JPH05209234A - In-furnace temperature control device of heating furnace - Google Patents

In-furnace temperature control device of heating furnace

Info

Publication number
JPH05209234A
JPH05209234A JP1480492A JP1480492A JPH05209234A JP H05209234 A JPH05209234 A JP H05209234A JP 1480492 A JP1480492 A JP 1480492A JP 1480492 A JP1480492 A JP 1480492A JP H05209234 A JPH05209234 A JP H05209234A
Authority
JP
Japan
Prior art keywords
heat
furnace
flow rate
temperature
fuel flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1480492A
Other languages
Japanese (ja)
Inventor
Hisashi Yanai
井 久 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1480492A priority Critical patent/JPH05209234A/en
Publication of JPH05209234A publication Critical patent/JPH05209234A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve the temperature control precision of an object to be heated by executing estimation operation of the specified fuel flow rate at the respective timepoints in future which is required to heat the object to be heated in the specified temperature rise pattern on the basis of a formula of the heat balance model, thereby setting this fuel flow rate for the heating furnace. CONSTITUTION:An in-furnace temperature control device is provided with a detecting means to detect the values of the heating value-influencing parameters (Fj, Arj, Twj, etc.), of the respective operating formulas I-V to operate the combustion heating value (Qhj), the preheated air heating value (Qaj), the furnace heat radiation value (Qwj), and the combustion gas carrying-out heating value (Qgj) of the formula of the heat balance model Q1=Qgj-1+Qhj+Qaj-Qsj-Qwj-Qgj=0 at the respective timepoints (i=1-n). The detected values at the respective timepoints (i=1-2) are introduced in the respective formulas I-V by this means, the coefficients of the respective formulas IV are calculated, and the formula of the heat balance model is updated to that employing the calculated coefficient values. This method allows the temperature estimation precision of the in-furnace material to be improved and the temperature control precision to be also improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱炉の温度制御に関
し、特に、熱平衡モデル式に基づいて加熱対象材を所要
昇温パタ−ンで目標温度に焼上げるに要する将来の各時
刻の所要燃料流量を予測演算し、該燃料流量を将来の各
時刻に加熱炉に設定する炉温制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the temperature control of a heating furnace, and more particularly, it is required at each future time required to bake a material to be heated to a target temperature with a required temperature raising pattern based on a thermal equilibrium model equation. The present invention relates to a furnace temperature control for predicting and calculating a fuel flow rate and setting the fuel flow rate in a heating furnace at each future time.

【0002】[0002]

【従来技術】加熱炉の温度は、熱収支すなわちそれへの
入熱量とそれからの放熱量による定まる。特開平2−1
56017号公報には、加熱炉の入熱量,温度および放
熱量の関係を表わす熱平衡モデル式を用いて炉温および
現在炉内にある材料(加熱対象材)の温度を推定演算
し、これを基点に将来の各時刻の材料温度を各時刻の操
業条件をかえながら推定演算しかつ目標温度までの焼上
げまでの時系列で変わる操業条件を所定の評価関数を用
いて評価値に換算しこの評価値が小さくなるように各時
刻の操業条件は変更して、評価値が最小となる材料温度
推移すなわち時系列の操業条件を設定する。熱平衡モデ
ル式は、線形的な損失熱係数なるパラメータを含むもの
として、熱平衡モデル式に実績燃料流量と実績炉内温度
を代入して該パラメ−タの値を算出し、熱平衡モデル式
の該パラメ−タを該算出した値に定め、そしてこのよう
にして更新した熱平衡モデル式を、炉温の算出に用い
る。このように更新する熱平衡モデル式は、有る程度の
炉内状態変化には、追従するためそれなりの効果が上が
っている。
2. Description of the Related Art The temperature of a heating furnace is determined by the heat balance, that is, the amount of heat input to and the amount of heat released from it. Japanese Patent Laid-Open No. 2-1
In Japanese Patent No. 56017, the furnace temperature and the temperature of the material (material to be heated) currently in the furnace are estimated and calculated by using a thermal equilibrium model expression representing the relationship between the heat input amount, the temperature, and the heat radiation amount of the heating furnace. In addition, the material temperature at each future time is estimated and calculated while changing the operating conditions at each time, and the operating conditions that change in time series until baking to the target temperature are converted into evaluation values using a predetermined evaluation function. The operating condition at each time is changed so that the value becomes smaller, and the material temperature transition that minimizes the evaluation value, that is, the operating condition in time series is set. The thermal equilibrium model formula includes a parameter that is a linear heat loss coefficient, and the actual fuel flow rate and the actual in-reactor temperature are substituted into the thermal equilibrium model formula to calculate the value of the parameter, and the parameter of the thermal equilibrium model formula is calculated. -T is set to the calculated value, and the thermal equilibrium model equation updated in this way is used for calculating the furnace temperature. The thermal equilibrium model equation updated in this way follows a certain degree of change in the furnace state, and therefore has a certain effect.

【0003】図1の(a)に1つの加熱炉の平面概略
を、(b)に縦断面概略を示す。このような加熱炉の燃
焼制御系においては、加熱炉の炉内温度、特に将来の炉
内温度を推定をするために、熱平衡モデル式を用いてお
り、そのモデルの精度を向上させるには炉況の変化に追
従して、自動的にモデルパラメータを修正する学習方式
が有効とされている。加熱炉をいくつかの制御領域に分
けてそれぞれの領域について熱平衡を考慮し、時間的非
定常項は小さいとして無視すると、燃焼ガスについて以
下の関係式が成立する。なお、以下のjは帯を示し、例
えばj=1は炉尻、j=2は予熱帯、・・・,j=5は
均熱帯を意味する。
FIG. 1A shows a schematic plan view of one heating furnace, and FIG. 1B shows a schematic vertical cross section. In the combustion control system of such a heating furnace, a thermal equilibrium model formula is used to estimate the temperature inside the heating furnace, especially the temperature inside the furnace. To improve the accuracy of the model, A learning method that automatically corrects model parameters following changes in conditions is effective. If the heating furnace is divided into several control regions and thermal equilibrium is taken into consideration in each region, and the temporal unsteady term is small and ignored, the following relational expression holds for the combustion gas. In the following, j indicates a belt, for example, j = 1 means furnace bottom, j = 2 means pre-tropical zone, ..., j = 5 means soaking zone.

【0004】 Qj=Qgj-1+Qhj+Qaj−Qsj−Qwj−Qgj−QLj=0 ・・・(1) 但し、単位は(Kcal/h)。[0004] Q j = Q gj-1 + Q hj + Q aj -Q sj -Q wj -Q gj -Q Lj = 0 ··· (1) However, the unit is (Kcal / h).

【0005】Qgj-1:燃焼ガス持ち込み熱量 Qgj-1=μgj-1・Cgj-1・Vj-1・Θgj-1 ・・・(2) Cgj-1:ガス熱容量(Kcal/°C・Nm3) Vj-1 :領域(j-1)から流れ込むガス流量(Nm3/h) Θgj-1:領域(j-1)のガス温度(°C) μgj-1:係数 Qhj :燃焼発熱量 Qhj =μhj ・hj ・Fj ・・・(3) hj:発熱率(Kcal/Nm3) Fj:燃料流量(Nm3/h) μhj:係数 Qaj :予熱空気持ち込み熱量 Qaj =μaj ・Caj ・Faj ・Θaj ・・・(4) Caj :空気熱容量(Kcal/°C・Nm3) Faj =Arj ・Fj ・・・(5) Arj:空燃比 Θaj :空気温度(℃) Θaj =μrj・Θgj・Vj ・・・(6) μaj :係数 μrj :係数 Qsj :材料への移動熱量 Qsj =μsj ・Sj・{Φgsuj・(Tgj 4−Tsuj 4) +Φgslj・(Tgj 4−Tslj 4)} ・・・(7) Sj:材料の表面積、 Φ:総括熱吸収率、 T:温度(°K) μsj:係数 小文字はそれぞれ、gはガス、sは材料、uは上面、l
は下面を意味する。
Q gj-1 : heat quantity of combustion gas brought in Q gj-1 = μ gj-1 · C gj-1 · V j-1 · Θ gj-1 (2) C gj-1 : gas heat capacity ( Kcal / ° C ・ Nm 3 ) V j-1 : Gas flow rate (Nm 3 / h) flowing from the region ( j -1) Θ gj-1 : Gas temperature (° C) in the region ( j -1) μ gj- 1 : Coefficient Q hj : Combustion calorific value Q hj = μ hj · h j · F j (3) h j : Heat generation rate (Kcal / Nm 3 ) F j : Fuel flow rate (Nm 3 / h) μ hj : Coefficient Q aj : Preheated air carry-in heat quantity Q aj = μ aj · C aj · F aj · Θ aj・ ・ ・ (4) C aj : Air heat capacity (Kcal / ° C · Nm 3 ) F aj = Ar j · F j・ ・ ・ (5) Ar j : Air-fuel ratio Θ aj : Air temperature (℃) Θ aj = μ rj・ Θ gj・ V j・ ・ ・ (6) μ aj : Coefficient μ rj : Coefficient Q sj : To material Transfer heat Q sj = μ sj · S j · {Φ gsuj · (T gj 4 −T suj 4 ) + Φ gslj · (T gj 4 −T slj 4 )} (7) S j : surface area of material , Φ: Overall heat absorption rate, T Temperature (° K) μ sj: coefficients respectively lowercase, g is the gas, s materials, u is an upper surface, l
Means the lower surface.

【0006】Qwj :炉壁持ち出し熱量 Qwj =μwj ・Swj・Φgwj・(Tgj 4−Twj 4) ・・・(8) Sw:炉壁の面積(m2) μwj:係数、小文字のwは炉壁を意味する。[0006] Q wj: furnace wall brought out the amount of heat Q wj = μ wj · S wj · Φ gwj · (T gj 4 -T wj 4) ··· (8) S w: the area of the furnace wall (m 2) μ wj : Coefficient, lower case w means furnace wall.

【0007】Qgj :燃焼ガス持ち出し熱量 Qgj =μgj ・Cgj・Vj・Θgj ・・・(9) Vj=Gj・ΣFkj ・・・(10) Gj:燃焼ガス発生率 μgj:係数 QLj :損失熱量及び補正項 QLj =α1 ・Vj+α0 ・・・(11) α1:係数,α0:定数 さて前述のような従来の方式では、各加熱帯についての
熱平衡モデルすなわち前記(1)式は、 fa (T,F)+α1 ・F+α0 =0 ・・・(1a) と表現される。Tは炉内温度、Fは燃料流量(流速)、
α1およびα0がモデルパラメ−タすなわち学習パラメ−
タである。i=1〜nの各時点についての、上記(1)式
に基づいて燃料流量Vei(目標値)を定め、炉内温度を
eiと推定して炉温制御したときすなわち各時点で加熱
炉にFeiを目標値として燃料を供給したとき、各時点で
炉温がTi(測定値)、燃料流量がFi(測定値)であっ
たとすると、評価関数Pを、 ここで右辺第1項は推定演算式、右辺第2項は実績演算
式であり、右辺第1項の推定演算式{fa (Tei
ei)+α1 ・Fei+α0 }は(1)式より零であるので と定めて、この評価関数Pを最小にするα1 およびα0
を求める。
Q gj : heat quantity taken out of combustion gas Q gj = μ gj · C gj · V j · Θ gj (9) V j = G j · ΣF kj (10) G j : generation of combustion gas Rate μ gj : Coefficient Q Lj : Heat loss and correction term Q Lj = α 1 · V j + α 0 (11) α 1 : Coefficient, α 0 : Constant Now, in the conventional method as described above, each addition heat balance model i.e. the on tropical formula (1), f a (T, F) + α is expressed as 1 · F + α 0 = 0 ··· (1a). T is the furnace temperature, F is the fuel flow rate (flow velocity),
α 1 and α 0 are model parameters, that is, learning parameters.
It is When the fuel flow rate V ei (target value) is determined based on the above equation (1) for each time point i = 1 to n and the furnace temperature is estimated to be T ei and the furnace temperature is controlled, that is, heating is performed at each time point. Assuming that the furnace temperature is T i (measured value) and the fuel flow rate is F i (measured value) when fuel is supplied to the furnace with F ei as a target value, the evaluation function P is Here, the first term on the right-hand side is an estimation operation expression, the second term on the right-hand side is an actual operation operation expression, and the estimation operation expression {f a (T ei ,
Since F ei ) + α 1 · F ei + α 0 } is zero from the equation (1), And α 1 and α 0 that minimize the evaluation function P.
Ask for.

【0008】[0008]

【発明が解決しようとする課題】加熱炉内における材料
温度の測定は、様々な外乱の影響で、直接測定は困難で
あり、一般には材料温度を実測する代りに、上述のよう
に推定計算により炉内温度を算出しこれに基づいて材料
温度を推定演算する。従来は、投入燃料流量(燃料流量
実績値)や炉内各帯温度のみしか測定しておらず、その
他はモデル式によって計算するため、実績修正すべきパ
ラメ−タ数が制限され、実際のプロセスを十分再現出来
ないので、熱平衡モデル式の誤差が大きくなる。更に、
特開平2−254123号公報のように、所定時間毎に
モデル係数α(α1,α0)を実績値に基づいて更新する
場合、モデル係数の物理的意味が不明であり、操業条件
が比較的に大きく変わる場合の調整作業が困難になるの
で、汎用性が低い。
It is difficult to directly measure the material temperature in the heating furnace due to the influence of various disturbances. Generally, instead of actually measuring the material temperature, the above-mentioned estimation calculation is performed. The furnace temperature is calculated, and the material temperature is estimated and calculated based on this. In the past, only the input fuel flow rate (actual fuel flow rate value) and each zone temperature in the reactor were measured, and the others were calculated using model formulas, so the number of parameters that should be corrected should be limited and the actual process Cannot be reproduced sufficiently, the error of the thermal equilibrium model formula becomes large. Furthermore,
When updating the model coefficient α (α 1 , α 0 ) based on the actual value every predetermined time as in JP-A-2-254123, the physical meaning of the model coefficient is unknown and the operating conditions are compared. Since it is difficult to perform adjustment work when there is a large change in efficiency, versatility is low.

【0009】例えば、この場合(12)式の評価関数Pを最
小とするα1 ,α0 の決定は、線形回帰計算である。と
ころが、炉内温度Tがα1 ,α0 の関数であり非線形性
があるので、炉内状況が大きく変化する場合、α1 ,α
0 の推定誤差が大きくなり、そのため炉内温度の推定精
度は良くならない。さらに、熱平衡モデル式自体も誤差
が存在するため推定温度そのものが、必ずしも実際の温
度と一致しない。
For example, in this case, the determination of α 1 and α 0 that minimizes the evaluation function P in the equation (12) is a linear regression calculation. However, since the in-furnace temperature T is a function of α 1 and α 0 and has non-linearity, α 1 and α
The estimation error of 0 becomes large, so that the estimation accuracy of the furnace temperature does not improve. Further, since the thermal equilibrium model formula itself has an error, the estimated temperature itself does not always match the actual temperature.

【0010】本発明は、炉内温度推定精度を高くし加熱
対象材料の温度制御精度を向上することを目的とする。
It is an object of the present invention to improve the accuracy of temperature estimation in the furnace and improve the accuracy of temperature control of the material to be heated.

【0011】[0011]

【課題を解決するための手段】本発明では、前述の問題
点を改善するために、熱平衡モデル式 Qj =Qgj-1+Qhj+Qaj−Qsj−Qwj−Qgj=0 ・・・(13j) の、燃焼発熱量(Qhi),予熱空気熱量(Qaj),炉放熱量
(Qwj)および燃焼ガス持ち出し熱量(Qgj)のそれぞれを
算出する各計算式 Qgj-1=μgj-1・Cgj-1・Gj-1・ΣFkj-1・Θgj-1 ・・・(9j-1) Qhj =μhj ・hj ・Fj ・・・(3j) Qaj =μaj ・Caj ・Arj ・Fj ・Θaj ・・・(4j) Θaj =μrj・Θgj・Vj ・・・(6j) Qsj =μsj ・Sj・{Φgsuj・(Tgj 4−Tsuj 4) +Φgslj・(Tgj 4−Tslj 4)} ・・・(7j) Qwj =μwj ・Swj・Φgwj・(Tgj 4−Twj 4) ・・・(8j) Qgj =μgj ・Cgj・Gj・ΣFkj ・Θgj ・・・(9j) の熱量影響パラメ−タ(Fj,Arj,Θaj,Θgj
wj,Θgj)の、各時刻(i=1〜n)の値を検出するための
検出手段(21〜24,31〜35等々)を備えて、熱平衡モデル
式(13j)の各計算式(3j,4j,6j,8j,9j)に前記各時刻(i=1
〜n)の検出値を導入して、 K5j-1=Cgj-1・Gj-1・ΣFkj-1・Θgj-1, K1j=hj ・Fj, K2j=Caj ・Arj ・Fj ・Θgj・Vj, K3j=Sj・{Φgsuj・(Tgj 4−Tsuj 4)+Φgslj・(Tgj 4−Tslj 4)}, K4j=Swj・Φgwj・(Tgj 4−Twj 4), K5j=Cgj・Gj・ΣFkj ・Θgj を算出し、これらを熱平衡モデル式(13j)に代入して得
られた各時刻の係数行列 μgj-1・K5j-1+μhj・K1j+μaj・μrj・K2j−μsj・K3j−μwj・K4j−μgj・K5j=0 ・・・(14j) (n個)に基づいて各計算式の係数値(μhj,μaj・μ
rj,μwj,μgj)を算出し、熱平衡モデル式(13j)を算
出された係数値を用いるものに更新する。すなわち燃焼
発熱量(Qhi),予熱空気熱量(Qaj),炉放熱量(Qwj)お
よび燃焼ガス持ち出し熱量(Qgj)のそれぞれを算出する
各計算式の係数値(μhj,μaj・μrj,μwj,μgj)を学
習により更新する。
According to the present invention, in order to improve the above-mentioned problems, the thermal equilibrium model equation Q j = Q gj-1 + Q hj + Q aj -Q sj -Q wj -Q gj = 0.・ Combustion heat generation amount (Q hi ), preheat air heat amount (Q aj ), furnace heat radiation amount of (13 j )
(Q wj ) and each calculation formula for calculating the amount of heat taken out of combustion gas (Q gj ), Q gj-1 = μ gj-1 , C gj-1 , G j-1 , ΣF kj-1 , Θ gj-1・ ・ ・ (9 j-1 ) Q hj = μ hj・ h j・ F j・ ・ ・ (3 j ) Q aj = μ aj・ C aj・ Ar j・ F j・ Θ aj・ ・ ・ (4 j ) Θ aj = μ rj・ Θ gj・ V j・ ・ ・ (6 j ) Q sj = μ sj・ S j・ {Φ gsuj・ (T gj 4 −T suj 4 ) + Φ gslj・ (T gj 4 −T slj 4 )} ・ ・ ・ (7 j ) Q wj = μ wj・ S wj・ Φ gwj・ (T gj 4 −T wj 4 ) ・ ・ ・ (8 j ) Q gj = μ gj・ C gj・ G j · ΣF kj · Θ gj heat effect of ··· (9 j) parameters - data (F j, Ar j, Θ aj, Θ gj,
T wj , Θ gj ) is provided with detection means (21 to 24, 31 to 35, etc.) for detecting the value of each time (i = 1 to n), and each calculation of the thermal equilibrium model formula (13 j ) is performed. In the formula (3 j , 4 j , 6 j , 8 j , 9 j ), each time (i = 1
~ N) is introduced, K 5j-1 = C gj-1 · G j-1 · ΣF kj-1 · Θ gj-1 , K 1j = h j · F j , K 2j = C aj · Ar j · F j · Θ gj · V j, K 3j = S j · {Φ gsuj · (T gj 4 -T suj 4) + Φ gslj · (T gj 4 -T slj 4)}, K 4j = S wj · Φ gwj · (T gj 4 −T wj 4 ), K 5j = C gj · G j · ΣF kj · Θ gj are calculated, and these are substituted into the thermal equilibrium model formula (13 j ). Time coefficient matrix μ gj-1・ K 5j-1 + μ hj・ K 1j + μ aj・ μ rj・ K 2j −μ sj・ K 3j −μ wj・ K 4j −μ gj・ K 5j = 0 ( 14 j ) (n pieces) based on the coefficient values (μ hj , μ aj・ μ)
rj , μ wj , μ gj ) are calculated, and the thermal equilibrium model formula (13 j ) is updated to one using the calculated coefficient value. That is, the coefficient values (μ hj , μ aj ) of the respective calculation formulas for calculating the combustion calorific value (Q hi ), the preheating air heat value (Q aj ), the furnace heat release value (Q wj ), and the combustion gas carry-out heat value (Q gj ).・Update μ rj , μ wj , μ gj ) by learning.

【0012】なお、燃焼ガス持ち込み量μgj-1・K5j-1
gj-1の実績計算値は、前方(材料の送り方向で上流)
側の帯の燃焼ガス持ち出し熱量の実績計算値であり、こ
れは該前方帯の該帯の燃焼ガス持ち出し熱量Qgj-1の実
績計算値を用いる。材料への移動熱量μsj・K3j=Qsj
実績計算値は、j帯で加熱対象材の表面温度および裏面
温度を測定することにより、(7)式に基づいて実績計算
値を得ることができるので、加熱対象材の表面温度およ
び裏面温度を容易に測定することができる帯では、実績
計算値を用いる。この場合はμsjも学習により更新され
ることになる。このような温度測定が難かしい場合に
は、先に各時刻(i=1〜n)の加熱対象材の温度推定演算の
中間過程で算出した値Qsjを用いる。この場合はμsj
更新されない。
The amount of combustion gas carried in μ gj-1 · K 5j-1 =
The actual calculated value of Q gj-1 is forward (upstream in the material feed direction)
This is the actual calculation value of the combustion gas carry-out heat quantity of the side zone, and this is the actual calculation value of the combustion gas carry-out heat quantity Q gj-1 of the front zone. The actual calculated value of the amount of heat transferred to the material μ sj · K 3j = Q sj can be obtained based on equation (7) by measuring the surface temperature and back surface temperature of the heating target material in the j band. Therefore, the actual calculated value is used in the zone where the front surface temperature and the back surface temperature of the heating target material can be easily measured. In this case, μ sj will also be updated by learning. When such temperature measurement is difficult, the value Q sj calculated in the intermediate process of the temperature estimation calculation of the heating target material at each time (i = 1 to n) is used. In this case μ sj is not updated.

【0013】[0013]

【作用】本発明では、熱平衡モデル式(13j)の少くとも
燃焼発熱量(Qhi),予熱空気熱量(Qaj),炉放熱量(Q
wj)および燃焼ガス持ち出し熱量(Qgj)のそれぞれを算
出する各計算式の係数値(μhj,μaj・μrj,μwj
μgj)を学習により更新するので、熱平衡モデル式の実
績修正するパラメ−タ数が従来より多く熱平衡モデル式
の誤差が小さくなり、実際のプロセスの再現性が高い。
したがって操業条件が比較的に大きく変わる場合の調整
作業が少く、汎用性が高い。、炉内温度推定精度が高く
なり加熱対象材料の温度制御精度が向上する。
According to the present invention, at least the combustion heating value of the thermal equilibrium model equation (13 j) (Q hi) , preheated air heat (Q aj), the furnace heat radiation amount (Q
wj ) and the amount of heat taken out of combustion gas (Q gj ), the coefficient values (μ hj , μ aj · μ rj , μ wj ,
Since μ gj ) is updated by learning, the actual number of parameters for correcting the thermal equilibrium model equation is larger than in the past, and the error in the thermal equilibrium model equation is smaller, and the reproducibility of the actual process is high.
Therefore, there is little adjustment work when the operating conditions change relatively large, and versatility is high. As a result, the accuracy of estimating the temperature inside the furnace is increased, and the accuracy of temperature control of the material to be heated is improved.

【0014】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0015】[0015]

【実施例】図1に本発明の一実施例の概要を示す。加熱
炉1は、平面を示す図1の(a)に示すように、炉尻1
1,予熱帯12,第2加熱帯13,第3加熱帯14およ
び均熱帯15を有する。縦断面を示す図1の(b)に示
すように、各帯には、炉内温度(Θg)検出器21〜24
および炉壁温度(Tw)検出器31〜35ならびに各帯燃
料流量実績値Fを検出する流量検出器に加えて、各帯
の、V(燃焼ガス流量),Ar(空燃比),Θa(空気温度)
等を測定するための各種検出器が装備されている。予熱
帯12〜均熱帯15のそれぞれには燃料流量制御装置4
0が各帯別に燃料を供給する。燃料流量制御装置40に
は、最適制御装置50のスケジュ−ル計算機51が、各
帯の燃料流量目標値を与え、燃料流量制御装置40は、
各帯の燃料流量検出器の検出値を参照して、検出値が目
標値に合致するように各帯の燃料流量を制御する。炉内
温度検出器21〜24,炉壁温度検出器31〜35およ
びその他の検出器による各帯の測定値および測定値に基
づいた演算値(F,V,Θg,Ar,Θa,Tw)はスケ
ジュ−ル計算機51に与えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the outline of one embodiment of the present invention. The heating furnace 1 has a furnace bottom 1 as shown in FIG.
1, a pre-tropical zone 12, a second heating zone 13, a third heating zone 14 and a soaking zone 15. As shown in FIG. 1 (b) showing a longitudinal section, in each zone, in-furnace temperature (Θg) detectors 21 to 24 are provided.
In addition to the furnace wall temperature (Tw) detectors 31 to 35 and the flow rate detectors that detect the actual fuel flow rate values F of each zone, V (combustion gas flow rate), Ar (air-fuel ratio), Θa (air) of each zone temperature)
Equipped with various detectors for measuring etc. The fuel flow rate control device 4 is provided in each of the pretropical zone 12 to the soaking zone 15
0 supplies fuel for each belt. The schedule calculator 51 of the optimal control device 50 gives the fuel flow rate control device 40 a fuel flow rate target value for each band, and the fuel flow rate control device 40
The fuel flow rate of each band is controlled so that the detected value matches the target value by referring to the detected value of the fuel flow rate detector of each band. Measured values (F, V, Θg, Ar, Θa, Tw) of each zone measured by the furnace temperature detectors 21-24, the furnace wall temperature detectors 31-35 and other detectors are It is given to the schedule calculator 51.

【0016】最適制御装置50には、燃料流量制御装置
40とデ−タを交換しかつ検出値を読込むための入/出
力装置52,読込んだデ−タを所定期間保存するための
入力デ−タメモリ53,出力したデ−タを所定期間保存
するための出力デ−タメモリ54,演算したデ−タを保
存するための演算値デ−タメモリ55、および、加熱炉
1の材料装入および抽出を管理する制御計算機60とデ
−タを交換するための入/出力装置56が備わってい
る。
The optimum controller 50 has an input / output device 52 for exchanging data with the fuel flow rate controller 40 and for reading the detected value, and an input data for storing the read data for a predetermined period. The data memory 53, the output data memory 54 for storing the output data for a predetermined period, the calculated value data memory 55 for storing the calculated data, and the material charging and extraction of the heating furnace 1. An input / output device 56 for exchanging data with the control computer 60 to be managed is provided.

【0017】図2に、最適制御装置50のスケジュ−ル
計算機51の制御動作の概要を示し、図3に、図2に示
す「Feiの算出」(2)の内容を示し、図4に、図2に示す
「熱平衡モデル式の更新」(10)の内容を示す。
FIG. 2 shows the outline of the control operation of the schedule computer 51 of the optimum control device 50, FIG. 3 shows the contents of “calculation of Fei” (2) shown in FIG. 2, and FIG. The contents of "Update of thermal equilibrium model formula" (10) shown in Fig. 2 are shown.

【0018】まず図2を参照して最適制御装置50の制
御動作の概要を説明する。加熱炉1の炉温制御を開始す
る最初には、スケジュ−ル計算機51は、「初期値設
定」(1)で、制御計算機60から表1および表2に示
す、現在の加熱炉の状態情報を受けて入力デ−タメモリ
53に書込み、かつ温度測定値等各種測定値を読込んで
デ−タメモリ53に書込む。
First, the outline of the control operation of the optimum control device 50 will be described with reference to FIG. At the beginning of starting the furnace temperature control of the heating furnace 1, the schedule computer 51 uses the "initial value setting" (1) to display the current heating furnace state information shown in Tables 1 and 2 from the control computer 60. In response to this, the data is written in the input data memory 53, and various measured values such as temperature measured values are read and written in the data memory 53.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】なお、スケジュ−ル計算機51は、予熱帯
12〜均熱帯15のそれぞれについて温度制御を行なう
が、以下においては均熱帯15(j=5)の温度制御のみを
説明する。他の帯(j=1〜4)の温度制御は均熱帯15の温
度制御と同様である。
The schedule computer 51 controls the temperature of each of the pretropical zone 12 to the soaking zone 15. However, only the temperature control of the soaking zone 15 (j = 5) will be described below. The temperature control of the other zones (j = 1 to 4) is the same as the temperature control of the soaking zone 15.

【0022】スケジュ−ル計算機51は次に、現在時刻
(i=1),それからdt1(=12×10sec)経過後の時
刻(i=2),それから更にdt1経過後の時刻(i=
3),・・・終端時刻(i=n)、のそれぞれにおいて
均熱帯15に設定すべき燃料流量Feiを算出して(ステ
ップ2:以下カッコ内ではステップという語を省略)、
これらn個のデ−タを、各時刻の燃料流量目標値として
燃料流量制御装置40に与え、かつ、これらのデ−タを
出力デ−タメモリ54に、また算出過程の所要の演算デ
−タを演算値デ−タメモリ55に書込む(3)。燃料流
量制御装置40は与えられた各時刻の目標値デ−タを読
込んで、第1時刻(i=1)のものを参照値に設定し、そ
の後時間経過に連動して参照値を経過時間対応のもの(i
=2,3,4・・・)に更新して、流量検出器(図示せず)が検出
する燃料流量(実績値)が参照値に合致するように、均
熱帯15の燃料流量を制御する。
The schedule computer 51 next calculates the current time (i = 1), the time after dt1 (= 12 × 10 sec) (i = 2), and the time after dt1 (i = 2).
3), ... Calculate the fuel flow rate Fei that should be set in the soaking zone 15 at each of the end times (i = n) (step 2: hereinafter, the word step is omitted in parentheses),
These n pieces of data are given to the fuel flow rate control device 40 as the fuel flow rate target values at each time, and these data are output to the output data memory 54, and the calculation data required for the calculation process. Is written in the calculated value data memory 55 (3). The fuel flow rate control device 40 reads the target value data at each given time, sets the reference value at the first time (i = 1), and then changes the reference value to the elapsed time in conjunction with the passage of time. Corresponding ((i
= 2,3,4 ...) and controls the fuel flow rate of the soaking zone 15 so that the fuel flow rate (actual value) detected by the flow rate detector (not shown) matches the reference value. ..

【0023】スケジュ−ル計算機51は、このように制
御装置40が燃料流量を制御している間、10sec周期で
炉内ガス温度Θg,炉壁内面温度Twi,燃料流量実績値
Fi,Vi(燃焼ガス流量),Ari(空燃比),Θa(空気
温度)を読込んで入力デ−タメモリ53に書込む(5,
6)。そして12回の測定値読込みを行なうと、測定値
それぞれの平均値を算出して、i時刻平均値レジスタに
書込む(A9)。これを繰返して、i(=1〜n)時刻
平均値レジスタのそれぞれに各時刻(正確には各10×12
sec期間)の平均値を書込むと、熱平衡モデル式(13j)の
係数(μhj,μaj・μrj,μwj,μgj)を更新する(1
0)。そして制御計算機60から最新の炉内材料情報
(表2)を受けて入力デ−タメモリの対応情報をこれに
更新する(11)。そして、また、現在時刻からn×d
t1までの各時刻iのそれぞれにおいて均熱帯15に設
定すべき燃料流量Feiを算出して(2)、これらn個の
デ−タを、各時刻の燃料流量目標値として燃料流量制御
装置40に与える(3)。以下同様である。
While the control device 40 controls the fuel flow rate in this way, the schedule computer 51 has the furnace gas temperature Θg, the furnace wall inner surface temperature Twi, and the fuel flow rate actual values Fi, Vi (combustion) in a cycle of 10 seconds. Gas flow rate), Ari (air-fuel ratio), Θa (air temperature) are read and written in the input data memory 53 (5, 5).
6). When the measured value is read 12 times, the average value of each measured value is calculated and written in the i-time average value register (A9). By repeating this, each time (correctly 10 × 12 each) is stored in each of the i (= 1 to n) time average value registers.
When the average value of (sec period) is written, the coefficients (μ hj , μ aj · μ rj , μ wj , μ gj ) of the thermal equilibrium model formula (13 j ) are updated (1
0). Then, the latest in-furnace material information (Table 2) is received from the control computer 60 and the corresponding information in the input data memory is updated to this (11). And again, n × d from the current time
The fuel flow rate Fei to be set in the soaking zone 15 is calculated at each time i up to t1 (2), and these n pieces of data are set in the fuel flow rate control device 40 as the fuel flow rate target value at each time. Give (3). The same applies hereinafter.

【0024】次に、図3を参照して「Feiの算出」
(2)の内容を説明する。ここではスケジュ−ル計算機
51は、まず現時刻の燃料流量目標値Fei(i=1)を算出
する(21〜30)。
Next, referring to FIG. 3, "calculation of Fei"
The contents of (2) will be described. Here, the schedule calculator 51 first calculates the fuel flow rate target value Fei (i = 1) at the current time (21 to 30).

【0025】現時刻の燃料流量目標値Fei(i=1)の算出
(21〜30)においてまずFei(i=1)を、現在の燃料
流量実績値(ステップ6で読込んだ直近値)Feipより設
定量Fai小さい値Feieと仮定して(22)、 Qgj-1=μgj-1・Cgj-1・Gj-1・ΣFkj-1・Θgj-1 ・・・(9j-1) Qhj =μhj ・hj ・Fj ・・・(3j) Qaj =μaj ・Caj ・Arj ・Fj ・Θaj ・・・(4j) Θaj =μrj・Θgj・Vj ・・・(6j) Qwj =μwj ・Swj・Φgwj・(Tgj 4−Twj 4) ・・・(8j) Qgj =μgj ・Cgj・Gj・ΣFkj ・Θgj ・・・(9j) の各値Qgj-1 ,Qhj ,Qaj ,Qwj ,Qgj を算出する(23
A〜23E)。Qgj-1 は、第三加熱帯14に関して算出した
値(第三加熱帯の燃焼ガス持出し熱量)を用いる。これ
らの値Qgj-1 ,Qhj ,Qaj ,Qwj ,Qgj を熱平衡モデ
ル式(13j)に代入して材料への移動熱量Qsj を算出す
る(24)。
In the calculation (21 to 30) of the fuel flow rate target value Fei (i = 1) at the current time, first Fei (i = 1) is calculated as the current fuel flow rate actual value (the latest value read in step 6) Feip Assuming a value Feie smaller than the set amount Fai (22), Q gj-1 = μ gj-1 · C gj-1 · G j-1 · ΣF kj-1 · Θ gj-1 ··· (9 j -1 ) Q hj = μ hj · h j · F j・ ・ ・ (3 j ) Q aj = μ aj・ C aj・ Ar j・ F j・ Θ aj・ ・ ・ (4 j ) θ aj = μ rj・ Θ gj・ V j・ ・ ・ (6 j ) Q wj = μ wj・ S wj・ Φ gwj・ (T gj 4 −T wj 4 ) ・ ・ ・ (8 j ) Q gj = μ gj・ C gj・G j · ΣF kj · θ gj (9 j ) values Q gj-1 , Q hj , Q aj , Q wj , and Q gj are calculated (23
A-23E). For Q gj-1 , the value calculated for the third heating zone 14 (combustion gas carry-out heat amount of the third heating zone) is used. These values Q gj-1 , Q hj , Q aj , Q wj , and Q gj are substituted into the thermal equilibrium model equation (13j) to calculate the amount of heat transferred to the material Q sj (24).

【0026】材料の温度及び炉壁の温度の計算は、1次
元非定常熱伝導モデルを重み付き残差法を用いて解いた
以下の近似式を用いて行う。
The calculation of the temperature of the material and the temperature of the furnace wall is carried out by using the following approximate expression obtained by solving the one-dimensional unsteady heat conduction model using the weighted residual method.

【0027】 T(t,x)=f00 +Ka ・α・t +{(f01 −Kb )・g1 (t)+Kb }・f1 (x) +{(f02 −Ka /2)・g2 (t)+Ka /2} ・f2 (x)−(5/12)・(f01 −Kb ) ・g1 (t)・f3 (x)−(7/8) ・(f02 −Ka /2)・g2 (t)・f4 (x) ・・・(15) 但し、 g1 (t)=exp(−(5/2)・α・t) ・・・(16) g2 (t)=exp(−(60/7)・α・t) ・・・(17) f (x)=x ・・・(18) f2 (x)=x2 −1/3 ・・・(19) f3 (x)=x3 −(3/5)・x ・・・(20) f4 (x)=x4 −(6/7)・x2 +3/35 ・・・(21) ここでf00 ,f01 ,f02 ,Ka ,α ,Kb は定数と
し、温度Tは、平均温度がT=1となり、位置xは領域
内で(−1〜+1)となるように、規格化されている。
まず、材料の温度計算では、Xは材料の厚さ方向にと
り、下面をX=−1、中央をX=0、上面をX=+1に
とる。
T (t, x) = f 00 + K a · α · t + {(f 01 −K b ) · g 1 (t) + K b } · f 1 (x) + {(f 02 −K a / 2) · g 2 (t ) + K a / 2} · f 2 (x) - (5/12) · (f 01 -K b) · g 1 (t) · f 3 (x) - (7 / 8) · (f 02 -K a / 2) · g 2 (t) · f 4 (x) ··· (15) However, g 1 (t) = exp (- (5/2) · α · t ) (16) g 2 (t) = exp (− (60/7) · α · t) (17) f 1 (x) = x (18) f 2 (x) = x 2 -1/3 ··· (19) f 3 (x) = x 3 - (3/5) · x ··· (20) f 4 (x) = x 4 - (6/7) · x 2 +3/35 (21) where f 00 , f 01 , f 02 , K a , α and K b are constants, the temperature T is the average temperature T = 1, and the position x is within the region. Becomes (-1 to +1) Sea urchin, has been standardized.
First, in the temperature calculation of the material, X is taken in the thickness direction of the material, the lower surface is X = −1, the center is X = 0, and the upper surface is X = + 1.

【0028】境界条件はThe boundary condition is

【0029】[0029]

【数22】 [Equation 22]

【0030】[0030]

【数23】 [Equation 23]

【0031】となり、この場合炉内の該当材についての
上下部熱流束は qsuj =σ・Φgsuj ・(Tgj 4−Tsuj 4) ・・・(24) qslj =σ・Φgslj ・(Tgj 4−Tslj 4) ・・・(25) である。 但し、λsj :材料の熱伝導率(Kcal/hm℃)、 Φ:総括熱吸収率、 T:温度(°K)、 小文字はそれぞれgはガス、sは材料、uは上面、lは
下面を意味する。
In this case, the upper and lower heat fluxes of the material in the furnace are q suj = σ · Φ gsuj · (T gj 4 −T suj 4 ) ... (24) q slj = σ · Φ gslj · (T gj 4 −T slj 4 ) ... (25). Where λ sj is the thermal conductivity of the material (Kcal / hm ° C), Φ is the overall heat absorption coefficient, T is the temperature (° K), lowercase letters are g for gas, s for material, u for the upper surface, and l for the lower surface. Means

【0032】つぎに、炉壁の温度計算では、Xは炉壁の
厚さ方向にとり、炉内をX=−1、中央をX=0、外壁
をX=+にとる。
Next, in the temperature calculation of the furnace wall, X is taken in the thickness direction of the furnace wall, the inside of the furnace is X = -1, the center is X = 0, and the outer wall is X = +.

【0033】境界条件はThe boundary condition is

【0034】[0034]

【数26】 [Equation 26]

【0035】[0035]

【数27】 [Equation 27]

【0036】となり、この場合の熱流束は qwej =μwj ・σ・Φgwj ・(Tgj 4 −Twej 4) ・・・(28) qwoj =μwoj ・βoaj ・(Toaj −Twoj ) ・・・(29) になる。The heat flux in this case is q wej = μ wj · σ · Φ gwj · (T gj 4 −T wej 4 ) ... (28) q woj = μ woj · β oaj · (T oaj − T woj ) ... (29).

【0037】但し、λwi :炉壁の熱伝導率(Kcal
/hm℃)、 Φ:炉壁内面の総括熱吸収率、 β:外壁の熱伝達率(Kcal/hm2℃)、Tは温度
(°K) 小文字はそれぞれgはガス、wは炉壁、
eは炉内、oは外壁を意味する。
Where λ wi is the thermal conductivity of the furnace wall (Kcal
/ Hm ° C), Φ: overall heat absorption coefficient of the inner wall of the furnace wall, β: heat transfer coefficient of the outer wall (Kcal / hm 2 ° C), T is temperature (° K), lowercase letters are g for gas, w for furnace wall,
e means the inside of the furnace, and o means the outer wall.

【0038】さて、炉壁の内面温度は(15)式より、x=
−1,t=0とおくと Twej =B1j ・μwoj +B0j ・・・(30) となる。
From the equation (15), the internal temperature of the furnace wall is x =
When −1 and t = 0 are set, T wej = B 1j · μ woj + B 0j (30)

【0039】このようにして得た材料各部の温度(推定
値)と目標値との差すなわち誤差(各材料の各部)を算
出し、「誤差の総和」を算出する(図3の26,27)。
The difference between the temperature (estimated value) of each part of the material thus obtained and the target value, that is, the error (each part of each material) is calculated, and the "sum of errors" is calculated (26, 27 in FIG. 3). ).

【0040】以上に説明した上記「誤差の総和」の算出ま
でを、同様に、燃料流量仮定値Feieを1ステップ
(Δ)づつFeip+Faiまで大きくし、各ステップ(各燃
料流量仮定値)について同様に実行する(図3の28,
29,23A〜23E−24〜27の繰返し)。そし
て、これらの各ステップの「誤差の総和」の内最小のも
のが得られた燃料流量仮定値を、i=1(現時刻)の燃
料流量目標値Fei(i=1)と定める(30)。なお、この
「Feiの算出」(2)において燃料流量の最適値は、演
算速度を高くするため、公知の急降下法を用いてもよ
い。例えば、Feie=Feip−Fai,Feie=Feip−Fai
/2,Feie=Feip,Feie=Feip+Fai/2およびFe
ie=Feip+Faiの5点について上述の「誤差の総和」
を算出してそれらの内最小値をもたらしたものがFeie
=Feip−Fai/2であると、次にはFeie=Feip−(3/
4)FaiおよびFeie=Feip−(1/4)Faiの「誤差の総
和」を算出して、それを最小とする燃料流量が、Feie
=Feip−FaiからFeie=Feip−(3/4)Faiの領域,F
eie=Feip−(3/4)FaiからFeie=Feip−Fai/2の
領域,Feie=Feip−Fai/2からFeie=Feip−(1/
4)Faiの領域およびFeie=Feip−(1/4)FaiからFei
e=Feipの領域、のいずれにあるか判定し、このように
最小値が存在する領域を順次狭くして最後には燃料流量
の最小単位で「誤差の総和」が最小値となった燃料流量
を、最適値と決定する。このような急降下法を用いる
と、最適燃料流量を算出する演算時間が短くなる。
Similarly to the above-described calculation of the "sum of errors" described above, the fuel flow rate assumption value Feie is similarly increased by one step (Δ) to Feip + Fai, and similarly for each step (each fuel flow rate assumption value). Execute (28 in FIG. 3,
29, 23A-23E-24-27). Then, the fuel flow rate hypothetical value for which the smallest one among the "sum of errors" of these steps is obtained is set as the fuel flow rate target value Fei (i = 1) of i = 1 (current time) (30). .. In this “calculation of F e i” (2), the optimum value of the fuel flow rate may be calculated by using a known descent method in order to increase the calculation speed. For example, Feie = Feip-Fai, Feie = Feip-Fai
/ 2, Feie = Feip, Feie = Feip + Fai / 2 and Fe
The above "sum of errors" for the five points ie = Feip + Fai
Is the result of calculating
= Feip-Fai / 2, then Feie = Feip- (3 /
4) Calculate the "sum of errors" of Fai and Feie = Feip- (1/4) Fai, and the fuel flow rate that minimizes it is Feie
= Feip-Fai to Feie = Feip- (3/4) Fai region, F
eie = Feip- (3/4) Fai to Feie = Feip-Fai / 2 region, Feie = Feip-Fai / 2 to Feie = Feip- (1 /
4) Area of Fai and Feie = Feip- (1/4) Fai to Fei
It is determined which of the areas of e = Feip, the area in which the minimum value exists in this way is gradually narrowed, and finally the fuel flow rate at which the "total error" becomes the minimum value in the minimum unit of the fuel flow rate. Is determined to be the optimum value. When such a steep descent method is used, the calculation time for calculating the optimum fuel flow rate is shortened.

【0041】以上に説明した「i=1(現時刻)の燃料流
量目標値Vei(i=1)」の決定と同様にして、dt1(=1
0×12sec)後(i=2)の燃料流量目標値Vei(i=2)から
n×dt1後の燃料流量目標値Vei(i=n)まで、それぞ
れを決定する(31,32,22〜30)。
In the same manner as the determination of "i = 1 (current time) fuel flow rate target value Vei (i = 1)" described above, dt1 (= 1
After 0 × 12 sec) (i = 2), the fuel flow rate target value Vei (i = 2) to the fuel flow rate target value Vei (i = n) after n × dt1 are determined (31, 32, 22-). 30).

【0042】次に、図4を参照して「熱平衡モデル式の
更新」(10)の内容を説明する。なお、「熱平衡モデ
ル式の更新」(10)は、n×dt1前にステップ2
(図2:詳細は図3)で与えた各時点(i=1〜n)の
燃料流量目標値Veiによって現われた結果すなわち実績
値(図2のステップ4〜8による測定値)を、熱平衡モ
デル式(13j)に代入して(14j)式のKij,K2j,K4jおよ
びK5jの実績値を算出し、これらと、第三加熱帯14の
燃焼ガス持ち出し熱量実績算出値Qgj-1=μgj-1・K
5j-1、および、燃料流量目標値Veiの算出のときに算出
した材料への移動熱量算出値Qs=μsj・K3jを用い
て、各時点i=1〜nそれぞれの、熱平衡モデル式(13
j)の実績値導入式すなわち(14j)式を算定し、n個の係
数行列を求める(101〜104)。そしてこの係数行列より重
回帰計算により、燃焼発熱量Qhiの計算式(3j)の係数μ
hj,予熱空気熱量Qaiの計算式(4j)の係数μaj,炉放熱
量Qwiの計算式(8j)の係数μwjおよび燃焼ガス持ち出し
熱量Qgiの計算式(9j)の係数μgjを算出する(10
5)。次に、先に燃料流量目標値Veiの算出で用いた係
数と加重平滑化処理して、平滑化処理した各係数値を、
次の燃料流量目標値Veiの算出に用いる熱平衡モデル式
(13j)の係数値に設定する(107)。なお、炉壁の内
面温度計算式 Twej =B1j ・μwoj +B0j ・・・(30) の係数μwojは、この式を用いて同様に算出し、更新す
る。
Next, the contents of the "update of thermal equilibrium model formula" (10) will be described with reference to FIG. Note that the "update of thermal equilibrium model equation" (10) is performed in step 2 before n × dt1.
(FIG. 2: Details are shown in FIG. 3) The results, that is, the actual values (measured values in steps 4 to 8 in FIG. 2) that are represented by the fuel flow rate target values Vei at the respective time points (i = 1 to n) given in FIG. The actual values of K ij , K 2j , K 4j and K 5j in the equation (14j) are calculated by substituting them into the equation (13j), and these and the combustion gas carry-out calorific value actual calculated value Q gj- of the third heating zone 14 are calculated. 1 = μ gj-1 · K
5j−1 , and the calculated heat transfer amount to the material Q s = μ sj · K 3j calculated when the fuel flow rate target value Vei was calculated, at each time i = 1 to n (13
The actual value introduction formula of j), that is, the formula (14 j ) is calculated to obtain n coefficient matrices (101 to 104). Then, the coefficient μ of the calculation formula (3 j ) of the combustion calorific value Q hi is calculated by multiple regression calculation from this coefficient matrix.
hj , coefficient μ aj of calculation formula (4 j ) of preheated air heat quantity Q ai , coefficient μ wj of calculation formula (8 j ) of furnace heat release quantity Q wi and calculation formula (9 j ) of combustion gas carry-out heat quantity Q gi Calculate the coefficient μ gj (10
5). Next, the coefficient used in the calculation of the fuel flow rate target value Vei and the weighted smoothing process are performed.
Thermal equilibrium model formula used to calculate the next fuel flow rate target value Vei
The coefficient value of (13j) is set (107). The coefficient μ woj of the equation for calculating the inner surface temperature of the furnace wall T wej = B 1j · μ woj + B 0j (30) is similarly calculated and updated using this formula.

【0043】図5に、本発明の実施前と実施後の均熱帯
温度の変化を示している。実施前では約30°C程度の
変動が残っているが、実施後は、その変動が約10°C
程度になっている。この時の操業条件は、材料の幅76
0〜1420mm、厚さ250mm、装入温度50〜9
00℃、抽出目標温度1100〜1230℃である。
FIG. 5 shows changes in soaking temperature before and after the present invention is carried out. Before the implementation, the fluctuation of about 30 ° C remains, but after the implementation, the fluctuation is about 10 ° C.
It has become a degree. The operating condition at this time is the width of the material 76
0-1420mm, thickness 250mm, charging temperature 50-9
The temperature is 00 ° C and the extraction target temperature is 1100 to 1230 ° C.

【0044】[0044]

【効果】本発明によれば、熱平衡モデル式の特定のパラ
メ−タにモデル誤差修正分が集中せず、より正確な推定
ができる。操業の変化があっても、熱平衡モデル式の多
くの係数値が自動的に精度良く更新されるため、従来よ
りも常に安定した制御が実施できる。従って、多種多様
な材料の加熱にも最適な燃料を精度良く推定でき、材料
焼き上げ品質の確保と大きな省エネルギー効果が得られ
る。
According to the present invention, the model error correction amount is not concentrated on a specific parameter of the thermal equilibrium model equation, and more accurate estimation can be performed. Even if there is a change in operation, many coefficient values in the thermal equilibrium model formula are automatically updated with high accuracy, so stable control can always be performed as compared with the conventional case. Therefore, it is possible to accurately estimate the optimum fuel for heating a wide variety of materials, and it is possible to secure the quality of baked materials and obtain a large energy saving effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 1つの加熱炉と加熱炉と本発明の一実施例を
示すブロック図であり、(a)は加熱炉の平面図、
(b)は縦断面図である。
FIG. 1 is a block diagram showing one heating furnace, a heating furnace, and an embodiment of the present invention, in which (a) is a plan view of the heating furnace;
(B) is a longitudinal sectional view.

【図2】 図1の(b)に示すスケジュ−ル計算機51
の演算処理内容を示すフロ−チャ−トである。
FIG. 2 is a schedule computer 51 shown in FIG. 1 (b).
3 is a flowchart showing the contents of the arithmetic processing of.

【図3】 図1の(b)に示すスケジュ−ル計算機51
の演算処理内容を示すフロ−チャ−トであり、図2に示
す「Veiの算出」(2)の内容を示す。
FIG. 3 is a schedule computer 51 shown in FIG. 1 (b).
2 is a flow chart showing the contents of the arithmetic processing of the above, and shows the contents of "calculation of Vei " (2) shown in FIG.

【図4】 図1の(b)に示すスケジュ−ル計算機51
の演算処理内容を示すフロ−チャ−トであり、図2に示
す「熱平衡モデル式の更新」(10)の内容を示す。
FIG. 4 is a schedule computer 51 shown in FIG. 1 (b).
2 is a flow chart showing the contents of the calculation processing, and shows the contents of the "update of the heat balance model formula" (10) shown in FIG.

【図5】 均熱帯の炉内温度の変化を示すグラフであ
る。
FIG. 5 is a graph showing a change in temperature in a soaking zone.

【符号の説明】[Explanation of symbols]

1:加熱炉 11:炉尻 12:予熱帯 13:第
2加熱帯 14:第3加熱帯 15:均
熱帯 21〜24:炉内温度検出器(検出手段) 31〜35:炉壁温度検出器(検出手段) 40:燃料流量制御装置(燃料流量制御手段) 50:最適制御装置 51:スケジュ−ル計算機(燃料流量算出手段,係数演
算手段,更新手段)
1: Heating Furnace 11: Furnace Bottom 12: Pre-Tropical Zone 13: Second Heating Zone 14: Third Heating Zone 15: Soaking Zone 21-24: Furnace Temperature Detector (Detecting Means) 31-35: Furnace Wall Temperature Detector (Detection means) 40: Fuel flow rate control device (fuel flow rate control means) 50: Optimal control device 51: Schedule calculator (fuel flow rate calculation means, coefficient calculation means, update means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料の燃焼発熱量,予熱空気熱量,炉放熱
量,燃焼ガス持ち出し熱量および加熱対象材料への移動
熱量を含む、入熱量,温度および放熱量の関係を表わす
熱平衡モデル式を用いて、将来の各時刻の加熱対象材料
への移動熱量を推定演算しこれに基づいて加熱対象材の
温度を推定演算して加熱対象材を目標温度に焼上げるに
要する各時刻の燃料流量を算出する燃料流量算出手段;
および加熱炉の燃料流量を該各時刻の算出された燃料流
量に制御する燃料流量制御手段;を備える加熱炉の炉内
温度制御装置において、 前記燃焼発熱量,予熱空気熱量,炉放熱量および燃焼ガ
ス持ち出し熱量のそれぞれを算出する各計算式の熱量影
響パラメ−タの、前記各時刻の値を検出するための検出
手段;熱平衡モデル式の前記各計算式に、前記各時刻の
検出値を導入し、得られた係数行列に基づいて各計算式
の係数値を算出する係数演算手段;および、 前記熱平衡モデル式を算出された係数値を用いるものに
更新する更新手段;を備えることを特徴とする、加熱炉
の炉内温度制御装置。
1. A thermal equilibrium model expression is used that represents the relationship between heat input, temperature, and heat release, including the combustion heat generation amount of fuel, preheat air heat amount, furnace heat release amount, combustion gas carry-out heat amount, and transfer heat amount to the material to be heated. Then, the amount of heat transferred to the material to be heated at each future time is estimated and calculated, and the temperature of the material to be heated is estimated and calculated based on this to calculate the fuel flow rate at each time required to bake the material to be heated to the target temperature. Fuel flow rate calculation means for
And a fuel flow rate control means for controlling the fuel flow rate of the heating furnace to the calculated fuel flow rate at each time, wherein the combustion heat generation amount, preheating air heat amount, furnace heat radiation amount and combustion Detecting means for detecting the value at each time of the calorific value influence parameter of each calculation formula for calculating each heat quantity taken out of gas; introducing the detected value at each time into each calculation formula of the heat balance model formula And coefficient updating means for calculating the coefficient value of each calculation formula based on the obtained coefficient matrix; and updating means for updating the thermal equilibrium model expression to one using the calculated coefficient value. A furnace temperature control device for a heating furnace.
JP1480492A 1992-01-30 1992-01-30 In-furnace temperature control device of heating furnace Withdrawn JPH05209234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1480492A JPH05209234A (en) 1992-01-30 1992-01-30 In-furnace temperature control device of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1480492A JPH05209234A (en) 1992-01-30 1992-01-30 In-furnace temperature control device of heating furnace

Publications (1)

Publication Number Publication Date
JPH05209234A true JPH05209234A (en) 1993-08-20

Family

ID=11871232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1480492A Withdrawn JPH05209234A (en) 1992-01-30 1992-01-30 In-furnace temperature control device of heating furnace

Country Status (1)

Country Link
JP (1) JPH05209234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225017A (en) * 2012-01-31 2013-07-31 宝山钢铁股份有限公司 Rod and wire billet heating furnace model control method and apparatus
CN115065710A (en) * 2022-04-29 2022-09-16 燕山大学 Heating furnace wisdom control by temperature change PC end and remote cloud system of observing and controling of removal end

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225017A (en) * 2012-01-31 2013-07-31 宝山钢铁股份有限公司 Rod and wire billet heating furnace model control method and apparatus
CN115065710A (en) * 2022-04-29 2022-09-16 燕山大学 Heating furnace wisdom control by temperature change PC end and remote cloud system of observing and controling of removal end
CN115065710B (en) * 2022-04-29 2023-07-25 燕山大学 Intelligent temperature control PC end and mobile end remote cloud measurement and control system of heating furnace

Similar Documents

Publication Publication Date Title
JPS5947324A (en) Controlling method of heating in heating furnace
CN110307910B (en) Method and device for acquiring temperature of billet of walking beam heating furnace
CN111950176A (en) Optimization method and optimization device for billet heating model and electronic equipment
JP2019158268A (en) Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace
US20060249502A1 (en) Distance estimation apparatus, abnormality detection apparatus, temperature regulator, and thermal treatment apparatus
JPH05209234A (en) In-furnace temperature control device of heating furnace
CN113621791A (en) Method for improving heating furnace billet temperature tracking model calculation accuracy based on black box test transverse partition data
JPH05209233A (en) In-furnace temperature control device of heating furnace
CN114015863B (en) Self-correction algorithm for billet heating model
KR100356159B1 (en) Apparatus for controlling combustion of furnace
JPH05209232A (en) In-furnace temperature control device of heating furnace
JPH08211946A (en) Method and device for controlling temperature
JPH05209235A (en) In-furnace temperature control device of heating furnace
JPS6411691B2 (en)
JPH06264153A (en) Method for predicting slab temperature in continuous type heating furnace
JPH08252622A (en) Method for learning correction in temperature calculation of material on outlet side of hot rolling mill
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JPS6140053B2 (en)
JPH10324926A (en) Method for predicting overall ratio of heat absorption in continuous heating furnace and method for predicting temperature of steel slab
JPS60200919A (en) Temperature controlling method of continuous annealing furnace
JPS5831405A (en) Temperature controlling system in heating furnace
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
JPH04193913A (en) Method for controlling heating in continuous heating furnace
JP2738270B2 (en) Roll profile calculation device for rolling rolls
JP4258165B2 (en) Steel heating method and program thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408