuclei present in other primary systems, and the output of the neutron detector changes significantly.

【0019】次に、本発明における第2の実施例では二
次系主蒸気配管8内の17Nのβ−崩壊にともなって放
出される中性子を測定するため、その配管8に面して中
性子検出器18が設けられている。この中性子検出器1
8は演算処理系19に信号ケーブル20によって接続さ
れている。
Next, in the second embodiment of the present invention, in order to measure the neutrons released due to β-decay of 17N in the secondary main steam pipe 8, a neutron detection device is installed facing the pipe 8. A container 18 is provided. This neutron detector 1
8 is connected to an arithmetic processing system 19 via a signal cable 20.

【0020】この第2の実施例における中性子検出器1
8の位置は17Nの線源強度の観点からは蒸気発生器6
の出口6aに近い方が望ましい。中性子検出器18はレ
ムカウンタ,ボナーボール,液体シンチレータ等を用い
線量率または計数率としてMCS(マルチチャンネル・
スケーリング)モードで連続測定する。測定データはリ
アルタイムで同軸ケーブルまたは光ケーブル等の信号ケ
ーブル20でデータの入出力、演算機能を備えた演算処
理装置(パソコン等)27で構成する演算処理系19に
転送される。
Neutron detector 1 in this second embodiment
The position of 8 is the steam generator 6 from the viewpoint of the source strength of 17N.
It is desirable to be closer to the exit 6a. The neutron detector 18 uses a REM counter, a Bonner ball, a liquid scintillator, etc., and calculates the dose rate or count rate using MCS (multichannel system).
Perform continuous measurements in (scaling) mode. Measured data is transferred in real time via a signal cable 20 such as a coaxial cable or an optical cable to an arithmetic processing system 19 comprising an arithmetic processing device (such as a personal computer) 27 equipped with data input/output and arithmetic functions.

【0021】測定対象とする17Nは中性子放出核種な
ので、自然放射線における中性子のバックグラウンドは
ゼロであることから中性子を検出器によって検知した場
合には直ちに伝熱管破損により一次系冷却材が二次系主
蒸気記配管へ漏洩したものと判断するとともに、線量率
を放射能濃度に換算しその値および変化量を出力し、そ
の結果をもとに漏洩の推移を予測する。また、予め測定
対象放射性核種の一次系冷却材中の放射能濃度と蒸気記
発生器6内における二次系主蒸気配管8への移行割合を
求めておくことにより放射性物質が漏洩した際の主蒸気
中の放射能濃度の値から伝熱管7の破損部の規模を推定
できる。さらに、予め計算や測定により一次系冷却材中
放射性核種(17N,16N,15C,希ガス,核分裂
生成物,腐食生成物等)の存在割合を求めておくことに
より、二次系冷却材中に漏洩した全放射能濃度を推定す
ることができる。
Since the 17N to be measured is a neutron-emitting nuclide, the background of neutrons in natural radiation is zero, so when a neutron is detected by a detector, the primary system coolant immediately changes to the secondary system due to a heat exchanger tube breakage. It is determined that there has been a leak into the main steam pipe, the dose rate is converted to radioactivity concentration, the value and the amount of change are output, and the transition of the leak is predicted based on the results. In addition, by determining in advance the radioactivity concentration of the radionuclide to be measured in the primary system coolant and the transfer rate from the steam generator 6 to the secondary system main steam piping 8, it is possible to The scale of the damaged portion of the heat exchanger tube 7 can be estimated from the value of the radioactivity concentration in the steam. Furthermore, by determining the proportion of radioactive nuclides (17N, 16N, 15C, rare gases, fission products, corrosion products, etc.) in the primary coolant through calculations and measurements in advance, it is possible to The total leaked radioactivity concentration can be estimated.

【0022】上記第2の実施例によれば蒸気発生器6と
タービン9をつなぐ二次系主蒸気配管8に面して、主蒸
気の流路に沿う上流側たとえば蒸気発生器6に近い位置
に中性子検出器18を設置した線量率測定系と、この測
定系から得られたデータをもとに正常状態時との比較を
行い漏洩による異常徴候の有無の判断および線量率から
測定点における主蒸気中の放射能濃度の算出を行い、経
時変化で処理できる演算処理系とからなっている。もし
、蒸気発生器6内の伝熱管7が破損した場合には、一次
系冷却材の放射性物質は数秒で前記中性子検出器18の
位置へ到達することになる。
According to the second embodiment, a position on the upstream side along the main steam flow path, facing the secondary main steam piping 8 connecting the steam generator 6 and the turbine 9, for example, a position close to the steam generator 6 A dose rate measurement system with a neutron detector 18 installed at It consists of an arithmetic processing system that calculates the radioactivity concentration in steam and processes changes over time. If the heat transfer tube 7 in the steam generator 6 is damaged, the radioactive substances in the primary coolant will reach the neutron detector 18 in a few seconds.

【0023】なお、測定対象とする17Nは17O(n
,p)17N反応で生成され 4.2秒の半減器で約1
Mevの中性子を放出する核種である。測定に際しては
測定するため自然放射線や他の一次系に存在する線源核
種が放出するガンマ線に影響されることなく検知でき、
検出器の出力は顕著に変化する。また、中性子であるた
めに主蒸気配管(内厚2〜3cm)8による減衰効果が
小さいため微量の漏洩でも十分に検知可能である。
Note that 17N to be measured is 17O(n
, p) Produced in a 17N reaction, approximately 1 in a 4.2 second half-life
It is a nuclide that emits Mev neutrons. During measurement, it can be detected without being affected by natural radiation or gamma rays emitted by source nuclides that exist in other primary systems.
The output of the detector changes significantly. In addition, since it is a neutron, the attenuation effect by the main steam pipe (inner thickness 2 to 3 cm) 8 is small, so even a trace amount of leakage can be sufficiently detected.

【0024】次に本発明における第3の実施例ではター
ビン建屋内のタービンフロアに中性子検出器18が設け
られている。この中性子検出器18は演算処理系20に
信号ケーブル21によって接続されている。
Next, in a third embodiment of the present invention, a neutron detector 18 is provided on the turbine floor in the turbine building. This neutron detector 18 is connected to an arithmetic processing system 20 by a signal cable 21.

【0025】この第3の実施例における中性子検出器1
8の位置は17Nの線源強度の観点からはタービン本体
に近い方が望ましい。中性子検出器18はレムカウンタ
,ボナーボール,液体シンチレータ等を用い線量率また
は計数率としてMCS(マルチチャンネル・スケーリン
グ)モードで連続測定する。測定データはリアルタイム
で同軸ケーブルまたは光ケーブル等の信号ケーブル20
でデータの入出力、演算機能を備えた演算処理装置(パ
ソコン等)で構成する演算処理系19に転送される。
Neutron detector 1 in this third embodiment
It is desirable that the position of 8 be closer to the turbine body from the viewpoint of the radiation source strength of 17N. The neutron detector 18 continuously measures the dose rate or count rate in MCS (multichannel scaling) mode using a REM counter, Bonner ball, liquid scintillator, or the like. Measurement data is transmitted in real time via signal cable 20 such as coaxial cable or optical cable.
Then, the data is transferred to an arithmetic processing system 19 comprising an arithmetic processing device (such as a personal computer) equipped with data input/output and arithmetic functions.

【0026】測定対象とする17Nは中性子放出核種な
ので、自然放射線における中性子のバックグラウンドは
ゼロであることから中性子を中性子検出器によって検出
した場合には直ちに伝熱管7の破損により一次系冷却材
が二次系主蒸気配管8へ漏洩し、タービン9へ移行した
ものと判断するとともに、線量率を放射能濃度に換算し
その値および変化量を出力し、その結果をもとに漏洩の
推移を予測する。
Since the 17N to be measured is a neutron-emitting nuclide, the background of neutrons in natural radiation is zero, so when a neutron is detected by a neutron detector, the primary coolant is immediately damaged due to damage to the heat transfer tube 7. It is determined that the leak has leaked into the secondary main steam piping 8 and transferred to the turbine 9, and the dose rate is converted to radioactivity concentration and the value and amount of change are output, and the transition of the leak is determined based on the results. Predict.

【0027】上記、実施例によればタービン建屋内に中
性子検出器18を設置した線量率測定系と、この測定系
から得られたデータをもとに正常状態時との比較を行い
漏洩による異常徴候の有無の判断および線量率から測定
点における主蒸気中の放射能濃度の算出を行い、経時変
化で処理できる演算処理系とからなっている。
According to the above-mentioned embodiment, the dose rate measurement system in which the neutron detector 18 is installed inside the turbine building and the data obtained from this measurement system are compared with the normal state to detect abnormalities due to leakage. It consists of an arithmetic processing system that determines the presence or absence of symptoms, calculates the radioactivity concentration in the main steam at the measurement point from the dose rate, and processes changes over time.

【0028】なお、測定対象とする17Nは17O(n
,p)17N反応で生成され 4.2秒の半減期で約1
Mevの中性子を放出する核種である。測定に際しては
中性子を測定するため自然放射線や他の一次系に存在す
る線源核種が放出するガンマ線に影響されることなく検
出でき、中性子検出器の出力は顕著に変化する。
Note that 17N to be measured is 17O(n
, p) Produced in the 17N reaction with a half-life of 4.2 seconds and approximately 1
It is a nuclide that emits Mev neutrons. During measurement, since neutrons are measured, detection is possible without being affected by natural radiation or gamma rays emitted by source nuclides present in other primary systems, and the output of the neutron detector changes significantly.

【0029】[0029]

【発明の効果】本発明によれば、測定対象とする核種は
中性子を放出する17Nであり、測定に際しては中性子
を測定するため、自然放射線や他の一次系に存在する線
源核種が放出するガンマ線に影響されることなく検知で
き、蒸気発生器内の伝熱管破損による二次系への一次系
冷却の微量の漏洩やその漏洩量の変動を早期に、かつ正
確に診断できる。
[Effects of the Invention] According to the present invention, the nuclide to be measured is 17N, which emits neutrons, and since neutrons are measured, natural radiation and source nuclides present in other primary systems emit neutrons. It can be detected without being affected by gamma rays, and it is possible to quickly and accurately diagnose minute leaks of primary system cooling to the secondary system due to damage to heat transfer tubes in the steam generator, as well as fluctuations in the amount of leakage.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を含む加圧水型原子炉を概略
的に示す構成図。
FIG. 1 is a block diagram schematically showing a pressurized water nuclear reactor including an embodiment of the present invention.

【図2】本発明における測定系と演算処理系のブロック
ダイヤグラム。
FIG. 2 is a block diagram of a measurement system and an arithmetic processing system in the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉建屋、2…原子炉格納容器、3…原子炉容器
、4…炉心、5…一次系配管、6…蒸気発生器、7…伝
熱管、8…二次系主蒸気配管、9…タービン、10…発
電機、11…復水器、12…二次系給水管、13…一次
系主冷却配管、14…ポンプ、15…制御棒、16…加
圧器、17…スプレー管、18…中性子検出器、19…
演算処理系、20…信号ケーブル、21…排ガス系抽気
配管、22…タービン排ガス系モニタ、23…前置増幅
器、24…高圧・低圧電源、25…変換器、26…MC
S、27…演算処理装置、28…プラントデータ出力装
置、29…データ出力装置。
1...Reactor building, 2...Reactor containment vessel, 3...Reactor vessel, 4...Reactor core, 5...Primary system piping, 6...Steam generator, 7...Heat transfer tube, 8...Secondary system main steam piping, 9 ... Turbine, 10 ... Generator, 11 ... Condenser, 12 ... Secondary system water supply pipe, 13 ... Primary system main cooling pipe, 14 ... Pump, 15 ... Control rod, 16 ... Pressurizer, 17 ... Spray pipe, 18 ...neutron detector, 19...
Arithmetic processing system, 20... Signal cable, 21... Exhaust gas system extraction piping, 22... Turbine exhaust gas system monitor, 23... Preamplifier, 24... High voltage/low voltage power supply, 25... Converter, 26... MC
S, 27... Arithmetic processing unit, 28... Plant data output device, 29... Data output device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加圧水型原子炉の二次系主蒸気系統、
または二次系の主蒸気配管、あるいはタービンに中性子
検出器を設置した線量率測定系と、この線量率測定系か
ら得られたデータから正常状態時との比較を行い漏洩に
よる異常徴候の有無の判断および線量率から測定点にお
ける主蒸気中の放射能濃度の算出を行い、漏洩の推移を
予測し、破損部の測定を経時変化で行う演算処理系とか
らなることを特徴とする原子炉の異常診断装置。
[Claim 1] Secondary main steam system of a pressurized water reactor,
Alternatively, a dose rate measurement system with a neutron detector installed in the main steam piping of the secondary system or the turbine is used, and the data obtained from this dose rate measurement system is compared with normal conditions to determine whether there are abnormal signs due to leakage. A nuclear reactor characterized by comprising an arithmetic processing system that calculates the radioactivity concentration in the main steam at a measurement point from judgment and dose rate, predicts the transition of leakage, and measures the damage over time. Abnormality diagnosis device.
JP3094245A 1991-04-24 1991-04-24 Abnormality diagnostic device for reactor Pending JPH04324398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094245A JPH04324398A (en) 1991-04-24 1991-04-24 Abnormality diagnostic device for reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094245A JPH04324398A (en) 1991-04-24 1991-04-24 Abnormality diagnostic device for reactor

Publications (1)

Publication Number Publication Date
JPH04324398A true JPH04324398A (en) 1992-11-13

Family

ID=14104927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094245A Pending JPH04324398A (en) 1991-04-24 1991-04-24 Abnormality diagnostic device for reactor

Country Status (1)

Country Link
JP (1) JPH04324398A (en)

Similar Documents

Publication Publication Date Title
CN104934084B (en) A kind of fuel for nuclear power plant cladding damage monitoring method and system
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
US10102934B2 (en) Reactor state monitoring apparatus and monitoring method thereof
KR20160073997A (en) A method for monitoring boron dilution during a reactor outage
KR20090120305A (en) Device for monitoring leakage of steam generator for atomic power plant and method thereof
US9268034B2 (en) Nuclear reactor fuel integrity monitor
JPH04324398A (en) Abnormality diagnostic device for reactor
JPH0587973A (en) Monitoring of nuclear reactor
Buell et al. A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions
JPH04268496A (en) Device and method for diagnostic abnormality of reactor
JPH052093A (en) Abnormality diagnosis device for pressurized water reactor
CN217111359U (en) Coolant leakage monitoring device
KR102415262B1 (en) System for Monitoring Rupture of Steam Generator Tube in Nuclear Power Plant and Method for Monitoring Using the Same
JPH04326093A (en) Abnormality diagnostic device for reactor
RU2191437C1 (en) Leak inspection method for steam generator of nuclear power plant
JPH04335196A (en) Abnormality diagnosis device for reactor
Lish et al. Development of I2S-LWR instrumentation systems
JPH05100075A (en) Nuclear reactor monitoring system
CN114496321A (en) Radioactivity on-line monitoring system of nuclear reactor primary circuit
CN116864164A (en) Nuclear reactor primary loop radioactivity on-line monitoring system with double detectors
JPH05134081A (en) Diagnosing apparatus of abnormality of reactor
Matal et al. MAFES, HUMOS and LEMOP diagnostic systems-applications in NPP Temelin
RU2584134C1 (en) Radiation system for monitoring leaks in pipeline of npp with water coolant
Matal MAFES, HUMOS and LEMOP Diagnostic Systems-Applications in NPP Temelin (D542)
Braid et al. Operation of cover-gas system during SLSF tests