JPH05134081A - Diagnosing apparatus of abnormality of reactor - Google Patents

Diagnosing apparatus of abnormality of reactor

Info

Publication number
JPH05134081A
JPH05134081A JP3296956A JP29695691A JPH05134081A JP H05134081 A JPH05134081 A JP H05134081A JP 3296956 A JP3296956 A JP 3296956A JP 29695691 A JP29695691 A JP 29695691A JP H05134081 A JPH05134081 A JP H05134081A
Authority
JP
Japan
Prior art keywords
pipe
steam
radiation
dose rate
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3296956A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hayashida
芳久 林田
Hitoshi Honma
均 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3296956A priority Critical patent/JPH05134081A/en
Publication of JPH05134081A publication Critical patent/JPH05134081A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To enable early specifying of a cooling system wherein breakdown of a heat transfer pipe occurs, by measuring a change in a dose rate by providing a radiation detector at a position whereat a secondary system main steam piping of each system is made to have a shielding effect. CONSTITUTION:The title apparatus comprises a dose rate measuring system 17 having radiation detectors 16 provided at positions which are located in the vicinity of secondary system main steam pipings 6 connecting steam generators 4 of a plurality of systems with a turbine 7, respectively, and whereat the pipings have a shielding effect for a radiation from pipings other than ones in the vicinity thereof, and an arithmetic device 18 which calculates a change in a dose rate by comparison with a normal state on the basis of data obtained from the measuring system 17 and can judge and specify the system wherein a leakage occurs, from the change in the dose detected by each radiation detector 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧水型原子炉(以下、
PWRと記す)における蒸気発生器内の伝熱管からの一
次系冷却材の漏洩を診断する原子炉の異常診断装置に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a pressurized water reactor (hereinafter referred to as
(Referred to as PWR), the present invention relates to a reactor abnormality diagnosis device for diagnosing leakage of a primary coolant from a heat transfer tube in a steam generator.

【0002】[0002]

【従来の技術】図1により従来の加圧水型原子力発電所
の概略を説明する。図中、符号1は原子炉格納容器、2
は原子炉容器をそれぞれ示している。原子炉容器2内で
加熱された一次系冷却材は一次系主冷却配管3を流れて
蒸気発生器4内の伝熱管5に流入する。蒸気発生器4内
の二次系冷却材は伝熱管5と熱交換して加熱され、高温
蒸気となって二次系主蒸気配管6を流れてタービン7へ
流入する。
2. Description of the Related Art An outline of a conventional pressurized water nuclear power plant will be described with reference to FIG. In the figure, reference numeral 1 is a reactor containment vessel, 2
Indicate the reactor vessels, respectively. The primary-system coolant heated in the reactor vessel 2 flows through the primary-system main cooling pipe 3 and flows into the heat transfer pipe 5 in the steam generator 4. The secondary system coolant in the steam generator 4 is heated by exchanging heat with the heat transfer tube 5, becomes high temperature steam, flows through the secondary system main steam pipe 6, and flows into the turbine 7.

【0003】タービン7は回転し、発電機8を駆動して
発電する。タービン7で仕事を終えた蒸気は復水器9に
流入し冷却されて復水となる。この復水は二次系給水管
10を流れて蒸気発生器4へ二次冷却材として給水され
る。
The turbine 7 rotates and drives a generator 8 to generate electricity. The steam that has finished its work in the turbine 7 flows into the condenser 9 and is cooled to be condensed water. This condensate is a secondary water supply pipe
The water flows through 10 and is supplied to the steam generator 4 as a secondary coolant.

【0004】一方、蒸気発生器4内の伝熱管5を流れる
一次冷却材は二次冷却材と熱交換して冷却され、一次系
主冷却配管11からポンプ12により原子炉容器2内に給水
されて加熱される。
On the other hand, the primary coolant flowing through the heat transfer tube 5 in the steam generator 4 is cooled by exchanging heat with the secondary coolant, and is supplied into the reactor vessel 2 from the primary system main cooling pipe 11 by the pump 12. Is heated.

【0005】以上の一次および二次冷却系において、一
次系主冷却配管3、蒸気発生器4および一次系主冷却配
管11は通常4系統設置されており、4系統の蒸気発生器
4から出た二次系主蒸気配管6はタービン7へ流入する
前に合流し、配管中の蒸気は混合される。なお、図中13
は加圧器を示している。又、14は排ガス系抽気配管、15
はタービン排ガス系モニタで、排ガス中の放射性物質を
測定するものである。
In the above primary and secondary cooling systems, the primary system main cooling pipe 3, the steam generator 4 and the primary system main cooling pipe 11 are usually installed in four systems, and the four system steam generators 4 come out. The secondary system main steam piping 6 joins before flowing into the turbine 7, and the steam in the piping is mixed. In addition, 13 in the figure
Indicates a pressurizer. Also, 14 is an exhaust gas extraction pipe, 15
Is a turbine exhaust gas system monitor that measures radioactive substances in exhaust gas.

【0006】ところで、蒸気発生器4内に逆U字状の細
管からなる多数本の伝熱管5が管板に取り付けられてお
り、これらの伝熱管5の全数について定期検査時に点検
を行い健全性を確認している原子炉運転中に仮に伝熱管
5が破損して一次系冷却材の漏洩が発生した場合、漏洩
した放射性物質は二次系主蒸気配管6を通り、タービン
7へ移行し、さらに復水器9を通り給水系に戻ることに
なる。
By the way, a large number of heat transfer tubes 5 made of inverted U-shaped thin tubes are attached to the tube plate in the steam generator 4, and all the heat transfer tubes 5 are inspected at the time of a periodic inspection to ensure soundness. If the heat transfer pipe 5 is damaged and the primary coolant leaks during the operation of the reactor, the leaked radioactive material passes through the secondary main steam pipe 6 and moves to the turbine 7. Furthermore, it will return to the water supply system through the condenser 9.

【0007】PWRでは復水器9から一部の蒸気(ガ
ス)を排ガス系抽気配管14を通し抽気しており、抽気し
た蒸気中に放射性物質が警報設定値以上含まれている場
合には排ガスモニタ15により警報が発せられるように構
成している。
In the PWR, a part of the steam (gas) is extracted from the condenser 9 through the exhaust gas system extraction pipe 14, and when the extracted steam contains radioactive substances above the alarm set value, the exhaust gas is discharged. The monitor 15 is configured to give an alarm.

【0008】[0008]

【発明が解決しようとする課題】従来のPWRでは、一
次冷却材が漏洩した場合、放射性物質が排ガスモニタ15
の警報設定値を越える量の漏洩に達した時点において警
報が発せられることになる。ところが、図1に示したよ
うに排ガスモニタ15は二次系の系統でも終端部の、全系
統からの蒸気が混合している復水器9から導出された排
ガス系抽気配管14に位置している。このように、排ガス
モニタが二次系終端部に位置しているため、複数系統あ
る二次冷却系のどの蒸気発生器において漏洩が発生した
かを特定できない装置となっている。
In the conventional PWR, when the primary coolant leaks, radioactive substances are detected in the exhaust gas monitor 15.
The alarm will be issued when the amount of leakage exceeds the alarm set value of. However, as shown in FIG. 1, the exhaust gas monitor 15 is located in the exhaust gas extraction pipe 14 derived from the condenser 9 in which the steam from all the systems is mixed at the end of the secondary system. There is. In this way, since the exhaust gas monitor is located at the end of the secondary system, it is not possible to identify in which steam generator of the secondary cooling system having a plurality of systems the leak has occurred.

【0009】一方、異常を有する系統を特定するために
は、各系統の配管が独立している二次系主蒸気配管6の
上流側に検出器を設置すればよいが、一つの放射線検出
器では全ての系統配管からの放射線を感知し、異常の発
生した系統を特定することができない。
On the other hand, in order to identify a system having an abnormality, a detector may be installed on the upstream side of the secondary system main steam pipe 6 in which the pipes of each system are independent, but one radiation detector However, it is not possible to detect radiation from all system piping and identify the system in which an abnormality has occurred.

【0010】各系統のそれぞれに放射線検出器を設置し
た場合は、当該系統配管からの放射線だけでなく他の系
統配管からの放射線も感知し、また、漏洩が微量である
場合はバックグランド線量の影響によって漏洩の生じた
系統の配管を特定できない可能性がある。そこで、着目
する系統の配管からの放射線のみを検出しようとすれ
ば、通常コリメータを設置する必要があるが、そのコリ
メータを設置するためには重量やスペースの問題が生じ
る。
When a radiation detector is installed in each system, not only the radiation from the system piping concerned but also the radiation from other system piping are sensed, and when the leakage is minute, the background dose It may not be possible to identify the piping of the system where the leakage has occurred due to the effect. Therefore, in order to detect only the radiation from the piping of the system of interest, it is usually necessary to install a collimator, but the installation of the collimator causes problems of weight and space.

【0011】本発明は上記課題を解決するためになされ
たもので、加圧水型原子炉における蒸気発生器内の伝熱
管からの一次系冷却材の漏洩の生じた系統を特定するこ
とができる原子炉の異常診断装置およびその診断方法を
提供することにある。
The present invention has been made to solve the above problems, and it is possible to identify a system in which leakage of a primary system coolant from a heat transfer tube in a steam generator of a pressurized water reactor is identified. SUMMARY OF THE INVENTION It is an object of the present invention to provide an abnormality diagnosis device and a diagnosis method thereof.

【0012】[0012]

【課題を解決するための手段】本発明は、加圧水型原子
炉容器に一次系配管を介して少なくとも2系統以上の加
圧器および蒸気発生器が接続され、これらの蒸気発生器
の二次系出口からタービンまでに接続された二次系主蒸
気配管のそれぞれに、前記二次系主蒸気配管に遮蔽効果
を持たせる位置に放射線検出器を設け、これらの測定系
で検出したそれぞれの線量率変化の大きさを演算装置に
より比較し、異常を有する系統を特定することを特徴と
する。
According to the present invention, at least two or more pressurizers and steam generators are connected to a pressurized water reactor vessel via a primary system pipe, and secondary system outlets of these steam generators are connected. From each of the secondary system main steam pipes connected from the turbine to the turbine, a radiation detector is provided at a position where the secondary system main steam pipe has a shielding effect, and each dose rate change detected by these measurement systems It is characterized in that the magnitudes of are compared by an arithmetic device and the system having an abnormality is specified.

【0013】[0013]

【作用】本発明による異常診断装置では、複数系統の二
次系主蒸気配管のそれぞれに設置する放射線検出器の配
置を工夫することにより配管自体に遮蔽効果を持たせて
着目系統以外の系統からの放射線を減衰させるようにし
て測定した各系統の放射線検出器の線量率変化を比較演
算することにより、コリメータの設置を必要とすること
なく、異常の生じた系統を特定する。
In the abnormality diagnosing device according to the present invention, by devising the arrangement of the radiation detectors installed in each of the secondary system main steam pipes of a plurality of systems, the pipes themselves have a shielding effect so that the system other than the system of interest can be used. By comparing and calculating the dose rate changes of the radiation detectors of each system measured so as to attenuate the radiation, the system in which the abnormality has occurred is identified without the need for installing a collimator.

【0014】即ち、いずれかの系統で蒸気発生器内の伝
熱管の破損に伴って二次系への漏洩が生じた場合、その
系統配管に最も近く且つ配管等で遮蔽されない放射線検
出器の線量率変化は大きく、1本乃至2本以上の配管に
より遮蔽された他の放射線検出器の線量率変化は小さく
なる。従って、漏洩が微量である場合も着目系統以外の
配管からの寄与を減ずることができ、異常の生じた系統
を特定しやすくなる。
That is, when leakage to the secondary system occurs due to breakage of the heat transfer tube in the steam generator in any system, the dose of the radiation detector closest to the system piping and not shielded by piping etc. The rate change is large, and the dose rate change of other radiation detectors shielded by one or more pipes is small. Therefore, even when there is a small amount of leakage, it is possible to reduce the contribution from pipes other than the system of interest, and it becomes easy to identify the system in which an abnormality has occurred.

【0015】[0015]

【実施例】図面を参照しながら本発明の実施例を説明す
る。
Embodiments of the present invention will be described with reference to the drawings.

【0016】図1は本発明の実施例を含んだ加圧水型原
子力発電所の概略を示している。図中、符号1は原子炉
格納容器、2は原子炉容器をそれぞれ示している。原子
炉容器2内で加熱された一次系冷却材は一次系主冷却配
管3を流れて蒸気発生器4内の伝熱管5に流入する。蒸
気発生器4内の二次系冷却材は伝熱管5と熱交換して加
熱され高温蒸気となって二次系主蒸気配管6を流れてタ
ービン7へ流入する。
FIG. 1 schematically shows a pressurized water nuclear power plant including an embodiment of the present invention. In the figure, reference numeral 1 indicates a reactor containment vessel, and 2 indicates a reactor vessel. The primary-system coolant heated in the reactor vessel 2 flows through the primary-system main cooling pipe 3 and flows into the heat transfer pipe 5 in the steam generator 4. The secondary system coolant in the steam generator 4 exchanges heat with the heat transfer tube 5 and is heated to become high temperature steam, which flows through the secondary system main steam pipe 6 and flows into the turbine 7.

【0017】タービン7は回転し、発電機8を駆動して
発電する。タービン7は仕事を終えた蒸気は復水器9に
流入し冷却されて復水となる。この復水は二次系給水管
10を流れて蒸気発生器4へ二次冷却材として給水され
る。
The turbine 7 rotates and drives a generator 8 to generate electricity. The steam that has finished working in the turbine 7 flows into the condenser 9 and is cooled to be condensed water. This condensate is a secondary water supply pipe
The water flows through 10 and is supplied to the steam generator 4 as a secondary coolant.

【0018】一方、蒸気発生器4内の伝熱管5を流れる
一次冷却材は二次冷却材と熱交換して冷却され、一次系
主冷却配管11からポンプ12により原子炉容器2内に給水
されて加熱される。以上の一次および二次冷却系におい
て、一次系主冷却配管3、蒸気発生器4および一次系主
冷却配管11は通常4系統設置されており、4系統の蒸気
発生器4から出た二次系主蒸気配管6はタービン7へ流
入する前に合流し、配管中の蒸気は混合される。
On the other hand, the primary coolant flowing through the heat transfer tube 5 in the steam generator 4 is cooled by exchanging heat with the secondary coolant, and is supplied into the reactor vessel 2 from the primary system main cooling pipe 11 by the pump 12. Is heated. In the above primary and secondary cooling systems, the primary system main cooling pipe 3, the steam generator 4 and the primary system main cooling pipe 11 are usually installed in four systems, and the secondary system that comes out from the four system steam generators 4 is installed. The main steam pipes 6 join together before flowing into the turbine 7, and the steams in the pipes are mixed.

【0019】本実施例では、各系統の二次系主蒸気配管
6内の蒸気中の放射能を測定するため、二次系主蒸気配
管6が合流する前の上流側に、配管A,B,C,Dに面
して放射線検出器16(E,F,G,H)が設けられてい
る。この放射線検出器E,F,G,Hは、図2に示すよ
うに、それぞれ配管例の外側方向になるように設置す
る。
In this embodiment, in order to measure the radioactivity in the steam in the secondary system main steam pipe 6 of each system, the pipes A and B are provided on the upstream side before the secondary system main steam pipe 6 joins. , C, D are provided with a radiation detector 16 (E, F, G, H). As shown in FIG. 2, the radiation detectors E, F, G, and H are installed so that they are located outside the piping example.

【0020】このように配置することにより、放射線検
出器Eについては配管B,C,Dの系統の漏洩に対して
は配管Aや配管B,Cが遮蔽効果を有する。また、放射
線検出器Fについては配管C,Dの系統の漏洩に対して
配管Bや配管Cが遮蔽効果を有する。同様に放射線検出
器Gについては配管A,Bの系統の漏洩に対して配管C
や配管Bが遮蔽効果を有し、放射線検出器Hについては
配管A,B,Cの系統の漏洩に対して配管Dや配管B,
Cが遮蔽効果を有する。
With such an arrangement, the radiation detector E has the shielding effect on the piping A and the piping B, C against the leakage of the system of the piping B, C, D. Regarding the radiation detector F, the pipe B and the pipe C have a shielding effect against the leakage of the system of the pipes C and D. Similarly, for the radiation detector G, the pipe C is used against leakage of the system of pipes A and B.
And the pipe B have a shielding effect, and the radiation detector H has a pipe D, a pipe B, and
C has a shielding effect.

【0021】それぞれの放射線検出器から得られる信号
から測定系17で線量率が得られる。これらの線量率は演
算装置18で平常時の線量率と比較され、漏洩が生じた場
合には線量率の変化が求められる。さらに演算装置18は
放射線検出器E,F,G,Hの線量率の変化量の大きさ
から、前記の配管の遮蔽効果を利用して漏洩の発生した
系統を表1に示す判定条件により特定する。
The dose rate is obtained in the measuring system 17 from the signals obtained from the respective radiation detectors. These dose rates are compared with the normal dose rates by the arithmetic unit 18, and changes in the dose rates are obtained when leakage occurs. Further, the arithmetic unit 18 identifies the system in which the leakage has occurred based on the amount of change in the dose rate of the radiation detectors E, F, G, H using the shielding effect of the above-mentioned pipes according to the judgment conditions shown in Table 1. To do.

【0022】[0022]

【表1】 [Table 1]

【0023】すなわち、放射線検出器FまたはGのみの
線量率変化が大きい場合の漏洩系統はそれぞれB,Cで
ある。また、単独の放射線検出器の線量率変化の大きい
ものが無い場合の漏洩系統はAまたはDであり、このう
ちEおよびFの線量率変化が大きい場合の漏洩系統は
A,HおよびGの線量率変化が大きい場合の漏洩系統は
Dであることが分かる。
That is, the leakage systems are B and C when the dose rate change of only the radiation detector F or G is large. Also, if there is no single radiation detector with a large dose rate change, the leak system is A or D. Of these, the leak system with a large dose rate change of E and F is the dose of A, H, and G. It can be seen that the leakage system is D when the rate change is large.

【0024】図3は本発明の第2の実施例の要部のみを
示したものである。なお、図2と同一部分には同一符号
を付して重複する部分の説明は省略する。この第2の実
施例では4系統の二次系主蒸気配管A,B,C,Dに対
して3個の放射線検出器E,F,Gを配管の間に設けて
いる。このように配置することにより放射線検出器Eに
ついては配管C,Dの系統の漏洩に対しては配管Bや配
管Cが遮蔽効果を有する。また、放射線検出器Fについ
ては配管A,Dの系統の漏洩に対してそれぞれ配管B,
配管Cが遮蔽効果を有する。放射線検出器Gについては
配管A,Bの系統の漏洩に対して配管Cや配管Bが遮蔽
効果を有する。
FIG. 3 shows only the essential parts of the second embodiment of the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals and the description of the overlapping parts will be omitted. In the second embodiment, three radiation detectors E, F and G are provided between the secondary system main steam pipes A, B, C and D of the four systems. With this arrangement, the radiation detector E has the shielding effect on the pipes B and C against the leakage of the system of the pipes C and D. Further, regarding the radiation detector F, the piping B,
The pipe C has a shielding effect. Regarding the radiation detector G, the pipe C and the pipe B have a shielding effect against the leakage of the system of the pipes A and B.

【0025】それぞれの放射線検出器の信号から測定系
17で得られる線量率は演算装置18で平常時の線量率と比
較され、漏洩が生じた場合の線量率の変化が求められ
る。さらに、演算装置18は放射線検出器E,F,Gの線
量率の変化量の大きさから、前記配管の遮蔽効果を利用
して漏洩の発生した系統を表2に示す判定条件により特
定する。
Measurement system from the signals of the respective radiation detectors
The dose rate obtained in 17 is compared with the dose rate in the normal state by the arithmetic unit 18, and the change in the dose rate in the event of leakage is obtained. Further, the arithmetic unit 18 identifies the system in which the leakage has occurred by the judgment condition shown in Table 2 by utilizing the shielding effect of the pipe, based on the magnitude of the variation of the dose rate of the radiation detectors E, F, G.

【0026】[0026]

【表2】 [Table 2]

【0027】すなわち、放射線検出器EまたはGのみの
線量率変化が大きい場合の漏洩系統はそれぞれA,Dで
ある。また、単独の放射線検出器の線量変化の大きいも
のが無い場合の漏洩系統はBまたはCであり、このうち
EおよびFの線量率変化が大きい場合の漏洩系統はB,
FおよびGの線量率変化が大きい場合の漏洩系統はCで
あることが分かる。
That is, the leak systems are A and D when the dose rate change of only the radiation detector E or G is large. The leakage system is B or C when there is no large radiation dose change of the single radiation detector, and the leakage system is B or C when the radiation dose change of E and F is large.
It can be seen that the leakage system is C when the dose rate changes of F and G are large.

【0028】[0028]

【発明の効果】本発明によれば、蒸気発生器内の伝熱管
から一次系冷却材が二次系冷却材中に漏洩した場合、そ
れぞれの放射線検出器の線量率に変化が現われ、その変
化量を演算処理することにより、直ちに漏洩の発生した
冷却系統を特定することができ、漏洩に対する対策を講
じることができる。
According to the present invention, when the primary coolant leaks into the secondary coolant from the heat transfer tube in the steam generator, the dose rate of each radiation detector changes, and the change occurs. By calculating the amount, it is possible to immediately identify the cooling system in which the leak has occurred, and take measures against the leak.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を含む加圧水型原子力発電所の
冷却系を概略的に示す構成図。
FIG. 1 is a configuration diagram schematically showing a cooling system of a pressurized water nuclear power plant including an embodiment of the present invention.

【図2】本発明の第1の実施例における要部を示す系統
図。
FIG. 2 is a system diagram showing a main part in the first embodiment of the present invention.

【図3】本発明の第2の実施例の要部を示す系統図。FIG. 3 is a system diagram showing a main part of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉格納容器、2…原子炉容器、3…一次主冷却
配管、4…蒸気発生器、5…伝熱管、6…二次系主蒸気
配管、7…タービン、8…発電機、9…復水器、10…二
次系給水管、11…一次系主冷却配管、12…ポンプ、13…
加圧器、14…排ガス系抽気配管、15…タービン排ガス系
モニタ、16…放射線検出器、17…測定系、18…演算装
置、A〜D…二次系主蒸気配管、E〜H…放射線検出
器。
DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Reactor vessel, 3 ... Primary main cooling piping, 4 ... Steam generator, 5 ... Heat transfer tube, 6 ... Secondary system main steam piping, 7 ... Turbine, 8 ... Generator, 9 … Condenser, 10… Secondary system water supply pipe, 11… Primary system main cooling pipe, 12… Pump, 13…
Pressurizer, 14 ... Exhaust gas extraction pipe, 15 ... Turbine exhaust system monitor, 16 ... Radiation detector, 17 ... Measurement system, 18 ... Arithmetic unit, A to D ... Secondary system main steam pipe, E to H ... Radiation detection vessel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加圧水型原子炉容器に一次系配管を介し
て少なくとも2系統以上の加圧器および蒸気発生器が接
続され、これらの蒸気発生器の二次系出口からタービン
までに接続された二次系主蒸気配管のそれぞれに、前記
二次系主蒸気配管に遮蔽効果を持たせる位置に放射線検
出器を設け、これらの放射線検出器で検出したそれぞれ
の線量率変化の大きさを比較することにより、異常を有
する系統を特定することを特徴とする原子炉の異常診断
装置。
1. A pressurized water reactor vessel is connected to at least two systems of pressurizers and steam generators via a primary system pipe, and is connected from a secondary system outlet of these steam generators to a turbine. Provide a radiation detector on each of the secondary system main steam pipes at a position where the secondary system main steam pipe has a shielding effect, and compare the magnitudes of the respective dose rate changes detected by these radiation detectors. An abnormality diagnosis device for a nuclear reactor, which identifies a system having an abnormality by means of.
JP3296956A 1991-11-13 1991-11-13 Diagnosing apparatus of abnormality of reactor Pending JPH05134081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3296956A JPH05134081A (en) 1991-11-13 1991-11-13 Diagnosing apparatus of abnormality of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3296956A JPH05134081A (en) 1991-11-13 1991-11-13 Diagnosing apparatus of abnormality of reactor

Publications (1)

Publication Number Publication Date
JPH05134081A true JPH05134081A (en) 1993-05-28

Family

ID=17840365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296956A Pending JPH05134081A (en) 1991-11-13 1991-11-13 Diagnosing apparatus of abnormality of reactor

Country Status (1)

Country Link
JP (1) JPH05134081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063664A1 (en) * 2014-10-20 2016-04-28 三菱重工業株式会社 Nuclear power generation plant and operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063664A1 (en) * 2014-10-20 2016-04-28 三菱重工業株式会社 Nuclear power generation plant and operation method
JP2016080587A (en) * 2014-10-20 2016-05-16 三菱重工業株式会社 Nuclear power plant and nuclear power plant operation method

Similar Documents

Publication Publication Date Title
Hashemian On-line monitoring applications in nuclear power plants
JPH0511596B2 (en)
JPH05134081A (en) Diagnosing apparatus of abnormality of reactor
JPH052093A (en) Abnormality diagnosis device for pressurized water reactor
Lish et al. Development of I2S-LWR instrumentation systems
JPH04326093A (en) Abnormality diagnostic device for reactor
JP3032106B2 (en) Plant equipment health monitoring and diagnosis method
Fischer et al. Methods for leak detection for KWU pressurized and boiling water reactors
JPH06130177A (en) Nuclear reactor monitor
Aoki Reactor coolant pressure boundary leak detection systems in JapanesePWR plants
JPH04335196A (en) Abnormality diagnosis device for reactor
Wrightson et al. EBR-II water-to-sodium leak detection system
JPS582629A (en) Apparatus for detecting leakage from steam generator
JPH04324398A (en) Abnormality diagnostic device for reactor
JPS6016811Y2 (en) feed water heater
JPH04268496A (en) Device and method for diagnostic abnormality of reactor
BARRAU et al. M. ASTY
Girard et al. Core parameter monitoring on French LMFBR: Requirements, current design and new trends
JPS5890138A (en) Leak monitoring device
Orton Pre-Phase 1 Aging Assessment of the BWR Isolation Condenser System
Rothenhöfer et al. Monitoring With Good Cause—Basic Principles and Current Status
Radiography et al. COMPONENT REQUIREMENTS AND METHODS
Swanson Fast Flux Test Facility Instrumentation Requirements
Whitehouse Design and Commissioning of the Boilers for the Oldbury Nuclear Power Station
Joo et al. In-Service Inspection Approaches of KALIMER-600 Reactor System